
Lecture 1
Course Introduction

Scribe: Tore Frederiksen

1.1 Overview

Assume we are in a situation where several people need to work together in order to solve a problem
they cannot solve on their own. The field of communication complexity is then concerned with how much
communication (bits) needs to be communicated between the parties in order to solve the problem. For
simplicity we generally assume that there are only two parties who need to communicate, we call these two
parties for Alice and Bob. As an example assume that Alice gets x ∈ {0, 1}n and Bob gets y ∈ {0, 1}n. They
now wish to determine if x = y. The question is now how many bits they need to communicate in the worst
case in order to find the answer to this question with certainty. To answer this question let us first consider
the trivial solution in order to get an upper bound. Clearly, if Alice sends the whole bitstring x to Bob, then
Bob will be able to check if it is equal to his bitstring y and then return 1 if that is the case and 0 otherwise.
For this approach we clearly need to communicate n + 1 bits. Since x contains n bits and Bob returns a
single bit. Now the question is if we can do better? Maybe Alice can compress the bitstring x and send the
compression to Bob who then expands it and checks its equality with his own bitstring y? Unfortunately
this is not possible. To see this notice that there are 2n possible values for x. Assume that we compress x
by just a single bit, that is, to a string of size n − 1. This means that there are 2n−1 possible compressed
strings. Thus there are at least two of the 2n strings that must compress to the same 2n−1 string. Now, how
can Bob know which of these two possible strings is Alices original string? He can’t. So if we compress by
even a single bit then Bob will be wrong in some cases. From this observation it turns out that it is actually
not possible to solve the problem with less than the trivial n + 1 bits of communication.

Looking at this example we can now consider how to define a communication protocol for computing a
function such that it is always clear whose turn it is, how many bits are sent each time and so on. It turns
out that this can be specified elegantly using a tree as in the following definition:

Definition 1 (Protocol Tree). A protocol for computing a function f : X × Y → Z is a labeled binary tree
with the following properties:

• The leaves are labeled with z ∈ Z.

• Internal nodes are labeled with either av : X → {0, 1} or bv : Y → {0, 1}. Notice that the subscript v

is a unique identifier for a given node. Also notice that an inner node is actually a map, mapping our
element x or y (depending on whether the node is of type av or bv) to 0 or 1. If our element is mapped
to 0 we go to the left child, and if it is mapped to 1 we go to the right child.

Example 2. We let X = Y = {1, 2, 3, 4} and Z = {0, 1} and define the following communication tree along
with a map for each node:
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av1

bv2

0 av3

0 1

av4

0 1

av1 :

x av1(x)
1 0
2 0
3 1
4 1

bv2 :

y bv2(y)
1 1
2 0
3 1
4 1

av3 :

x av3(x)
1 0
2 1
3 1
4 0

av4 :

x av4(x)
1 1
2 0
3 1
4 0

From this example we notice that we make quite a few assumptions in order for the communication tree
to specify a communication protocol for a function. These assumptions are:

• The output of the protocol is determined only through the communication sent.

• The bits sent are always received and never corrupted.

• The players deterministically choose their messages.

• Who sends the next bit is determined deterministically only by the previous communication.

Again there are also some assumption we don’t make:

• We do not make any assumptions about how long Alice and Bob have to decide on what message to
send next.

• We do not make any assumption on the computational resources (e.g., CPU power, memory, disk
space) available to Alice and Bob.

The lack of these assumptions makes the use of the communication tree as specification for communication
protocols very unrealistic. However, it also makes the communication model very general. This means that
the communication tree will give the ultimate lower bound for communication needed to decide the answer
to a function using a specific protocol.

Now given a communication tree for a specific protocol we define the cost a of the protocol to be the
depth of the tree, which is equivalent to the amount of bits sent in the worst case over all possible inputs.
Similarly, we define the cost of the protocol on a particular instance of x ∈ X and y ∈ Y to be the length of
the path from the root to the correct leaf in the communication tree.

Example 3. Consider the communication tree from our last example. Does this communication tree describe
an optimal protocol for the function we wish compute? It turns out that it does not. To see this notice that
node v3 is actually not needed, since if x = 1 then the function will always output 0 no matter what y is.
So if we change node v1 and v4 correctly we can eliminate node v3 as it will always output 1. Thus we can
cut off one layer in the tree and reduce the cost of the protocol by 1. So we can construct a communication
tree for the same function as follows:

av1

bv2

0 1

av4

0 1
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av1 :

x av1(x)
1 1
2 0
3 1
4 1

bv2 :

y bv2(y)
1 1
2 0
3 1
4 1

av4 :

x av4(x)
1 0
2 0
3 1
4 0

1.2 Fooling Sets

We start this section by formally defining what we mean by communication complexity for computing a
given function.

Definition 4 (Communication Complexity). For a function f : X×Y → Z the deterministic communication
complexity, D(f), is defined as

D(f) := min{cost(P ) : P computes f}

where P is any protocol.

Now assuming that the function we wish to compute is binary, we can then describe all possible outputs
of the function using a binary matrix in the following manner:

Definition 5 (Communication Matrix). We call the communication matrix of a binary function f : X×Y →
{0, 1} for Mf and define it to be a binary matrix of size |X| × |Y | where the rows corresponds to the input
from Alice and the columns corresponds to the input from Bob. The value of entry (x, y) is then the result
of function f on input f(x, y), or more formally

Mf [x, y] := f(x, y)

Using such a matrix we can again define smaller submatrices with special properties that will make
complexity analysis easier.

Definition 6 (Combinatorial Rectangle). We define R ⊆ X × Y to be a combinatorial rectangle of a
communication matrix Mf for function f : X × Y → {0, 1} if R = A×B for some A ⊆ X and B ⊆ Y .

Definition 7 (Mono-chromatic). A combinatorial rectangle R ⊆ X × Y for function f : X × Y → {0, 1} is
called mono-chromatic if Mf [x, y] = Mf [x′, y′] ∀(x, y), (x′, y′) ∈ R.

This means that a rectangle is mono-chromatic if all of its entries are the same. So from these definitions
we notice the following facts:

Fact 8. A protocol for a function f partitions the corresponding communication matrix Mf into mono-
chromatic rectangles, with each rectangle corresponding to a leaf in the communication tree for this protocol.

Fact 9. If any partition of a communication matrix Mf requires t or more mono-chromatic rectangles then
D(f) ≥ log t.

From these observations we get the following proposition:

Proposition 10. A rectangle R ⊆ X × Y is a combinatorial rectangle if and only if (x1, y1) ∈ R and
(x2, y2) ∈ R⇒ (x1, y2) ∈ R ∧ (x2, y1) ∈ R

Using these informations we can now define a fooling set:

Definition 11 (Fooling set). A set S ⊆ X × Y is a fooling set for a function f : X × Y → Z if there exists
a z ∈ {0, 1} such that f(x, y) = z for all (x, y) ∈ S and for all (x1, y1), (x2, y2) ∈ S then either f(x1, x2) 6= z
or f(x2, x1) 6= z.

From this definition we get the following interesting fact:

Fact 12. If a function f : X × Y → Z has a fooling set of size t then D(f) ≥ log t.
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Example 13. As an example of this fact let us consider a communication matrix that is equal to the identity
matrix, that is Mf = I. We notice that this is in fact the communication matrix of the equality function
(EQ). That is, the function f : X × Y → {0, 1} where f(x, y) = 1 ⇐⇒ x = y. We also notice that there
exists a fooling set S := {α, α} ∀α ∈ X = Y . To see this consider a β ∈ X = Y with β 6= α and notice that
f(α, α) = 1 and f(β, β) = 1, but f(α, β) = 0 and f(β, α) = 0 as all entries in Mf are 0 except for the cases
when x = y. This means that S is a 2n size fooling set and thus that D(EQ) = n + 1.

From this example we notice the following fact:

Fact 14. Assume, without loss of generality, that |X| ≤ |Y | for a function f : X × Y → Z then D(f) ≤
log |X|+ log |Z|.

Example 15. Let us consider another example. In this example we consider the median function (MED).
Alice gets x ⊆ {1, ..., n} and Bob gets y ⊆ {1, ..., n}. We then wish to compute the function f(x, y) =
MED(x, y) := median of the multi set x ∪ y.

A trivial solution to this problem might again be for Alice to send the entire set x for which we need n
bits1, and then let Bob send back the value of the median element using log n bits. Thus, using this approach
the communication needed is n + log n.

Let us now consider another approach where we try to do a binary search. Our approach is to, after each
communication, be able to eliminate elements as possible answers to the function MED(x, y) until only one
element is left, which must then be the correct answer. We do so by maintaining a range [i; j] with i ≥ 0
and j ≤ n with possible answers. What we actually do can most easily be described with the pseudocode in
algorithm 1. Using this approach we see that the upper bound of communication needed to compute MED

Algorithm 1 Binary search for result of MED(x, y)
i := 1
j := n
Alice and Bob exchange |X| and |Y |
t := |X|+ |Y |
repeat

k := (i + j)/2
Alice sends amount of elements in x < k to Bob.
Bob sends amount of elements in y < k to Alice.
if t/2 elements have value < k then

j := k
else

i := k
end if

until i = j
return i

is O(log2 n), as we have log n iterations, where we send O(log n) bits in each of these iterations.
Now the trivial lower bound is Ω(log n) since there are n possible outputs and this is the absolutely

minimum amount of information needed to be able to decide on any one of these values as the correct
answer.

Some theory shows that the lower bound is in fact also the upper bound! We can solve MED by using
no more than O(log n) bits of communication in the worst case. (Note: this upper bound is nontrivial).

1This is so since we can encode Alices subset as a binary string of size n where a 1 in position i of this string implies that
element i is in the subset and a 0 implies that it is not.
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Lecture 2
Rank lower bound and covers

Scribe: Jesper Sindahl Nielsen

2.1 Recap

Last time we defined a protocol tree and discussed how it relates to the communication matrix. We also
introduced combinatorial rectangles and mono-chromatic combinatorial rectangles. We looked at the problem
EQ where Alice and Bob both get an n-bit string and have to compute whether they are the same and it
turned out that D(f) ≥ n + 1, this was proved using the “fooling sets” technique.

2.2 Rectangle size lower bound

The general idea is to prove that the size of every monochromatic rectangle is “small”; hence, we need lots
of rectangles to cover the entire matrix.

Proposition 16. Let µ be a probability distribution of X × Y . If any f-monochromatic rectangle R has
meassure µ(R) ≤ δ then D(f) ≥ log 1/δ

Proof. We know that µ(Mf ) = 1 so there must be at least 1/δ rectangles in any f -monochromatic partition
of Mf .

This is in fact a generalization of the fooling-sets technique, as illustrated by the following example.
Consider the EQ problem again. Now define

µ(x, y) =

{
2−n if x = y

0 if x 6= y

It should now be clear that for any monochromatic rectangle R we have µ(R) ≤ 2−n which yields D(f) =
log 1/2−n = n.

2.3 Rank lower bound

The rank lower bound was invented by Kurt Mehlhorn and Erik Meineche Schmidt. This result relies on
linear algebra. A large portion of the techniques for proving lower bounds in communication complexity
relies on knowledge from linear algebra and this is only scratching the surface. The rank lower bound works
by giving a lower bound on the number of monochromatic rectangles in any partition of X × Y .

Definition 17. The rank of a matrix A is the number of linearly independent rows in A.
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Theorem 18. For any function f : X × Y → {0, 1} the communication complexity D(f) ≥ log(rank(f)).

Proof. Fix protocol P for f . Look at the leaves where the output is 1. Let L1 = {leaves in P where output is 1}.
For each ` ∈ L1 define

M`[x, y] :=

{
1 if (x, y) ∈ R`

0 if (x, y) 6∈ R`

where R` is the rectangle containing all inputs that reach `. Now we can observe that the sum of the M`s
are exactly Mf because every entry (x, y) where f(x, y) = 1 is in a single matrix M` and if the entry (x, y)
is 0 then it will be 0 in all the M`s. We get that

Mf =
∑
`∈L1

M`

And because of some nice properties of the rank function we get

rank(Mf ) ≤
∑
`∈L1

rank(M`)

If we look at the M` matrices we see that they all have rank 1∑
`∈L1

rank(M`) = |L1| ≤ 2D(f)

In the end we get D(f) ≥ log rank(f)

As an example of the proof, consider the following:

Mf =


1 0 1 1
1 0 1 1
1 1 1 1
0 0 0 0

 =


0 0 0 0
1 0 1 1
0 0 0 0
0 0 0 0

+


1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0


The matrices on the right hand side are the M`s and we can see that they all have rank 1.
As an additional note, the proof gave a lower bound on the number of rectangles that have the number

1 in them. We can do the same proof for the 0-rectangles which can be used to prove that

D(f) ≥ log(2rank(f)− 1)

2.4 Covers

To introduce the concept we start with a couple of examples.

Example 19. Consider the matrix in Figure ??. Can this partitioning be represented by some protocol
tree?

No. Let P be any protocol representing f . Suppose (wlog) that Alice sends the first message. Alice
cannot send the same message for all inputs. Say the inputs are x1, x2, x3 for Alice and y1, y2, y3 for Bob.
The message Alice sends must either be different on x1 and x2 or it must be different on x1 and x3. In the
first case the upper left rectangle in the figure will not be induced by P and in the second case the lower
right rectangle in the figure will not be induced by P. A similar argument can be made if Bob sends the
first message.

Example 20. Consider the matrix:

Mf2 =

 1 1 0
1 1 1
0 1 1
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How many monochromatic rectangles does it take to partition Mf2?
How many monochromatic rectangles does it takes to cover Mf2?
Note that fooling set arguments give lower bounds on the latter—elements of the fooling set must be in

different monochromatic rectangles. Hence any cover of Mf2 by monochromatic rectangles must include at
least the number of elements in the fooling set. The answers to the questions are 5 and 4 respectively.

Definition 21. Let f : X × Y → {0, 1} be a function.

1. Protocol partition number CP (f) is defined as the smallest number of leaves in a protocol tree.

2. The partition number CD(f) is defined as the least number of monochromatic rectangles in a partition
of X × Y .

3. Cover number C(f) is defined as the smallest number of monochromatic rectangles needed to cover
X × Y .

4. For z ∈ {0, 1}, Cz(f) is the number of monochromatic rectangles needed to cover the z-inputs of f .

We now have some basic facts.
Fact 22. For all functions f : X × Y → {0, 1}, we have

1. C(f) = C0(f) + C1(f)

2. C(f) ≤ CD(f) ≤ CP (f) ≤ 2D(f)

If we translate the techniques we have seen to the definitions we get the following.

1. Rank lower bound corresponds to CD(f) ≥ 2rank(f)− 1

2. Let µ be a probability distribution on z-inputs. If µ(R) ≤ δ then Cz(f) ≤ 1/δ.

2.4.1 A note on nondeterministic communication complexity

One can define nondeterministic communication complexity in terms of Cz(f).

Definition 23. Nondeterministic communication complexity N1 := log C1(f) Co-nondeterministic commu-
nication complexity N0 := log C0(f). We also define N(f) = log C(f).

NP is the class of decision problems whose “yes” instances (i.e., x ∈ L) have proofs that can be verified
in polynomial time. Similarly, coNP is the class of decision problems whose “no” instances (i.e., x 6∈ L) have
proofs that can be verified in polynomial time.

Nondeterministic and co-nondeterministic communication complexity can be defined in a similar matter.
In this setting, nondeterministic communication complexity considers problems where a prover sees x and
y and sends a “proof” that f(x, y) = 1 to both Alice and Bob. The players then talk to each other and
verify that indeed f(x, y) = 1. The cost is then defined as the length of the “proof” and the communication
between Alice and Bob. Conondeterministic communication complexity is defined similarly, except the prover
supplies a proof that f(x, y) = 0.

Example 24. We look at the EQ problem again.

EQ(x, y) =

{
1 if x = y

0 if x 6= y

MEQ is then the identity matrix. The fooling set technique gave us that C1(f) ≥ 2n which gives N1(f) ≥ n.
In the co-nondeterministic proof the prover sends bit i where xi 6= yi. Alice and Bob then both send

their i’th bit and verify that they are distinct. In total this requires log n + 2 bits.
It is also possible to prove that for all f : X × Y → {0, 1} and z ∈ {0, 1}, D(f) ≤ Cz(f) + 1. Combin-

ing the lower bound and upper bound there might be a gap of exponential size between deteministic and
nondeterministic communication complexity but no more that this.
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Lemma 25. For all f : X × Y → {0, 1} and z ∈ {0, 1} D(f) ≤ Cz(f) + 1.

Proof. Recall that log Cz(f) ≤ log C(f) ≤ D(f).
Fix a z-covering of Mf : R1, R2, . . . , RCZ(f). Say Alice and Bob both know the covering of Mf then Alice

sends 1 for each Ri if x is consistent with Ri and 0 otherwise. Bob then checks all rectangles consistent
with Alice’s input. If there exists a rectangle also consistent with Bob’s input then f(x, y) = 1 otherwise
f(x, y) = 0.

A final fact.

Lemma 26. log CP (f) ≤ D(f) ≤ 3logCP (f)

Proof. Exercise. Hint: Rebalance an unbalanced tree.

Today we also encountered an open problem. Is D(f) = O(log CD(f))? It is known that D(f) =
O(log2 CD(f)).
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Lecture 3
Probability Theory + Nondeterministic
Communication

Scribe: Navid Talebanfard

3.1 Probability Theory

Probability theory plays an important role in modern computer science, e.g. to model uncertainty in the
incoming data or to study a whole other model of computation when the computers can choose their path
according to the outcome of coin flips. In either case significant results have been obtained by employing
only a small fraction of this vast theory. In this lecture we review this fraction which mainly consists of a
few basic definitions and simple facts.

Definition 27. Let Ω be a non-empty finite set. A probability distribution on Ω is a function Pr : Ω→ [0, 1]
such that

∑
ω∈Ω Pr[w] = 1. Then Ω is said to be the sample space of this function.

Example 28. Probability distribution generated by rolling a fair die could be represented by Ω = {1, 2, 3, 4, 5, 6}
and Pr[ω] = 1

6 for all ω ∈ Ω. In general for any Ω, if Pr[ω] = 1
|Ω| for all ω ∈ Ω, the distribution is called

uniform.

Definition 29. An event is a subset A ⊆ Ω. The probability of the event A is then defined as Pr[A] =∑
ω∈A Pr[ω].

Example 30. Let Ω = {1, 2, . . . , 10} and consider the uniform distribution on it. We define the following
events: A is the event that a randomly picked number from Ω is odd, B is the event that this random number
is a bigger than 5, and C is the event that this number is a prime. We can represent these events as follows:
A = {1, 3, 5, 7, 9}, B = {6, 7, 8, 9, 10} and C = {2, 3, 5, 7}. Now we have Pr[A] = Pr[C] = 1

2 and Pr[B] = 4
10 .

The following properties are immediate from the definition of the probability distribution.
Fact 31. Let Ω be a non-empty finite set and consider any probability distribution on it. We have

1. For any even A, Pr[A] = 1− Pr[A].

2. (Inclusion-Exclusion Principle) For any two event A and B, Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B].

3. If A ⊆ B then Pr[A] ≤ Pr[B].

4. (Union Bound) For any collection of events A1, . . . , Ak we have Pr[∪k
i=1Ai] ≤

∑k
i=1 Pr[Ai].

Among the above properties the union bound is of particular interest when bounding the probability of
some “bad” event. Consider a randomized algorithm with a certain number of errors whose probabilities are
known to us. To give an upper bound on the probability of some error happening, we can simply sum the
individual properties by the union bound.
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Definition 32. For any event B ⊆ Ω and ω ∈ Ω the conditional probability of ω given B is defined as

Pr[ω|B] =

{
Pr[ω]
Pr[B] ω ∈ B

0 otherwise.

We can then define the conditional probability of an even A given B as

Pr[A|B] =
∑
ω∈A

Pr[ω|B]

=
∑

ω∈A∩B

Pr[ω]
Pr[B]

=
Pr[A ∩B]

Pr[B]
.

Intuitively an event A is independent from B if the occurence of B does not effect the probability of A.
This notion is captured in the following definition.

Definition 33. We say two event A and B are independent if Pr[A ∩B] = Pr[A] Pr[B].

Definition 34. A random variable is a function X : Ω → S for some set S. For s ∈ S the event denoted
by X = s is defined as {ω ∈ Ω : X(ω) = s}. Therefore Pr[X = s] =

∑
ω:X(ω)=s Pr[ω]. An indicator random

variable for an event A is defined as

XA(ω) =

{
1 ω ∈ A

0 otherwise.

By combining random varibles we can get new ones. For instance given X and Y we can define Z = X+Y
by Z(ω) = X(ω) + Y (ω).

Definition 35. Let X and Y be random variables with ranges S and T , respectively. We say that X and
Y are independent if for all s ∈ S and all t ∈ T , Pr[X = s, Y = t] = Pr[X = s] Pr[Y = t]. Random variables
X1, . . . , Xn are said to be pairwise independent if for any i and j, Xi and Xj are independent. They are k-wise
independent if for any i1, . . . , ik and all t1, . . . , tk, it hold that Pr[Xi1 = t1, . . . , Xik

= tk] =
∏k

i=j Pr[Xij = tj ].
They are called mutually independent if they are k-wise independent for any 1 ≤ k ≤ n.

Definition 36. The expectation of a random variable X is defined as

E[X] =
∑
ω

Pr[ω]X(ω)

=
∑

s

Pr[X = s] · s.

Proposition 37. (Linearity of Expectation) For any two real-valued random variables X and Y and
any α ∈ IR we have E[X + Y ] = E[X] + E[Y ] and E[αX] = αE[X].

Proof.

E[X] + E[Y ] =
∑
ω∈Ω

Pr[ω]X(ω) +
∑
ω∈Ω

Pr[ω]Y (ω)

=
∑
ω∈Ω

Pr[ω](X(ω) + Y (ω))

=
∑
ω∈Ω

Pr[ω](X + Y )(ω)

= E[X + Y ]
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αE[X] = α
∑
ω∈Ω

Pr[ω]X(ω)

=
∑
ω∈Ω

Pr[ω](αX(ω))

= E[αX]

We can use expectation to bound the probability that a random variable is at least a constant.

Proposition 38. (Markov’s Inequality) Let X be real-valued random variable taking non-negative values.
Let α > 0 be any constant. Then Pr[X ≥ α] ≤ E[X]

α .

Proof. Let I be the indicator random variable for the event X ≥ α. Then α · I ≤ X. Taking expectations
from both sides and noting that E[I] = Pr[I = 1] proves the result.

Example 39. There are 40 students in a class. The average weight of the students is 65 Kg. Then
by Markov’s inequality at most 26 students can weigh at least 100 Kg. To see this we take the uniform
distribution on the set of students and let X be the random variable denoting the weight of the randomly
chosen student. Then E[X] = 65. By Markov’s inequality we have Pr[X ≥ 100] ≤ 65

100 . Therefore at most
65 % of the students can weigh at least 100 Kg, and that would be 26 of them.

To measure how far a random variable can deviate from its expectation we need variance.

Definition 40. Let X be a real-valued random variable and let µ = E[X]. The variance of X is defined as
Var[X] = E[(X − µ)2].

Proposition 41. (Chebyshev’s Inequality) Let X be a real-valued random variable and let α > 0 be any
constant. We have Pr[|X −E[X]| ≥ α] ≤ Var[X]

α2 .

Proof. Apply Markov’s inequality on (X − E[X])2 and α2 and note that Pr[|X − E[X]| ≥ α] = Pr[(X −
E[X])2 ≥ α2].

Markov’s inequality gave us a linear dependence on the constant and Chebyshev’s inequality gave a
quadratic one. In many cases we need more than this, we actually need exponentially small probablities in
some constant. Taking more information about the random variables makes this possible.

Theorem 42. (Chernoff Bounds) Let X1, . . . , Xn be independent identically distributed (i.i.d) random
variables such that for all i, Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p = q. Let X = 1

n

∑n
i=1 Xi. For all ε > 0

we have

1. Pr[X − p ≥ ε] ≤ e
−nε2

2q

2. Pr[X − p ≤ −ε] ≤ e
−nε2

2p

3. Pr[|X − p| ≥ ε] ≤ 2e
−nε2

p

Proof. Let α > 0 be a parameter that we will fix later. Define a new random variable Z = eαn(X−p). Note
that since the exponential function is increasing, we have

X − p ≥ ε ⇔ αn(X − p) ≥ αnε

⇔ Z ≥ eαnε

Therefore we can write

Pr[X − p ≥ ε] = Pr[Z ≥ eαnε]
≤ E[Z] · e−αnε, (3.1)
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by Markov’s inequality.
Now define Zi = eα(Xi−p). It is easy to see that E[Zi] = p · eαq + q · e−αp. Note also that Z =

∏
Zi and

since Zi’s are mutually independent we have E[Z] =
∏

E[Zi] = (peαq + qe−αp)n.

Fact 43. peαq + qe−αp ≤ e
α2q
2

This implies E[Z] ≤ e
α2qn

2 . Now by 3.1 and the above fact we have Pr[X − p ≥ ε] ≤ e
α2qn

2 −αnε. Setting
α = ε

q completes the proof.

Example 44. Let A be any randomized algorithm that makes an error with probability at most 1
3 . We

would like to reduce this probability to 2−Ω(k). For simiplicity assume that the algorithm gives only yes or
no answers. We run A for O(k) times and take a majority vote among the answers. Chernoff bound then
guarantees that the error is bounded by 2−Ω(k).

3.2 Non-deterministic Communication (continued)

Theorem 45. For every function f : X × Y → {0, 1} we have D(f) = O(N0(f)N1(f)).

Proof. We will use the following simple property of rectangles. Let R1 = S1 × T1 be a 1-rectangle and
R2 = S2× T2 be a 0-rectangle. Then it is not the case that S1 ∩S2 6= ∅ and T1 ∩ T2 6= ∅. To see this assume
that there exist s ∈ S1 ∩ S2 and t ∈ T1 ∩ T2. This means that R1 and R2 overlap which is contradiction
given their colors.

The idea behind the protocol is that Alice and Bob try to find a 0-rectangle that contains both x and y.
If they succeed then f(x, y) = 0, otherwise they conclude that f(x, y) = 1. To implement this they keep a
candidate set of 0-rectangles (which initially contains all 0-rectangles) that “might” contain both x and y.
In each round they “kill” at least half of the candidate rectangles by exchanging O(log C1(f)) bits. Since
there are initally C0(f) rectangles, there will be O(log C0(f)) stages and hence giving the desired bound.
Each stage of the protocol goes as follows.

1. Alice looks at the 0-rectangles that are still alive. If there is no such rectangle then she outputs
f(x, y) = 1. Otherwise she looks for a 1-rectangle Q consistent with x that intersects in rows with at
least half of the 0-rectangles that are alive. If she found such rectangle she sends the name of it to Bob
and kills all 0-rectangles that do not intersect in rows with Q. Otherwise she tells Bob that she did
not succeed.

2. Bob looks for a 1-rectangle consistent Q with y that intersects in columns with at least half of the
0-rectangle that are alive. If he found such rectangle he sends its name to Alice and kills all 0-rectangles
that do not intersect in columns with Q. Otherwise he outputs f(x, y) = 0.

It is not hard to see that the above protocol satisfies the required communication bound. It thus only remains
to show that it is works correctly. If (x, y) is in some 0-rectangle R, then R never dies during the protocol. It
is simply because any 1-rectangle consistent with x intersects in rows with R and any 1-rectangle consistent
with y intersects with R in columns. Therefore if no 0-rectangle is alive then f(x, y) = 1. If neither Alice
nor Bob finds the 1-rectangle Q in their turn, then f(x, y) = 0. The reason is that if (x, y) is in some
1-rectangle, then by the mentioned property it either intersects in rows with at most half of the 0-rectangles,
or it intersects in columns with at most half of the 0-rectangles. Thus either Alice or Bob should find such
a rectangle.
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Lecture 4
Randomized Communication Complexity

Scribe: Tore Frederiksen

4.1 Model

So far we have only talked about deterministic protocols and protocols which exhibit non-determinism.
Today we’ll discuss protocols in which randomness are used during the execution. For this purpose we will
always use the notion of an unbiased coin, which will determine a random bit, eg. 1 if the outcome of a
coin-flip is head and 0 if the outcome is tail. This bit can then be used to decide whether to send message
1 or message 2 at a specific node in a protocol tree. So to model randomness in protocols we assume that
each player has knowledge of a, potentially infinite, string of uniform random bits, r ∈ {0, 1}∗. Using such
strings we now define the notion of a Private Coin Protocol.

Definition 46 (Private Coin Protocol). We wish to compute a function f(a, b) → {0, 1} with a ∈ {0, 1}n
and b ∈ {0, 1}n using a protocol P taking (a, b) as input. If Alice gets her input to the protocol, a, along
with an infinite random string, rA ∈ {0, 1}∗ and Bob gets his input, b, along with another infinite random
string, rB ∈ {0, 1}∗, we then call this protocol for a Private Coin Protocol.

We notice that such a protocol can also be described using a protocol tree, only in this case a given node,
v, will be labeled with av(a, rA) or bc(b, rB). That is, each edge choice will depend on a given player’s input
along with this player’s random string.

Example 47 (Equality). Let us try to apply this paradigm when solving the equality function (EQ). The
idea we will use is common in the general construction of random algorithms; We turn the input into
polynomials and transfer a random input to such a polynomial along with its output. What we specifically
do is first to pick a random prime p, such that n2 < p < 2n2. Now, letting a = a0a1...an and b = b0b1...bn

be the individual bits in Alice’s, respectively, Bob’s input, we construct the following polynomials:

A(x) :=a0 + a1x + a2x
2 + ... + an−1x

n−1 mod p

B(x) :=b0 + b1x + b2x
2 + ... + bn−1x

n−1 mod p

The protocol then consists of the following steps:

• Assume, without loss of generality, that Alice sends the first message. Alice generates an x ∈R

{1, 2..., p}.

• Alice then computes A(x) for this x.

• Now Alice sends (x,A(x)) to Bob.

• Bob calculates B(x) and, if A(x) = B(x) outputs 1, otherwise he outputs 0.

13



First notice that A(x) − B(x) = 0 ⇐⇒ A(x) = B(x), so if Bob outputs 0 then this output can never be
wrong. However, if Bob output 1 it might be the case that the polynomials are not the same, but only give
the same output on a specific input. Now, what is the probability of this happening and thus the 1 output
being wrong? We notice that the wrong case can only happen for at most n− 1 elements out of p. This is so
since the difference between two non-zero polynomials is another polynomial of degree at most n− 1, which
again can have not more than n − 1 roots. From this we see that the output is wrong with probability at
most n−1

p ≤ n/n2 = 1/n. Next notice that any x ∈ {1, 2...p} has O(log n) bits and it is the same for A(x).
Thus the communication is only O(log n), unlike the Θ(n) in the deterministic protocol.

Definition 48 (Random Protocol Types). Let P be a randomized protocol taking (x, y) as input, then:

1. P computes a function f : {x, y} → {0, 1} with zero error if

∀x, y PrrA,rB
[P (x, y) 6= f(x, y)] = 0

2. P computes f : {x, y} → {0, 1} with error ε if

∀x, y PrrA,rB
[P (x, y) 6= f(x, y)] ≤ ε

3. P computes f : {x, y} → {0, 1} with one-sided error ε if, for all (x, y) when f(x, y) = 0 then

PrrA,rB
[P (x, y) = 1] = 0

and if f(x, y) = 1 then
PrrA,rB

[P (x, y) = 0] ≤ ε

4.2 Worst-case Vs. Average-case

We will now define what we mean by the worst-case and average-case cost of randomized protocols.

Definition 49. Given a protocol P we say that the worst-case cost of the protocol is the maximum amount
of communication needed for any pair (x, y) and any pair of random strings (rA, rB). That is,

worst-case cost(P ) := max
x,y

max
rA,rB

[amount of communication]

Given a protocol P we say that the average-case cost of the protocol is the maximum amount of communica-
tion needed for any pair (x, y), using the expected amount of communication given a pair of random string
(rA, rB). That is,

average-case cost(P ) := max
x,y

ErA,rB
[amount of communication]

Given this definition we introduce the following notion of randomized communication complexity:

Definition 50. Given a function f : {x, y} → {0, 1} and a protocol P for computing the function, we
introduce the following kinds of randomized communication complexity:

1. Las Vegas Communication Complexity : is denoted R0(f) and is defined to be the minimum of the
average-case costs of any protocol computing f .

2. Monte Carlo Communication Complexity: is denoted Rε(f) for some error probability 0 < ε < 1/2,
and is defined to be the minimum of the worst-case costs of any protocol computing f with error
probability ε. For simplicity we define R(f) := R 1

3
(f).

3. One-sided error Communication Complexity: is defined to be R1
ε (f) for some error probability 0 <

ε < 1/2, and is defined to be the minimum of the worst-case costs of any protocol computing f with a
one-sided error probability of ε.
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Using these definitions, the two following theorems apply:

Theorem 51. The one-sided error communication complexity for any function f and any ε between 0 and
1/2 will always be at least as much as the non-deterministic communication complexity for the same function.
That is,

R1
ε (f) ≥ N1(f)

Theorem 52. The Monte Carlo Communication Complexity for any function f and ε = 1/3 is lower
bounded by the logarithm of the deterministic complexity of f . That is,

R(f) = Ω(log D(f))

Proof. First consider the following facts:
Fact 53. f(x, y) = 1⇒ E[ protocol output ] ≥ 1− 1/3 = 2/3.
Fact 54. f(x, y) = 0⇒ E[ protocol output ] ≤ 1/3.

Notice that these are true as the output of the protocol is either 0 or 1 and since we only have 1/3 error
probability, thus we expect the protocol to output 1 at least 2/3 of the times, and since the other alternative
output is 0, we get the expected output to be 2/3.

Our idea is now to present a deterministic simulation of any randomized protocol, P , and then show that
this protocol will not need more than 2R(f) bits in communication. To do so we start by fixing a pair (x, y).
Then for each leaf ` in the randomized protocol tree we let P` be the probability that we reach this specific
leaf given the input (x, y). From this, along with our facts, we get that E[ output ] =

∑
`[ output at leaf `].

Now let PA
` be the probability that all the responses Alice makes during the protocol will make her and Bob

continue on the path to ` in the protocol tree. On the other hand, let PB
` be the probability that Bob’s

response at each step in the protocol would make him and Alice continue down the path to leaf `.
We now have that P` = PA

` ·PB
` since the events PA

` and PB
` are independent. So now the deterministic

protocol would go as follows:

• Alice sends {PA
` } for all leaves `.

• Bob computes {PB
` } and all {P` = PA

` · PB
` }.

• Bob also computes E[ output ] =
∑

` P`[ protocol outputs at `].

• If E[ output ] > 1/2 then Bob outputs 1, otherwise he outputs 0.

Now notice that the communication cost is one real number (probability) for each leaf and that we have at
most 2R(f) leafs in our randomized protocol. However, we do not need more than a constant amount of bits
precision, thus we end up needing to communicate O(2R(f)) bits in the deterministic protocol. From this it
follows that R(f) = Ω(log D(f)).

4.3 Public Coin Protocols

The notion of public coin protocols is very similar to that of the private coin protocols, except that we now
assume that Alice and Bob have access to the same random string, that is rA = rb = r ∈ {0, 1}∗. We define
it formally a little bit different:

Definition 55 (Public Coin Protocol). A Public Coin Protocol is a distribution over deterministic protocols.
Further, we say that a Public Coin Protocol, P , on input (x, y) along with a random string r ∈ {0, 1}∗
computes a function f(x, y)→ {0, 1} with an error probability ε ∈]0, 1/2[ if

∀x, y Prr[P (x, y) 6= f(x, y)] ≤ ε

We then say that Rpub
ε (f) is the minimum cost of any Public Coin Protocol, P , that computes f with an

error probability less than or equal to ε.
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We should here notice that Rε(f) ≥ Rpub
ε (f) since Alice and Bob can always simulate the public coin

protocol by pretending that r = (rA, rB).

Example 56 (Equality). We wish to compute the equality function, EQ. As usual Alice gets a ∈ {0, 1}n
and Bob gets b ∈ {0, 1}n, and we assume that Alice begins. The trick to this protocol is now to use an inner
product modulo 2, IP. Now the protocol goes as follows:

• Alice picks r ∈R {0, 1}n and computes 〈a, r〉 and sends it to Bob (We use 〈·, ·〉 to denote the inner
product modulo 2).

• Bob computes 〈b, r〉 and checks if 〈a, r〉 = 〈b, r〉. If so, he outputs 1, otherwise he outputs 0.

The key is here to notice the following fact:

Fact 57. If a and b are bit-strings and a 6= b then Prr[〈a, r〉 = 〈b, r〉] = 1/2.

Using this fact we see that Bob’s output will be correct with probability 1/2. However, if we repeat the
protocol for a different r the error probability is decreased to 1/4. We can do this as many times as we
like, decreasing the error probability down to 1/2i where i is the amount of iterations. Thus, the cost of the
protocol is only constant!

Fact 58. The public coin communication complexity for a one-sided error protocol computing the ’not equal’
function is constant. That is,

R1,pub(NEQ) = 1

4.4 Newman’s Theorem

Theorem 59 (Newman’s Theorem). For all ε and δ greater than 0 we have that the Monte Carlo Commu-
nication Complexity for a function f is less than or equal to the public coin communication complexity with
error ε along with a logarithm overhead. Or more formally:

∀ε, δ > 0 Rε+δ(f) ≤ Rpub
ε (f) + O(log n/δ)

Proof. Let P be the best protocol for computing Rpub
ε (f). The idea is now to reduce the randomness

needed for the protocol to only O(log n
δ ) bits (which unfortunately causes the error to increase by δ) without

increasing the complexity. Alice will then generate these random bits privately and send these random bits
to Bob so he can complete the protocol using this O(log n

δ )-bit string as the public randomness. For this
approach to work we wish to have a function taking a short random string and returning a long random
string in order to account for the reduced randomness. Before we continue we need the following definition:

Definition 60 (Indicator Random Variable). We define an indicator random variable Z on input x, y and
random string r for a function f using a protocol P to be 1 if P (x, y) 6= f(x, y) using the random string r
and 0 otherwise. Or more formally:

Z(x, y, r) =

{
1 if P (x, y) 6= f(x, y) on a random string r

0 otherwise

We now notice that for all fixed pairs (x, y) Er[Z(x, y, r)] ≤ ε as P computes f with error probability ε.
To continue we must decide on a small fixed t and pick a small set of random strings, {r1, ..., rt} i.i.d. from
{0, 1}∗. The new protocol then consists of Alice picking i ∈R {1, ..., t} and using string ri as the random
string in the new protocol, which we will call Pr1,...rt . We now need to show that there exists such strings
r1, ...rt such that Ei[Z(x, y, ri)] ≤ ε + δ for all (x, y). We do this by considering a specific input pair, (x, y),
and compute the probability that Ei[Z(x, y, ri)] > ε + δ where i is uniformly distributed. We will call this
event Badx,y.
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We then define BAD := ∨x,yBadx,y, that is the event that at least one Badx,y event occurs. We have that
Ei[Z(x, y, ri)] > ε + δ ⇐⇒ 1

t

∑t
i=1 Z(x, y, ri) > ε + δ. So by the Chernoff bound, since Er[Z(x, y, r)] ≤ ε,

we have the following

Pr[Badx,y] = Pr

[
1
t

∑
Z(x, y, ri)− ε > δ

]
≤ 2 · e−2δ2t

Finally, using the union bound, this gives us:

Pr[BAD] ≤ 22n · 2e−δ2t ≈ eΘ(n)−Θ(δ2t)

Now when t = O(log(n/δ2)) then Pr[BAD] < 1 which imply that there exists r1, ..., rt such that Pr1,...rt

is an ε + δ protocol. This again implies that there exists choices of r1, ..., rt for every pair (x, y) such that
the error of Pr1,...,rt is at most ε + δ. Now since the only communication overhead in Pr1,...,rt is sending the
random t it will be log t = O(log(n/δ)) and so we are done.

NOTE: The above proof uses the probabilistic method – we need to show that a suitable set of random
strings {r1, . . . , rt} exist, so we generate them at random and show with nonzero probability this randomly
generated set works for us. We can then include that there must exist at least one set {r1, . . . , rt} that works
for our purposes.

17



18



Lecture 5
Distributional Communication Complexity

Scribe: Jana Kunert

5.1 Distributional Complexity

Distributional Complexity is a model, where we consider a probability distribution over inputs. We use this
model to prove lower bounds for randomised protocols.

Definition 61. Let µ be a distribution on X × Y . A (µ, ε)-protocol for f is a deterministic protocol s.t.

Pr(X,Y )∼µ [P (x, y) 6= f(x, y)] ≤ ε

i.e. the probability of the protocol returning a value not equal to the value of the function on random input
x and y is less or equal ε.

Definition 62. The Distributional Complexity Dµ
ε (f) is the cost of the best (µ, ε)-protocol for f .

Example 63. Look at the following communication matrix:

1 0 1 1
0 1 0 1
1 1 1 0
0 0 1 1

We split it into rectangles, but the rectangles are not necessarily monochromatic:

1 0 1 1
0 1 0 1
1 1 1 0
0 0 1 1

When hitting a yellow field, we make a mistake.

Example 64. Consider a uniform distribution µ and identity matrix as communication matrix.
What is Dµ

ε (EQ) for ε = 1
3?

Answer: Dµ
1
3
(EQ) = 0—when inputs are uniformly distributed, inputs are equal with probability only 2−n.

A protocol can output zero and be correct with probability 1− 2−n.
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5.2 Yao’s Minimax Lemma

Lemma 65. Rpub
ε (f) = maxµ Dµ

ε (f).

Proof. (easy direction ≥)
Fix an input distribution µ. Let (X, Y ) ∼ µ. Fix a public coin protocol P for f .
Define

Z(x, y, r) :=
{

1 if P errs on (x, y) given a random string r
0 otherwise

Now, by the error guarantee of P , we know that

∀x, y : ER[Z(x, y, R)] ≤ ε

Since this is true for all (x, y), we can conclude that

ε ≥ E(X,Y )∼µER[Z(X, Y,R)]
= ERE(X,Y )∼µ[Z(X, Y,R)]

Therefore, there must be some r, such that

E(X,Y )∼µ[Z(X, Y, r)] ≤ ε

The other direction of the proof uses the Nash Equilibrium over 2-player zero sum games. The proof is
beyond the scope of this course.

The following two sections contain two different ideas to proof lower bounds.

5.3 Corruption

Find a distribution µ such that

(1) most inputs give 1 as answer:
Prµ[f(x, y) = 1] ≥ ε for some ε > 1

2

(2) any large 1-rectangle contains many zeros.

Example 66. DISJ
Input: x, y ∈ {0, 1}n

Output: DISJ (x, y) =
{

1 if x ∧ y = ∅
0 otherwise

Look at X, Y as subsets X, Y ⊆ {1, · · · , n}.

Fact 67. There is a distribution µ, constants α, δ > 0 and sets A ⊆ DISJ−1(1), B ⊆ DISJ−1(0), such that

(1) µ(A) ≥ 3
4

(2) For every rectangle R: µ(R ∩B) ≥ αµ(R ∩A)− 2−δn

Proof. The proof of this fact is an exercise.

We can now proof the following theorem, that gives us a lower bound on the randomised communication
protocol for DISJ:

Theorem 68. Rpub
ε (DISJ) = Ω(n).
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Proof. Fix some small ε. We want to show that Dµ
ε (DISJ) ≥ δn −O(1).

Define c := Dµ
ε (DISJ). Then there is a (µ, ε) protocol Q for DISJ, that partitions the communication matrix

into ≤ 2c rectangles.
Let R1, · · · , Rt be the 1-rectangles in Q. The error of the protocol is ≤ ε, so by using fact 7 (1) we get

µ

(
t⋃

i=1

Ri ∩A

)
≥ 3

4
− ε

The idea is that every point in A that is not contained in
⋃

Ri, is an error - and therefore there are at most
ε of these points. Fact 7 (2) gives for each Ri:

µ(Ri ∩B) ≥ αµ(Ri ∩A)− 2−δn

⇒ ε ≥ µ

(
t⋃

i=1

Ri ∩B

)
≥

t∑
i=1

(
αµ(Ri ∩A)− 2−δn

)
≥

t∑
i=1

(αµ(Ri ∩A))− 2c2−δn

= αµ

(
t⋃

i=1

Ri ∩A

)
− 2c−δn

≥ α

(
3
4
− ε

)
− 2c−δn

⇒ ε ≥ α

(
3
4
− ε

)
− 2c−δn

⇒ 2c−δn ≥ α

(
3
4
− ε

)
− ε > Ω(1)

c ≥ δn−O(1)

The first proof for this theorem was gives by Kalyanasundaram and Schnitger in 1987. The above proof
is due to Razborov and simplifies the [KS87] result.

5.4 Discrepancy

The basic idea of discrepancy is that all large rectangles have nearly 50% 1-inputs and 50% 0-inputs.

Definition 69. Let f : X×Y � {0, 1}. For any rectangle R and a distribution µ on X×Y the discrepancy
is defined as

Discµ(R, f) := |Prµ[f(x, y) = 0 ∧ (x, y) ∈ R]− Prµ[f(x, y) = 1 ∧ (x, y) /∈ R]|

Definition 70. The discrepancy of f with respect to µ is defined as

Discµ(f) := max
R

Discµ(R, f)

Theorem 71. For all f , all µ, all ε > 0:

Dµ
1
2−ε

(f) ≥ log
(

2ε

Discµ(f)

)
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Proof. Let P be a c-bit,
(

1
2 − ε

)
-protocol for f . Then

2ε =
(

1
2

+ ε

)
−
(

1
2
− ε

)
= Pr[P (x, y) = f(x, y)]− Pr[P (x, y) 6= f(x, y)]

=
∑

leaves l

Pr[P (x, y) = f(x, y) ∧ (x, y) ∈ Rl]− Pr[P (x, y) 6= f(x, y) ∧ (x, y) ∈ Rl]

≤
∑

leaves l

∣∣Pr[P (x, y) = f(x, y) ∧ (x, y) ∈ Rl]− Pr[P (x, y) 6= f(x, y) ∧ (x, y) ∈ Rl]
∣∣

=
∑

l

∣∣Pr[f(x, y) = 0 ∧ (x, y) ∈ Rl]− Pr[f(x, y) = 1 ∧ (x, y) ∈ Rl]
∣∣

≤
∑

l

Discµ(f)

≤ 2cDiscµ(f)
⇒ 2ε ≤ 2cDiscµ(f)

c ≥ log
(

2ε

Discµ(f)

)

Look at the following example:

Example 72. Inner product (IP)
Input: x, y ∈ {0, 1}n
Output: IP(x, y) :=

∑n
i=1 xiyi mod 2

Recap from Linear Algebra

To proof the next theorem, we need a little recap from Linear Algebra:

vector norm ‖~x‖2 =
√∑n

i=1 x2
i

matrix norm ‖M‖ = max~v:‖~v‖2=1 ‖M~v‖2

eigenvector ~v is a eigenvektor if M~v = λ~v for some scalar λ

eigenvalue λ is a eigenvalue if M~v = λ~v for some vektor ~v

Cauchy-Schwarz ~a ·~b ≤ ‖~a‖‖~b‖

We also need Fact 13, which we will use without a proof.

Fact 73. |~v ·A~w| ≤ ‖~v‖2 · ‖A‖ · ‖~w‖2
The last thing we need is the following claim:

Claim 1. H ·HT = 2nI

Proof. H ·HT [x, y] =
∑

Z H(x, z) ·H(z, y)
if x = y then HHT [x, y] =

∑
z 1 = 2n

if x 6= y then HHT [x, y] = 2n

2 · (+1) + 2n

2 · (−1) = 0

Theorem 74. Let µ be an uniform distribution. Then Discµ(IP) = 2−
n
2 .
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Proof. Define 2n × 2n matrix H as H[x, y] =
{

1 if IP(x, y) = 0
−1 if IP(x, y) = −1 Look at a rectangle S × T .

Discµ(S × T, IP) = |Pr[IP(x, y) = 0 ∧ (x, y) ∈ S × T ]− Pr[IP(x, y) = 1 ∧ (x, y) ∈ S × T ]|

=

∑
(x,y)∈S×T H[x, y]

22n
=

~1S · (H ·~1T )
22n

≤ ‖
~1s‖ · ‖H‖ · ‖~1T ‖

22n

≤
√

2n ·
√

2n ·
√

2n

22n

=
2

3
2 n

22n
= 2−

n
2

Now we can proof the following corollary, that gives us a lower bound for the randomised protocol for
IP:

Corollary 75. Rpub
1
2−ε

(IP) ≥ Dµ
1
2−ε

(IP) ≥ n
2 − log 1

ε

Proof. This follows immediately from theorem 14 in combination with theorem 11:

Dµ
1
2−ε

(IP) ≥ log
(

2ε

Discµ(IP)

)
Dµ

1
2−ε

(IP) ≥ log
(

2ε

2−
n
2

)
= log

(
2

n
2

2 1
ε

)
≥ n

2
− log

1
ε

Lemma 5 gives the rest of the proof:

Rpub
ε′ (f) = max

µ
Dµ

ε′(f) ≥ Dµ
ε′(f)

Rpub
1
2−ε

(IP) ≥ Dµ
1
2−ε

(IP) ≥ n

2
− log

1
ε
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Lecture 6
Crash Course in Information Theory

Scribe: Jana Kunert, Lisbeth Andersen, Jakob Friis

6.1 Entropy

Consider the World Cup Quarter finals with the teams in Table 6.1. We want to tell who won the World
Cup using as few bits as possible.

Team Chances of winning Prefix 1 Prefix 2
Team 1 1/2 000 1
Team 2 1/4 001 01
Team 3 1/8 010 001
Team 4 1/16 011 0001
Team 5 1/64 100 000000
Team 6 1/64 101 000001
Team 7 1/64 110 000010
Team 8 1/64 111 000011

Table 6.1: World Cup Quarter Finals

The naive solution is illustrated as ‘Prefix 1’ in the third column: No matter which team wins, we always
send 3 bits.
‘Prefix 2’ takes acount of the fact, the Team 1 is much more likely to win than any other team. If we use
these prefixes, we compute the expected message length as

1 · 1
2

+ 2 · 1
4

+ 3 · 1
8

+ 4 · 1
16

+ 4 ·
(

6 · 1
64

)
= 2

thus, we get a shorter expected message length. We looked at the variable and used its distribution to reduce
the expected message length. To do so, we need to measure the amount of randomness in a variable.

Shannon Entropy

We will use the following notation to define the Entropy of a random variable:

X - a finite set

X - a random variable on X

p(x) - the probability the x happens: Pr[X = x]
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The (Shannon) Entropy H(X) is now defined as

H(X) =
∑
x∈X

p(x) · log
1

p(x)

If there is no uncertainty in X, the entropy H(X) = 0. Clearly, the value is maximized when X is a uniformly
distributed.

Theorem 76. Source Coding Theorem [Shannon ’48]
Let l1, l2, · · · , ln be the length of codewords of x1, x2, · · · , xn ∈ X in the best encoding of X. Let

L :=
n∑

i=1

p(xi) · li

be the expected code length. Then

H(X) ≤ L < H(X) + 1

Joint Entropy

If X, Y are random variables with the joint distribution p(x, y), then the joint entropy H(X, Y ) is defined
as

H(X, Y ) :=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)

Conditional Entropy

If X, Y are random variables with the joint distribution p(x, y), then the conditional entropy H(Y |X) is
defined as

H(Y |X) :=Ex[H(Y |X = x)]

=
∑
x∈X

p(x)H(Y |X = x)

=
∑
x∈X

p(x)
∑
x∈Y

p(y|x) log
1

p(y|x)

Chain Rule

Let X, X1, X2, · · · Xn, Y be random variables. Then the following Chain Rule can be applied:

H(X, Y ) = H(X) + H(Y |X) (6.1)

H(X1, · · · , Xn) =
n∑

i=1

H(Xi|X1, · · · , Xi−1) (6.2)

Notice, that the second equation (over n variables) is a generalization of the first equation (over 2 variables).

Corollary 77. Mutual Random Variables

H(X, Y |Z) = H(X|Z) + H(Y |X, Z)
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6.2 Mutual Information

If X and Y are two random variables, the Mutual Information I(X, Y ) measures us how much Y tells us
about X:

I(X, Y ) := H(X)−H(X|Y )

Some easy facts about mutual information:

I(X, Y ) = H(X) + H(Y )−H(X, Y ) (6.3)
I(X, Y ) = H(Y )−H(Y |X) (6.4)
I(X, Y ) = I(Y, X) (6.5)
I(X, X) = H(X)−H(X|X) = H(X) (6.6)

Remarks: The first fact (3) can be shown by using the Chain Rule. Fact (4) is just symmetric to fact (3).

Conditional Mutual Information

If X, Y and Z are three random variables, the Conditional Mutual Information I(X, Y |Z) is defined as

I(X, Y |Z) := H(X|Z)−H(X|Y, Z)

Corollary 78. Chain Rule for Conditional Mutual Information

I(X1, · · · , Xn, Y ) =
n∑

i=1

I(Xi, Y |X1, · · · , Xi−1)

Proof.

I(X1, · · · , Xn, Y ) = H(X1, · · · , Xn)−H(X1, · · · , Xn|Y )

=
n∑

i=1

H(Xi|X1, · · · , Xi−1)−
n∑

i=1

H(Xi|Y, X1, · · · , Xi−1)

=
n∑

i=1

(H(Xi|X1, · · · , Xi−1)−H(Xi|Y, X1, · · · , Xi−1))

=
n∑

i=1

I(Xi, Y |X1, · · · , Xi−1)
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Definition 79. The Kullback-Lieber Divergence between distribution p and q is defined as:

D(p||q) :=
∑
x∈X

p(x) log
p(x)
q(x)

= Ex∼p

[
log

p(x)
q(x)

]
Kullback-Liebler Divergence is sometimes written as DKL(p||q) and is also known as KL-divergence, KL-
distance and relative entropy.

Theorem 80. Let p(x, y) be a joint distribution on random variables X, Y . Let p(x), p(y) be the marginal
distribution of X and Y . Then

D(p(x, y)||p(x)p(y)) = I(X;Y ) .

We’ll leave the proof of this as an exercise.

Definition 81. f : IR→ IR is convex in the interval (a, b) if for all x1, x2 ∈ (a, b) and all 0 ≤ λ ≤ 1, we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) .

Theorem 82. (Jensen’s Inequality) If f is is convex and X is a random variable then

EX [f(X)] ≥ f(EX [X]) .

Proof. (by induction on |X |)
The base case is when |X | = 2. Note that E[f(x)] = p(x1)f(x1) + p(x2)f(x2). Setting λ = p(x1) and

using the definition of convex functions, we get

E[f(x)] ≥ f(p(x1)x1 + p(x2)x2) = f(E[x]) .

For the induction step, suppose |X | = k. Then, we have

E[f(X)] =
∑

i

p(xi)f(xi) = p(xk)f(xk) +
k−1∑
i=1

p(xi)f(xi) . (6.7)

Next, set p′(xi) = p(xi)
1−p(xk) . Note that p′(x) is a probability distribution on {x1, . . . , xk−1}, so Equation (6.7)

becomes

E[f(X)] = p(xk)f(xk) + (1− p(xk))
k−1∑
i=1

p′(xi)f(xi)

≥ p(xk)f(xk) + (1− p(xk))f

(
k−1∑
i=1

p′(xi)xi

)

≥ f

(
p(xk)xk + (1− p(xk))

k−1∑
i=1

p′(xi)xi

)

= f

(
k∑

i=1

p(xi)xi

)
= f(E[x]) ,

where the first inequality follows from the induction hypothesis, and the second inequality is our base
case.

Theorem 83. KL-divergence is non-negative D(p||q) ≥ 0, with equality iff p = q.
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Proof. Let A:= {x : p(x) > 0}. By definition of KL-divergence, we get

−D(p||q) = −
∑
x∈A

p(x) log
p(x)
q(x)

=
∑
x∈A

p(x) log
q(x)
p(x)

= Ex∼p

[
log

q(x)
p(x)

]
≤ log Ex∼p

[
q(x)
p(x)

]
= log

(∑
x∈A

(
p(x)

q(x)
p(x)

))

= log

(∑
x∈A

q(x)

)
≤ log(1)
= 0.

Therefore, D(p||q) ≥ 0. Note the inequality uses Jensen’s inequality. It’s easy to see that if p = q, then
p(x) = q(x) for all x, hence E [q(x)/p(x)] = 1, and E[log 1] = log E[1] = 0.

Jensen’s Inequality gives several other interesting lower bounds.

Corollary 84. 1. I(X;Y ) ≥ 0, with equality iff p(x,y) = p(x)p(y) i.e., if X, Y are independent.

2. I(X;Y |Z) ≥ 0.

Theorem 85. H(X) ≤ log |X | with equality iff X is uniformly distributed.

Proof. Let u be uniform on X , so u(x) = 1
|X | for all x. Then

0 ≤ D(p||u)

=
∑

x

p(x) log
p(x)
u(x)

=
∑

x

p(x)(log (p(x)) + log |X |)

=
∑

x

p(x) log |X | −
∑

x

p(x) log
1

p(x)

It follows that 0 ≤ log |X | −H(X), hence H(X) ≤ log |X |.

Theorem 86. (Conditioning reduces entropy.)
H(X|Y ) ≤ H(X) with equality when X, Y are independent.

Theorem 87. (Subadditivity of entropy.)
H(X1, . . . , Xn) ≤

∑n
i=1 H(Xi) with equality when {Xi} are independent.

Theorem 88. (Log-sum inequality.) For non-negative numbers a1, . . . , an b1, . . . , bn, we have

n∑
i=1

ai log
ai

bi
≥
(∑

ai

)
log
∑

ai∑
bi

with equality iff {ai

bi
} is constant.
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Lecture 7
Information Theory and the INDEX problem

Scribe: Falk Altheide

7.1 Information Theory continued

Lemma 89 (Chain rule for mutual information). For random variables {Xi} and Y ,

I (X1, . . . , Xn;Y ) =
n∑

i=1

I (Xi;Y |X1, . . . , Xi−1)

Proof. The claim follows from the chain rule for conditional entropy, we saw in the last lecture.

I (X1 . . . Xn) = H (X1, . . . , Xn)−H (X1, . . . , Xn|Y )

=
n∑

i=1

H (Xi|X1, . . . , Xi−1)−H (Xi|Y, X1, . . . , Xi−1)

=
n∑

i=1

I (Xi;Y |X1, . . . , Xi−1)

Lemma 90 (Superadditivity of Mutual Information). If random variables {Xi} are independent given an-
other random variable Z, then

I (Xi, . . . , Xn;Y |Z) ≥
n∑

i=1

I (Xi;Y |Z)

Proof. If {Xi} are independent conditioned on Z, then H (X1 . . . Xn|Z) =
∑n

i=1 H (Xi|Z) and

I (X1 . . . Xn;Y |Z) = H (X1 . . . Xn |Z )−H (X1 . . . Xn|Y, Z)

≥
n∑

i=1

H (Xi|Z)−
n∑

i=1

H (Xi|Y, Z)

=
n∑

i=1

I (Xi;Y |Z) .
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Example 91. Let Z be empty and n = 2. We consider two independent, uniform coins X1, X2 ∈R {0, 1} and
Y = X1 ⊕X2. It is easy to see, that H (X1) = H (X2) = 1, because they are uniform and H (X1, X2) = 2,
because they are independent.

Now, we look at the following facts

Fact 1: H (X1|Y ) = H (X2|Y ) = 1⇒ H (X1)−H (X1|Y ) = H (X2)−H (X2|Y ) = 0.

Fact 2: H (X1, X2|Y ) = 1⇒ H (X1, X2)−H (X1, X2|Y ) = 1.

Fact 3: H (Y |X1, X2) = 0.

Now, we can combine these facts and get

I(X1, X2;Y ) = H(X1X2)−H(X1X2|Y ) = 2− 1 = 1 ,

I(X1;Y ) = H(X1)−H(X1|Y ) = 1− 1 = 0 ,

I(X2;Y ) = H(X2)−H(X2|Y ) = 1− 1 = 0 ,

Hence,
1 = I(X1, X2;Y ) > I(X1;Y ) + I(X2;Y ) = 0 .

You can also view this in terms of Y :

I (X1, X2;Y ) = H (Y )−H (Y |X1, X2)
= 1− 0 = 1

Hence, this is an example for strict superadditivity.

Definition 92 (Binary entropy). Let X be a random variable with two possible values (a biased coin),
where pr[X = 1] = p, with 0 ≤ p ≤ 1. Then we define H (p) = p log 1

p + (1− p) log 1
1−p as the binary entropy

and H (X) = H (p).

Example 93. (Note: By convention 0 log 0 = 0 and 0 log 1
0 = 0.)

1. H (0) = 0

2. H
(

1
2

)
= 1

Definition 94 (The biased coin game). Let X be a biased coin with pr[X = 1] = p. Alice wants to guess
the value of X. What is the best strategy for her to choose?

It turns out, that Alice guesses 1, if p > 1
2 and 0, if p < 1

2 . By this strategy, her Error becomes
min {p, 1− p}.

If the error should be at most ε < 1/2, then H (X) ≤ H (ε), since H(p)isincreasingon[0, 1/2].

7.2 The INDEX problem

Now we come to one of the fundamental problems in communication complexity.

Definition 95 (The INDEX problem). Alice gets a String x ∈ {0, 1}n. Bob gets an index i ∈ [n] ≡ {1, . . . n}.
Now, the desired output is the value of xi, the ith bit of x.

Note. The trivial upper bound for this problem is O (log n) in the case that Bob sends i to Alice (plus the
output xi, which Alice sends).

Say only Alice sends a message to Bob and he outputs the answer. Then we get O (n) bits as the upper
bound (plus Bob’s output).

32



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

H

p

Figure 7.1: Binary entropy

33



Definition 96 (One-way protocol). A one-way protocol is a protocol, where Alice sends a single message
to Bob and Bob outputs the answer.

R→ε (f) is the cost of the best one one-way, ε-error, randomised protocol for f .

Theorem 97 (Ablayev ’96). Rpub,→
ε (INDEX) ≥ n (1−H (ε))

Proof. At first, define a hard distribution: Let µ be uniform on {0, 1}n × [n].
By Yao’s Lemma, it suffices to show that Dµ

ε (INDEX) ≥ n (1−H (ε)).
Let c = cost of the best (µ, ε)-protocol for INDEX.
Alice sends a message M = M (X) (note, that if X is a random variable, than M (X) is a random

variable, too).
Bob sees random variables I,M and needs to output XI which is a single uniform bit random variable.

Thus, this is an example of a biased coin game. After Alice’s message, Bob needs to guess a biased coin XI

with entropy H(XI |I,M).
To finish the proof, we need the following facts

1. H (XI |I, M) ≤ H (ε)

2. c ≥ n−H (X|I, M), which is Bob’s impression of Alice’s input

3. H (X|I, M) ≤ nH (XI |I,M)

Using these facts we see, that

c ≥ n−H (X|I, M)
≥ n− nH (XI |I, M)
≥ n− nH (ε)
= n (1−H (ε)) .

It remains to prove Facts 2 and 3 above.

Proof. (Fact 2).

I (X;M |I) = H (M |I)−H (M |X; I)
≤ H (M |I|)
≤ H (M)
≤ log (# messages )
≤ c (there are at most 2c messages)

Proof. (Fact 3).

H (XI |I, M) =
1
n

n∑
i=1

H (Xi|M)

≥ 1
n

n∑
i=1

H (Xi|M,M1 . . .Mi−1)

≥ 1
n

n∑
i=1

H (Xi|M ;X1 . . .Mi−1, I)

=
1
n

H (X|M, I)
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7.3 Circuit complexity

7.3.1 Boolean circuity

A boolean circuit is a directed, acyclic graph.

• nodes can be binary AND or OR gates or unary input of a variable zi or the negation z̄i

• all circuits have fan-in 2 (note that a circuit with unbounded fan-in can be replaced by one, with fan-in
at most 2, with a blow-up of O(log n) in depth and O(n) in size.)

• the size of the circuit is the number of gates, the depth is the length of the largest path from input to
output

Every circuit computes a function. We are interested in the smallest circuit for a given function.
The XOR function, for example, needs an exponential size circuit.
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Lecture 8
Circuit Complexity

Scribe: Jakob Friis

Boolean Circuits. Recall our concept of Boolean circuits—they are directed acyclic graphs(DAGs), with

• n variables Z1, . . . , Zn

• input nodes: labelled with ZiorZ̄i

• gate nodes: labelled with ∨ or ∧

Definition 98. Circuit C is monotone if no input nodes is labeled with negations.

Definition 99. For x, y ∈ {0, 1}n x ≤ y if xi ≤ yi for all 1 ≤ i ≤ n. A function f : {0, 1}n → Z is monotone
if x ≤ y ⇒ f(x) ≤ f(y) for all x, y.

Complexity Measures. Let depth(C) be the length of the longest input→output path in C. size(C) is
the number of gates in C. Define the depth and size complexities of a function f d(f), s(f) to be the smallest
depth(C)/size(C) of a circuit C computing f . When f is a monotone function, we also define dm(f), sm(f)
to be the smallest depth/size of a monotone circuit computing f .

Definition 100. NCi is the set of fuctions computeable by polynomial size, O((log n)i) depth, fan-in 2
circuits. ACi is the set of fuctions computeable by polynomial size, O((log n)i) depth, with unbounded
fan-in circuits.

Fact 101. For all i, NCi ≤ ACi ≤ NCi+1.

The first inequality is a simple inclusion, since every fan-in two circuit is a circuit with unbounded fan-in.
The second inequality is a homework exercise.

Showing an explicit function is outside NC1 is a major open question in theoretical computer science.
When we restrict the circuits to be monotone, more is understood.

8.1 Karchmer-Widgerson Games

For a function f : {0, 1}n → {0, 1}, the Karchmer-Wigderson game Rf is a communication problem, where
Alice gets an input x such that f(x) = 1, Bob gets y such that f(y) = 0, and the players wish to output
some i where xi 6= yi.
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For monotone f , here is also a monotone version Mf of the Karchmer-Wigderson game. Alice gets
x ∈ f−1(1), Bob gets x ∈ f−1(0), and the goal is to output i s.t. xi = 1 and yi = 0.

Let gvi : {0, 1}n → {0, 1} be the function computed by gate vi. Note that

• If v is an AND gate, then
gv(x) = gv1(x) ∧ gv2(x)

For Alice gv1(x) = gv2(x) = 1. For Bob gv1(x) = 0 or gv2(x) = 0.

• If v is an OR gate, then
gv(x) = gv1(x) ∨ gv2(x)

For Alice gv1(x) = 1 or gv2(x) = 1. For Bob gv1(x) = gv2(x) = 0.

In this way, a circuit computing f gives the following protocol for the K-W game Rf . The players walk
down the circuit towards an input node, maintaining the invariant that at the current gate v, gv(x) = 1 6=
gv(y) = 0.

To maintain this invariant, let Alice own all ∨-gates, and Bob own all ∧-gates. When players reach an
∨-gate, Alice announces a child that outputs 1 on x. Similarly, when players reach an ∧-gate, Bob announces
a child that outputs 0 on y. In this way, Alice and Bob reach an input node where xi = 1 and yi = 0, thus
D(Rf ) ≤ d(f).

It’s possible to show the converse also holds—given a communication protocol for Rf , it’s possible to
construct a depth-efficient circuit for f . Furthermore, the same simulations hold when using a monotone f
and monotone circuits.

Theorem 102. D(Rf ) = d(f). D(Mf ) = dm(f).

8.2 Relations

Karchmer-Wigderson games are an example of a class of communication problems called relations. Essen-
tially, relations are like functions, except there are potentially multiple possible correct outpus.

Definition 103. A relation R is a subset R ⊆ X × Y × Z. In the communication version of computing a
relation, Alice gets x ∈ X, Bob gets y ∈ Y , and they have to output z such that (x, y, z) ∈ R.

Note that K-W games and monotone K-W games can be expressed as

Rf = {x, y, i) : xi 6= yi}

Mf = {x, y, i) : xi = 1 and yi = 0}

8.3 The Match Game

For the rest of this class, we’ll present a strong polynomial lower bound for a monotone K-W game called
Match, thereby getting polynomial depth lower bounds for monotone circuits computing it.

Definition 104. A matching is a set of disjoint edges in a graph.

Set N :=
(
n
2

)
where n is the number of vertices in a graph. Next, we define a function Match: {0, 1}N →

{0, 1}. Think of the input as a N-bit string defining which edges are in the graph or not. E.g

x(i,j) =

{
1 if (i, j) ∈ G

0 otherwise

Definition 105.

Match(G) =

{
1 if G has matching ≥ n

3 edges
0 if G has no such matching
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Theorem 106. dm(Match) = Ω(n) = Ω(
√

(N)).

Proof. This proof has multiple subproblems.

Problem 1: K-W game MMatch : Alice gets graph GA with large matching (≥ n
3 ) Bob gets graph GB with

no large matching. Output: Edge in GA but not in GB .
Fact 107. D(Match) ≤ dm(Match)

Problem 2: Relation M’ n := 3m Alice gets a graph which is a large matching. Bob gets a complete
bipartite graph S × T with |S| = m− 1, |T | = n− (m− 1). Output: edge in matching not in GB .
Fact 108. D(M ′) ≤ D(Match).

Problem 3: Pair-Disjointness Relation PD ⊆ X × Y × Z, where

• X = {list of m ordered pairs of elements from{1, . . . , 3m}}
example P ∈ X: P =< (1, 3), (4, 9), (2, 5) >

• Y = {(m− 1) element subsets ⊆ {1, . . . , 3m}}

• (P, S, i) ∈ PD if Pi ∩ S = ∅ meaning that the ith pair doesn’t intersect with S.

We also define a relation PD′, which is like PD, exept with a promise that |Pi ∩ S ≤ 1|.
Fact 109. D(M ′) ≥ D(PD) ≥ D(PD′).

Problem 4: f : partial function version of PD Alice gets P Bob gets set T with m elements Promise: For

all |Pi ∩ T ≤ 1| f(P, T ) =

{
1 if |Pi ∩ T | = 1 for all i
0 if ∃i s.t. Pi ∩ T = ∅

Lemma 110. RPub
1
4

(f) ≤ 2(D(PD′) + log n)

Problem 5: Set disjointness on m coordinates

Lemma 111. RPub
1
4

(DISJ) ≤ RPub
1
4

(f).

Proof. DISJ protocol: Alice gets x ∈ {0, 1}m Bob gets y ∈ {0, 1}m Alice constructs p = {pi} as follows:
xi → (3i − xi − 1, 3i) if xi = 1 pi = (3i − 2, 3i), if xi = 0 pi = (3i − 1, 3i) Bob maps yi → (3i − yi) if
yi = 1 : (3i− 1), if yi = 0 : (3i)
Fact 112. Pi ∩ T = ∅ iff xi = yi = 1

Pulling all the facts and lemmas together to make the proof of the theorem:

dm(Match) ≥ D(Match) ≥ D(M ′) ≥ D(PD′)

≥ 1
2

(
RPub

1
4

(f)− log n
)

= Ω
(
RPub

1
4

(DISJ)− log n
)

= Ω(m) = Ω(n) = Ω(
√

N)
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Lecture 9
Static Data Structure Problems

Scribe: NavidTalebanfard
A static data structure is one to which no update takes place. Thus our main concern in designing such

data structures is the space needed to store them and the time that it takes for a query to be answered.

Example 113. (Dictionary Problem) We have a set S ⊆ IN × IN of pairs of keys and data that we would
like to store, so that we can perform look ups, i.e., given x we want some y such that (x, y) ∈ S if one exists,
otherwise we want to get a report that there is no such y. We can use several methods or this problem using

1. Binary balanced search trees in O(|S|) space and log(|S|) query time.

2. Sorted table give us the same bounds.

3. Arrays with keys as indices if we do not care about space. This gives a O(largest key) space and O(1)
query time.

A more precise definition of the dictionary problem goes as follows.

Definition 114. (Cell Probe Model). A set S ⊆ {0, 1, . . . , 2d − 1} × {0, 1, . . . , 2d − 1} with |S| = n is to be
stored. A (t, s, w) data structure is mechanism on a random access machine with word length w such that
at most s memory of cells are used, and on every query at most t memory cells are scanned.

Using perfect hashing we can give a O(n) space O(1) time solution to this problem. Here we give a
slightly worse solution with O(n2) space which could be modified into the linear space solution. We identify
{0, 1, . . . , 2d − 1} with the elements of GF(2d). Assume that n2 = 2k for some k. Then we partition GF(2d)
into n2 parts T1, . . . , Tn2 of equal size.
Claim 2. For every S ⊆ GF(2d) there exist a and b such that the function f which maps x to the partition
that contains ax + b is injective on S.

Proof. Pick a and b uniformly at random from GF(2d). Fix x and y such that x 6= y. We have

Pr[∃i such that ax + b, ay + b ∈ Ti] ≤
n2∑
i=1

Pr[ax + b, ay + b ∈ Ti]

=
n2∑
i=1

∑
z,u∈Ti

Pr [ax + b = z, ay + b = u]

=
n2∑
i=1

∑
z,u∈Ti

Pr
[
a =

z − u

x− y
, b = z − z − u

x− y
x

]

= n2

(
2d

n2

)2( 1
2d

)2

=
1
n2

.
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Now by the union bound the probability that there exists a pair x 6= y in S whose image falls in the same
part is at most

(
n
2

)
1

n2 ≤ 1
2 . Therefore there exists a and b such that f is injective on S.

Now the solution follows easily. We just take an n2 long array containing one piece of data for each key,
and the query x is answered by looking at cell Tf(x) in this array, which is computed by a hash function
defined as above.

Using communication complexity we can prove lower bounds for several data structure problems. For
the next problem we need a definition first.

Definition 115. Let x, y ∈ {0, 1}d. The Hamming distance between x and y denoted by d(x, y) is defined
as the number of coordinates on which x and y differ. A Hamming ball of radius r around x is Br(x) = {y :
d(x, y) ≤ r}. The density of a set S ⊆ {0, 1}d is define as µ(S) = |S|

2d .

Example 116. (Hamming nearest neighbor) Let S ⊆ {0, 1}d. Given x we want to know the closest element
y ∈ S to x, i.e., argminy∈S{d(x, y)}. Using communication complexity we show that s = nO(1) and r = no(1)

is not possible.

We look at decision version of this problem called λ-nearest neighbor. Alice is given a list S of n d-bit
strings and Bob has x ∈ {0, 1}d. They want to know if there exists y ∈ S such that d(x, y) ≤ λ.

For a data strucure problem we consider the following communication game: Alice gets a query and Bob
gets a set. Their objective is to find cooperatively the answer to the Alice’s query with respect to the set
that Bob holds. Note that if a data structure problem has a solution with parameters w, s and t then the
communication could be done by Alice sending tdlog se bits and Bob sending tw bits—Bob can store his
input in a data structure. Each message from Alice is a request for the contents of a cell. Each message
from Bob returns these contents.

Let f : X × Y → {0, 1} be any function denoting a communication problem and let it be represented by
a matrix MY

X . We say that M is (u, v)-rich if at least v columns contain at least u 0’s.

Lemma 117. (Richness Technique). Let MY
X be the matrix of some communication problem f that is

(u, v)-rich. If there is a protocol in which Alice sends a bits and Bob sends b bits, then M contains an all-0
rectangle with dimensions u

2a × v
2a+b .

Proof. We prove the lemma by induction on a + b. For a + b = 0 there is no communication and thus f is
constant. Since M is (u, v)-rich we have |X| ≥ v and |Y | ≥ u and f(x, y) = 0 for all x and y, proving the
claim.

For the induction step assume that Alice sends the first bit. Let X0 and X1 be the inputs on which
she sends 0 and 1 respectively. Let f1 and f2 be the restrictions of f on X0 × Y and X1 × Y , respectively.
It is easy to see that either f0 or f1 is (u

2 , v
2 )-rich. Without loss of generality assume that it is f0. Note

that by assumption f0 has a protocol in which Alice sends a − 1 bits and Bob sends b bits. Thus applying
the induction hypothesis we have a 0-rectangle with dimensions u/2

2a−1 × v/2
2a−1+b . But these are the exact

dimensions that we wanted and thus we are done.
Assuming that Bob sends the first bit we can define Y0, Y1, f0 and f1 analogously. But note that this time

either f0 or f1 is (u, v
2 )-rich. We can now apply the induction hypothesis and get the desired rectangle.

We prove the lower bound for the λ-nearest neighbor problem by showing that its matrix is rich and yet
it does not have large 0-rectangles. This is done using the following combinatorial facts about the Hamming
balls.

Fact 118. There exists c = c(n, d) ' 1√
2/ ln 2

such that setting λ = d
2 − c

√
d log n implies 1

n ≤ µ(Bλ) ≤ 2
n .
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Lecture 10
Data Structure Lower Bounds

Scribe: Søren Frederiksen

10.1 Recap

10.1.1 Hamming nearest Neighbor

Problem 119 (Hamming nearest Neighbor). Represent S ⊂ {0, 1}d where |S| ≤ n as a s-word datastructure
with w-bits words. For our case let w = d, so queries ”What is the closest point to x in S i Hamming distance”
can be answered by inspecting at most t cells of the data structure.

Theorem 120. No scheme can satisfy s = nO(1) and t = no(1) for all word sizes.

We can make a communication version of the problem which is clearly easier to solve, so a lower bound
for that gives us a lower bound for the Hamming nearest Neighbor.

Problem 121 (λNN). Alice gets a x ∈ {0, 1}d. (So |X| = 2d) and Bob gets a list of size n of elements from
{0, 1}d. (So |Y | = 2nd). They have to output 1 if ∃y ∈ S : dist(x, y) ≤ λ, else 0.

To prove the lower bounds for λNN we will need another result namely the Richness lemma.

Theorem 122 (Richness lemma). Let My∈Y
x∈X be a communication matrix where every column contains an

α-fraction 0’s. If there exists a protocol for M such that Alice sends a bits and Bob b bits, then M contains
an all-0 rectangle of dimensions α|X|

2a × |Y |
2a+b .

Now let Br(x) denote the Hamming ball centered at x with radius r. We then have the following facts
for ω(log n) ≤ d ≤ no(1) and n sufficiently large:

Fact 123. ∃c = c(n, d) ≈ 1√
2

ln 2

such that λ = d
2 − c

√
d log n gives us that 1

n ≤ µ(Bλ) ≤ 2
n .

Fact 124. µ(B0.4d) ≤ 2−0.01d

Fact 125. Let x1, x2 points in the Hamming space. If dist(x1, x2) ≥ 0.4d then µ(Bλ(x1)∩Bλ(x2))
µ(Bλ(x1))

≤ 1
n0.1

The first two follows from respecively Sterlings formula and the Chernoff bound. The last one we will not
prove, but it shows some interesting things about the Hamming space, even if we move away from a point
by just a small margin, the balls around the point and the new point will have a very small intersection.

10.2 Proof for bounds of λNN

Proof of Theorem 154. We are going to apply the Richness lemma, so we want to show that are are alot of
0’s in the communication matrix. First thing we notice is that each row contains at least an 1

10 fraction of
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0’s. This is true because each row is given by x ∈ {0, 1}d the input of Alice, then the row will filled with 1’s
and 0’s according to

Pr[random list of size n does not contain any elements λ-close to x]

= (1− Pr[random element is λ-close to x])n = ((1− 2
n

)n/2)2 ≡
(

1
e

)2

>
1
10

These equalities come from fact 123 and that limn→∞(1 − 2/n)n/2 = 1
e . Since we iterate all random lists,

we will get this fraction for the number of 0’s. Since we have this number of 0’s in the rows we can get
a bound of at least 1

20 columns have at least 1
20 -fraction 0’s in them. We get this by contradiction, since

assume it’s not true. But when we try to pack the 0’s into 1
20 columns filled with 0’s, and the rest with less

than 1
20 -fraction 0’s we get.

(
1
20

2dn)2d + (
19
20

2dn)
1
20

2d = 2d2dn(
1
20

+
19
20

1
20

) = 2d2dn 39
400

<
1
10

2d2dn

We now just focus on 1
20 -fraction of columns that contain the threshold number of 0’s, and we now want

to show that there are no large 0-rectangles in our communication matrix. For this we will use a lemma:

Lemma 126. Let I ⊂ {0, 1}d such that |I| = (n0.12−0.01d)2d then µ(
⋃

x∈I Bλ(x)) ≥ 1
2n0.9

Proof of lemma. Greedily chose a subset C ⊂ I such that all the points in C is ≥ 0.4d apart. By fact 124
we only remove 2−0.01d2d points at each time, so |C| = n0.1. From fact 125 we now get that:

µ(
⋃

x∈C

Bλ(x)) ≥ 1
n

+
1
n

(
1− 1

n0.1

)
+

1
n

(
1− 2

n0.1

)
+ . . . ≥ 1

2
1
n

n0.1

The first inequality coming from having 1
n to be the measure of the first point in C then from fact 125 the

intersection between the first and second point is small, so the measure of the secondpoint is 1
n

(
1− 1

n0.1

)
and so on. The second inequality comes from the fact that the sum is dominated by the right triangle with
legs of length 1

n and n0.1, giving the area 1
2

1
nn0.1. Since this is the measure of a subset of I then the measure

of I is even bigger.

How big can a 0-rectangle now be? To answer this we look at how many lists that does not intersect a
set of density 1

2n0.9 . So let Q =
⋃

x∈I Bλ(x) obtained from the previous lemma, and look at the probability:

Pr[random list of size n does not intersect Q] =
(

1− 1
2n0.9

)n

=
(

1
e

) 1
2 n0.1

< 2−
1
2 n0.1

So the maximum amount of columns is at most a 2−
1
2 n0.1

-fraction of the total. Which then gives us that
there a no all-0 rectangles of dimensions (n0.12−0.01d)2d × 2−

1
2 n0.1

2nd. Using the richness lemma on this, we
get after alot of calculations that

t > min
(

0.01d− 0.1 log n

log s
− 6,

0.5n0.1

log s + w
− 5
)

Now for the final part of the proof, we see at for example d = 1000t that the first one becomes obviously
the largest so t > 0.5n0.1

log s+w − 5 which does not satisfy t = no(1)
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10.3 Predessesor Problem

Problem 127 (Predessesor). Store S ⊂ {0, 1, . . . , 2d − 1}, where |S| ≤ n as a s-word datastructure with
w-bits words (w = d), so queries ”What is max{S ∩{y|y ≤ x}}” can be answered for a given x by inspecting
at most t cells of the data structure.

Beame and Fich showed that for s = nO(1), we get t = O
(√

log n
log log n

)
, t = Ω

(√
log n

log log n

)
.

Exercise 128. Put numbers into the coming proof to obtain the above bounds.

Observation 129. If a datastructure problem has a protocol with parameters s, t, w then the corrosponding
communication problem has a protocol with t rounds of communication where Alice sends log s bits and Bob
sends w bits.

We now define the communication version of the problem

Problem 130 (Comm. Predessesor). Alice gets x ∈ {0, . . . , 2d−1} Bot gets S ⊂ {0, . . . , 2d−1}, |S| ≤ n, each
element is colored red/blue, and the goal is to find the color of max{S ∩ {y|y ≤ x}}

We will use the following lemma which we will not prove, which has an equivalent version for Bob:

Lemma 131 (Round elimination). Let f be any communication problem. Let fk
Alice be the problem where

Alice gets x1, . . . , xk ∈ X as input and sends the first message, all her messages being of length a. Bob gets
y ∈ Y and i ∈ [k], his messeges being of length b. The goal is to output f(xi, y).

If there is a protocol for fk
Alice with error probability δ, then there is a protocol for f where Bob sends the

first message, but with the total number of messages one less, which has error probability δ + O
(√

a
k

)
.

Note: This lemma holds even if Bob is additionally given x1, . . . , xi−1.
We will now show two reductions: gk

Alice  g: Alice gets x1, . . . , xk ∈ {0, . . . , 2d − 1}, she computes a
kd-bit string x̂ := x1|| · · · ||xk

1 Bob gets S ⊂ {0, . . . , 2d − 1}, i ∈ [k], x1, . . . , xi−1, and he constructs a set
of kd-bit strings S′ = {z|z = x1|| · · · ||xi−1||y||0d(k−i) for some y ∈ S}. Then, Alice and Bob solve gk

Alice by
running a protocol for g where Alice speaks first. Note that in the protocol for gk

Alice, inputs are d bit strings
and sets of d bit strings. In g, the inputs are kd bit strings and sets of kd bit strings.

gk
Bob  g: Alice gets x ∈ {0, . . . , 2d − 1}, i ∈ [k], she computes a (d + log k)-bit string i||x. Bob gets

S1, . . . , Sk ⊂ {0, . . . , 2d − 1}, with |Sj | = n, he computes S =
⋃

j{z|z = j||y for some y ∈ Sj}. Then, they
solve gk

Bob by running a protocol for g on (d + log k)-bit strings with Bob speaking first.
By chaining together the round elimination lemma with the two reductions described above, and by

setting the parameters right we can get something non-trivial with 0 communication. This means that there
originally was no protocol for fk

Alice with these parameters, so there can be no protocol for the original
problem with these parameters since that would be able to solve fk

Alice or fk
Bob.

1Notice that we use || for concatenation
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Lecture 11
Data Structure Lower Bounds

Scribe: Jana Kunert, Gozde Kocabas Last time we saw
a data structure lower bound technique (using communication complexity) which showed that if the space
is polynomial in n, then the query time must be large. Those bounds did not distinguish between space n
and n2: in fact, the technique was not sensitive to polynomial factors in the space. However, some problems
(such as the one we consider below – rectangle stabbing on the grid) have a trivial data structure if the
space is allowed to be n2. We show a strengthened version of the technique from the last lecture, which does
distinguish between polynomial factors in the space. This strengthened version is due to Mihai Patrascu,
and is explored in his paper “Unifying the Landscape of Cell-Probe Lower Bounds ” (although the proof
we show is a little different). In particular, for rectangle stabbing this technique shows that if the space is
n · polylog(n) then the query time must be Ω(log n/ log log n). (Throughout this lecture, we assume that the
word size is w = log n bits. The same proof in fact also holds for w = polylog(n), and can be generalized for
any word size.

11.1 Recap

Example 132. DS (DATA STRUCTURE)
Input: some information y, a query x
Output: f(x, y).

We saw last time that if there exists a data structure that can answer the query x on the data set y in
time t using s space, then there also exists a communication protocol over t rounds where Alice sends log s
bits in each round and Bob sends w bits in each round. If we look closer at the resulting lower bound, we
can find its main drawback:

CA→B : t log s ≥ communication lower bound

⇔ t ≥ communication lower bound
log s

The time t is not sensitive to polynomial factors in space—if s = n · polylog(n) or s = n1000, the resulting
bound on t remains the same (up to constant factors).

11.2 k-to-1 reductions

To achieve a better lower bound, Patrascu introduced a k-to-1 reduction: Bob still gets a set of data
y, but Alice now gets k queries x1, x2, · · · , xk instead of only one query. Now we want to compute
f(x1, y), f(x2, y), · · · , f(xk, y).
Claim 3. If there exists a data structure with query time t, space s and wordsize w, then there exists a
t-round protocol where Alice sends log

(
s
k

)
bits in each round and Bob sends wk bits in each round.
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Proof. Alice will simulate the behavior of the querier in the data structure, while Bob will simulate the data
structure itself. In each round of communication, Alice needs to make makes k cell probes. She can make
this request to Bob using just log

(
s
k

)
bits of communication, simply be sending the set of all cells that she

wants to probe. Bob replies with the contents of these cells, using wk bits.

For k = 1 we still get the same bound as we had before:
Alice sends log

(
s
k

)
= log

(
s
1

)
= log s bits.

Bob sends wk = w · 1 = w bits.
But the closer k gets to s, the smaller log

(
s
k

)
gets compared to k log s. The strength of the argument will

come precisely from this difference between log
(

s
k

)
and k log s.

We will extensively use the fact that log
(

s
k

)
≤ log

(
es
k

)k = k · log(es/k). In our application below, we
will be interested in s = n · polylog(n) while k = n/polylog(n). For such s and k, log

(
s
k

)
≤ O(k log log n),

while k log s is Θ(k · log n). The ratio of log n
log log n between the two expressions is the source of our good lower

bound.

11.3 Lopsided Set Disjointness

Lopsided Set Disjointness if the following communication problem. It is parametrized by two parameters:
N and B.

Example 133. LSD (Lopsided Set Disjointness)
Input: two sets S, T , where S, T ⊆ [NB] = {1, · · · , NB}, |S| ≤ N
Output: S ∩ T = ∅ ?

Theorem 134 (Patrascu). If a randomized protocol solves LSD, then either

CA→B ≥ 0.1N log B

or
CB→A ≥ NB0.1

This holds even for protocols with two-sided error.

In fact, the constant 0.1 should be replaced by another, unspecified, constant. But for convenience we
will just use 0.1. This lower bound is already proved in the paper of Miltersen, Nisan, Safra and Wigderson
for the case of one-sided error. But Patrascu was the first to prove this for the case of two-sided error.

In the obvious protocol, the following communication is needed:

CA→B = log
(

NB

≤ N

)
= log

(
N∑

i=0

(
NB

i

))
≤ log

(
2
(

NB

N

))
= O

(
log
((

NB

N

)))
log
((

NB

N

))
≤ N log(eB) ≈ N log B

CB→A = log(2NB) = NB

We now show a protocol that provides a tradeoff between the communication from Bob to Alice and the
communication from Alice to Bob.

Partition the set [NB] into N chunks of size B each. Assume for simplicity that each block contains
exactly one of Alice’s elements (this assumption can be removed with some further work, which we will not
describe). Now, for each block, Alice sends the last d digits of her element in this block, and Bob replies by
sending all of his elements in the block whose last d digits agree with the digits that Alice sent. We get

CB→A ≤
B

2d
·N
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CA→B = dN

We now give some intuition behind the lower bound. First, consider the case where N = 1. In this
case the lopsided set disjointness problem becomes simply the INDEX problem, and the lower bound indeed
matches what we know about the INDEX problem. Now, for larger N , we can think about the same special
case that we considered above, where there are N blocks of B elements each, and Alice has exactly one
element from each block. We can see that the lopsided set disjointness problem is in fact a sort of direct
sum on N copies the index problem: one for each block. The “combining function” in this direct sum if
the OR function: we simply need to know whether for at least one of the blocks, the element of Alice is
among the elements of Bob. Since we know that a direct sum of N copies of a problem is often (but not
always) as hard as N times the complexity of the single problem, then we should not be surprised by the
lower bound described in Theorem 134. The proof of this theorem is surprisingly complicated, and uses
information theory.

11.3.1 Lopsided Set Disjoiness with Restricted Inputs

Example 135. LSD with restricted inputs
Input: two sets S, T , where S, T ⊆ [NB], |S| ≤ N and S is in some family F ⊆

(
[NB]
≤N

)
Output: S ∩ T = ∅ ?

Theorem 136. Assuming |F| ≥
(
[NB]

N

)0.99
(and N is large enough), then either

CA→B ≥ 0.05N log B

or
CB→A ≥ NB0.05

Proof. Let S, T be some inputs to non-restricted LSD.
Before the protocol starts, Alice and Bob agree on r naming schemes. Each scheme

πi : [NB]� [NB]

is a bijection. These schemes are chosen randomly.
Now when Alice gets S, she tries all naming schemes πi until she finds one such that πi(S) ∈ F (where
πi(S) = {πi(x) : x ∈ S}). She sends Bob the index i. Bob also applies πi to his set B and then they run the
restricted LSD on πi(S) and πi(B).

Claim 4. Taking r = (NB
N )
|F| log

(
NB
N

)
random naming schemes suffices to get a protocol.

Proof. Fix some set S. Now look at the probability for a scheme πi(S) being in F:

Pr[πi(S) ∈ F] =
|F|(
NB
N

)
Pr[πi(S) /∈ F] = 1− |F|(

NB
N

)
Pr[∀i : πi(S) /∈ F] =

(
1− |F|(

NB
N

))r

Let λ := log
(
NB
N

)
.

When r = (NB
N )
|F| λ, then (

1− |F|(
NB
N

))r

≈ 1
eλ
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We use the union bound when S ranges over all possible N -element sets, and get

Pr[∀S∃i s.t. πi(S) ∈ F] ≥ 0.9

Exercise: Finish the proof. (It is useful to observe that Alice and Bob can choose the set of mappings
deterministically rather than randomly, because of the probabilistic method).

11.4 Data Structure Lower Bounds from Lopsided Set Disjoint-
ness

The data structure problem that we consider is the following.

Example 137. Rectangle stabbing on the grid.
Input: a set T containing n log n rectangles on a n× n grid
Query: a point x
Output: Is there a rectangle in S, that contains x?

Known solutions:

space time idea
O(n) O(n)
O(n log2 n) O(log n) interval / range trees
O(n2) O(1) precompute all queries

Theorem 138. Any data structure that uses space s ≤ n · polylog(n) must use time t ≥ Ω
(

log n
log log n

)
in the

cell probe model.

Proof. We first define the hard instances. Our instance will be “almost good” and at the end of the proof
we will change it to be entirely good.

The hard instance is constructed as follows. We choose log n different tiling of the n×n grid. Each tiling
partitions the grid into n non-intersecting rectangles of of size 2i× 2log n−i. There are log n different integral
values of i, and each one of them produces one of the tilings. Clearly, each point in the grid is included
in at most log n rectangles. In the hard instance, the rectangles of the data set would be a subset of these
rectangles. Intuitively, in this construction the rectangles are “independent” enough or “convoluted enough”
that in order to find out for a certain point whether one of the log n rectangles that contain it are actually in
the data-set T , we’d need to make, on average, one probe for each of those rectangles, giving a lower bound
of Ω(log n).

Now, let us look at the k-to-1 reduction, transforming the data structure problem into a communication
problem. Alice gets k queries and Bob has a set of rectangles. Given an LSD instance S, T we will create
a DS instance: Bob will get a set of rectangles and Alice will get k queries. The correspondence between
elements of the universe [NB] and the rectangles in all tilings is NB = n log n: the rectangles correspond to
the elements of the universe in a canonical one-to-one fashion, which is known to all parties in advance. Bob
creates the data-set by taking his set T , and putting in the structure exactly those rectangles that correspond
to the elements of T . Alice, on her side, takes her set S and tries to write it as a union of k disjoint “stars”.
A “star” is a set of all rectangles that contains a particular point: thus there are n2 possible stars. If Alice’s
set is small, then arranging it into rectangles is difficult; but since Alice’s set is quite large, then we will show
later that she can rearrange it into a union of k stars quite often. Define the family F to contain all the S’s
where Alice succeeds is writing her set as a union of stars. If Alice and Bob can answer all k queries, then
they can decide whether the sets S and T intersect, because S ∩ T 6= ∅ iff one of the queries returned “yes”.

We set the parameters as follows.

k =
N

log n
, NB = n log n, B = log100 n
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Now, assume there is a data structure for rectangle stabbing with space s and time t. From the k-to-1
reduction result, we thus know that there is a communication protocol that solves k queries, where the
communication from Alice to Bob is at most tk log(s/k), and the communication from Bob to Alice is at
most kwt. (For simplicity, we hide multiplicative constants.) On the other hand, we know that this protocol
also solves LSD with restricted inputs. Assume for now that the family F is indeed large enough that we
can apply Theorem 136. Then, we get that either

0.1N log B ≤ tk log(s/k)

or
NB0.1 ≤ tkw

Consider the second inequality. If it holds, then we get t ≥ NB0.1/kw = B0.1, which will finish the proof.
This inequality is always the less interesting one: even for larger word size, e.g. w = polylog(n), we could
fiddle with the parameters to make B large enough so that this inequality would give what we want. It is
only a matter of setting the value of B appropriately.

So, from now on consider the case that the first inequality holds.

0.1N log B ≤ tk log(s/k)

Notice that by our setting of parameters s = n ·polylog(n) and k = n/ polylog(n), so log(s/k) = O(log log n),
and also that log B = Θ(log log n). By substituting the parameters and simplifying and hiding multiplicative
constants, we get simply that

t ≥ N/k

Which gives t ≥ log n, as we wanted.
All of the above holds as long as F is large enough. Unfortunately, with our setting of parameters and

choice of hard instance, F is not quite large enough. To make it large enough, we need to choose the hard
instance slightly differently: rather than taking log n tilings, we take logB n tilings. Each tiling consists of
Bn rectangles of sizes Bi × BlogB n−i−1, and there is a total of NB = Bn logB n rectangles overall. Each
star now consists of logB n rectangles, and we thus set k = N

logB n .
The calculations above now work in a similar way, and we get

t ≥ N/k = logB n = Ω(log n/ log log n) ,

as desired.
We still need to prove that the family F is large. We will not give the details of this proof here, but

we just remark that in fact it can be shown that any set S of N rectangles that contains exactly N/ logB n
rectangles from each tiling, it holds that S can be written as a union of disjoint stars. This is proved in
somewhat different language in Patrascu’s paper. There are a lot of S’s with this property, and thus F is
large.

Lower bounds for many other data structures problems were proved using similar reductions from lopsided
set disjointness, both in Patrascu’s paper and in other papers. All of these proofs show how restricted lopsided
set disjointness (on family F) can be solved using a data structure task, and then they show that the family
F is large. Both parts are highly dependent on the specifics of the data structure problem.
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Lecture 12
Data Structure Lower Bounds

Scribe: Søren Frederiksen, Jesper Sindahl Nielsen
In the past few lectures, we’ve looked at space/time tradeoffs for static data structures—i.e., we receive all
of the data in advance, and want to store it in a way that efficiently supports queries. Today, we’ll discuss
dynamic data structures. In this kind of problem, the data structure must support both queries and updates
to the structure. We’ll see several problems whose query/update times are expected to be very high, as well
as a very recent technique by Mihai Pǎtraşcu that might prove polynomial lower bounds for several dynamic
data structures.

First, we’ll see a dynamic data structure that does have efficient solutions.

Problem 139 (Dynamic partial sums). Store an array A[1, . . . , n] of w-bit integers x ∈ {0, . . . , 2w − 1} and
support operations:

• update(k, x): Sets the k’th element to be x (A[k] = x).

• query(k): Returns
∑k

i=1 A[i]

There are two easy solutions to Dynamic Partial Sums:

1. Just store the array. The update time is O(1), and the query time is O(n)

2. Store the prefix sums B[k] :=
∑k

i=1 A[i]. The update time is O(n), and the query time is O(1).

Next, a few less trivial solutions:

3. Split the array into
√

n blocks each of size
√

n. Now for each block, store the elements in the block as
well as the sum of the elements. Updates can then be performed in O(1) by changing the number and
the sum of the block by the difference from the previous number. Queries can be performed in O(

√
n)

by adding the stored sum of each block up until the block which contains k, then sum the elements of
that block up to k.

4. Use a binary tree with the leaves being the elements of the array and the internal nodes containing the
sum of the elements below it. Updates can be performed in O(log n) by going down in the tree towards
the element when and adjusting the values along the path. Queries can be done similar in O(log n) by
going done the tree towards the element, and whenever we take the right child, we add up the sum of
the left child.

Notice, that the
√

n solution can also be used to switch the time bounds in the same manner as the O(n)
solution.

53



12.1 Dynamic Data Structures

We will from here on use the following notation.

N : Size of input (compared to the last section this would be n · w).

tu : The update time.

tq : The query time.

Note that when discussing the solutions to Dynamic Partial Sums, we didn’t consider the space, only the
update and query time. For most dynamic data structures problems, space is not the primary concern.
Instead, we’d like tradeoffs between tu and tq. The goal will be to minimize max{tu, tq}.
Fact 140. Dynamic partial sums requires at least Ω̃(log N), where Ω̃ means we ignore any poly(log log N)
factors.

This is still the best lower bound known for many dynamic data structures even though they are conjec-
tured to be poly(n), until a few months ago! As a news flash Kasper Green Larsen, a Ph.D. student here at
Aarhus, recently proved a lower bound for dynamic range counting of Ω̃(log2 N).

Again, for many dynamic data structure problems, we expect max{tu, tq} to by polynomial in N , so we
won’t cover these lower bounds in class. Instead, we discuss a new approach that has come forth is due to
Mihai Pǎtraşcu, using a problem he calls the multiphase problem.

12.2 Multiphase Problem

Problem 141 (Multiphase). The problem consists of the following phases where the algorithm performs
the given tasks in the given times. The goal is then to minimize τ :

I We receive k subsets S1, . . . , Sk ⊂ [n]. We have O(nkτ) time to preprocess these.

II We receive another set T ⊂ [n], now we have O(nτ) processing time.

III We receives an index i ∈ [k]. We must decide in time O(τ) whether Si ∩ T = Ø.

This problem reduces to several problems in dynamic data structures, so that a lower bound for this
problem will imply a similar lower bound for those problems. Here are some examples:

1. Dynamic Reachability Maintain directed graph under insertion and deletion of edges such that queries
”Does a path u v exist?” can be answered.

2. Dynamic Shortest path Maintain undirected graph under insertion and deletion of edges such that
queries ”What is the length of the shortest path u v?” can be answered.

3. Subgraph Connectivity Maintain undirected graph under updates that can turn on/off nodes such that
queries ”Does a path u v using only nodes that are ’on’ exist?” can be answered.

Conjecture 142. There exist constants γ > 1, δ > 0 such that if k = Θ(nγ) then any solution to Multiphase
requires τ = ω(nδ).

12.2.1 Multiphase to subgraph connectivity reduction

In this subsection, we show how to solve the Multiphase problem using a data structure for the Subgraph
Connectivity problem. The idea is to create a layered graph.

• Vertices. Create a vertex in the graph:

– for each Si,
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– for each j ∈ [n],

– and a “sink” v.

• Edges

– For each i and each j ∈ Sj , create an edge (Si, j).

– For each j ∈ [n], create an edge (j, v).

Lets see how this works through the three phases.

I In Phase I,

• Construct all the edges.

• Preprocess G.

• In the beginning, all vertices are “off” except vertex v.

II In the second phase, turn vertex j on for all j ∈ T .

III In the final phase, turn Si on, and query (Si, v).

Notice that there is a path from Si to v if and only if Si ∩ T 6= ∅.
The input size, that is the size of the graph, is O(n · k). If we assume the Multiphase conjecture we get

N = O(nk) = Θ(n1+γ). Next, let us analyse the time for each phase

• Phase I: Preprocessing in O(n · k · τ) = O(N)

• Phase II: O(n · τ) time gives O(τ) pr update.

• Phase III: One update and one query and we have O(τ) time.

If we can prove that τ = Ω(nδ) then we get

max{tu, tq} ∼ Ω(nδ) = Ω(N ε) for ε =
δ

1 + δ

One approach to proving this is through number-on-the-forehead communication complexity.

12.3 Number-on-the-forehead communication complexity (NOF)

In a typical NOF communication problem, there are k players and k inputs. Player sees all the input except
for input xi. You can imagine input xi attached to player i’s forehead. The goal is then to cooperatively
compute the function f(x1, x2, . . . , xk). Now we will see how this translates to the Multiphase problem.

12.3.1 The CM (communication multiphase) problem

The CM problem is a communication game with three players, Alice, Bob and Carol, who get the following
inputs (on their foreheads):

• Alice gets an index i ∈ [k].

• Bob gets S1, S2, . . . , Sk.

• Carol gets T ⊆ [n].
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Again, these inputs are written on the players’ foreheads, so each player sees the inputs they don’t have on
their foreheads. The goal is to compute

CM(i, S1, . . . , Sk, T ) =

{
1 ifSi ∩ T 6= ∅
0 otherwise.

The protocol will be as follows

1. Alice sends a single message to Bob of size n ·M bits (privately).

2. Bob and Carol speak back and forth for M bits of communication in total.

3. Bob and/or Carol output answer CM(i, S1, S2, . . . , Sk, T )

Conjecture 143. CM. There exists constant γ > 1 , δ > 0 s.t. if k = Θ(nδ) then any CM protocol requires
M = Ω(nδ).

Since we are working with NOF communication it is interesting to see who can do which phases:
Alice sees S1, . . . , Sk and T - can do first and second phase.
Bob sees i and T - can do second and third phase if someone tells him about the first phase.
Carol sees i and S1, . . . , Sk - can do first and third phase if she can communicate with Bob.
Now we describe how a data structure solving Multiphase translates to the NOF protocol for CM. This is

similar to when we worked with the cell probe model—the protocol will simply emulate the data structure,
imagine every player as having the memory at different phases.

1. Alice computes phases I and II by herself.

2. Alice then sends all the cells (and their contents) changed in phase two to Bob.

3. Bob and Carol now have enough information together to do phase III. Bob will try to simulate phase
III, and whenever the algorithm queries a cell that was only used in phase I, Bob asks Carol for the
contents of that cell.

Phase three has at most O(τ) queries and each cell has w bits and a request is w bits long, which all in
all gives O(τ · w) = O(M) total communication. If M = Ω(nδ) and w = O(log n), then there exists some
constant δ′ such that τ = Ω(nδ′). In this way, the conjectured communication lower bound for CM implies
a polynomial lower bound on max{tu, tq} for the Multiphase problem, which gives polynomial lower bounds
for the other data structure problems.
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Lecture 13
Streaming Algorithms

Scribe: Falk Altheide The material in class today is mostly based on the paper
”The space complexity of approximating the frequency moments“ by Alon, Matias and Szegedy (”AMS“),
first presented at STOC 1996. This paper won the Gödel Prize in 2005 ”for their foundational contribution
to streaming algorithms” and has 918 citations according to Google scholar.

The idea behind streaming algorithms is, that you get an amount of data to process, that is to big to fit
into memory at once. For example in the context of the internet (note that the AMS paper came out shortly
after the internet became really popular), we are confronted with a huge amount of data.

13.1 The Basic Model

The Input is a stream A = 〈a1, . . . , am〉 of m tokens ai ∈ [n]. The goal is to compute some function f (A) on
the stream using as little space as possible. Ideally this would be a logarithmic amount O (log m + log n),
but polylogarithmic O (polylog (mn)) is good, too.

Examples of fuction to compute are the median of the stream’s tokens or the number of different items.
Important functions to compute are also the following

Definition 144 (Frequency Moments). For i ∈ [n] let mi := |{j : aj = i}|. The kth Frequency Moment is

Fk =
n∑

i=1

mk
i .

Example 145. F1 =
∑n

i=1 mi = m. F1 is just the number of elements in the stream.

Example 146. F0 =
∑n

i=1 m0
i is the number of Distinct Elements. (Note that 00 = 0)

Coming back to the network traffic example, one could use frequency moments to analyse the incoming
packages on a web server and detect various kinds of attacks: If source adresses are analysed and F0, the
numer of distinct IP adresses, suddenly goes down to just one or just a few, this hints to a (D)DoS attack.
If you monitor the destination port of incoming packages and F0 goes up from a very small number (for
example only HTTP on port 80) to a very big one, it alerts you that someone is doing a port scan.

13.2 Reduction

Now we want to apply our knowledge about communication complexity to streaming algorithms. But how
to turn streaming algorithm problems into CC problems?

Idea: Split the stream into two parts, one is Alice’s input, one is Bob’s.
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Alice’s part Bob’s part
a1 a2 a3 . . . . . . am−1 am

Alice and Bob can turn their input x, y into streams of elements. Then Alice simulates a streaming
algorithm on the first half and sends the contents of her memory to Bob. Afterwards Bob simulates a
streaming algorithm on the second half. This describes a one-pass streaming algorithm and leads to a one-
way communication. A k-pass streaming algorithm (where it is allowed to process the stream k times) would
lead to a (2k − 1)-round protocol.

13.3 Approximation/Randomization needed

For the following, we assume that m = Θ(n).
One of the big messages to take from the AMS paper is that often both approximation and randomization

are required for stream computation.

Theorem 147. For any non-negative k 6= 1 any deterministic algorithm that outputs F̂k such that
∣∣∣F̂k − Fk

∣∣∣ ≤
0.1Fk requires linear space.

Theorem 148. For all non-negative k 6= 1 any randomized algorithm that outputs Fk exactly requires Ω (n)
space.

We’ll prove Theorem 147 for the Distinct Elements problem.

Proof of Theorem 147. We reduce from the Equality problem (EQ). The proof will rely on the following
fact.

Fact 149 (from coding theory). There exists a set S ⊆ {0, 1}n such that

1. |S| = 2Ω(n)

2. |x| = n
4 for all x ∈ S (|x| = Hamming weight = number of i such that xi = 1)

3. ∀x 6= y ∈ S : |x ∩ y| ≤ n
8

Now, we create an EQ protocol only on strings in S. Call this version of equality EQS . It’s easy to show
that D(EQS) ≥ log |S| = Ω(n), via the same technique that gives the lower bound for the standard EQ
problem. Next, we’ll reduce EQS → F0.

Alice gets x, puts i on stream for each xi = 1
Bob gets y, puts i on stream for each yi = 1

Example 150. x = 00011000, y = 00001010. Then A = 4 5 5 7 .

If x = y then F0 (A) = n
4 , but F̂0 ≤ n

4 + 0.1n
4 .

If x = y then F0 (A) ≥ n
4 + n

8 = 3n
8 , but F̂0 ≥ 3n

8 − 0.1 3n
8 .

Conclusion: Alice and Bob use F0 algorithm to create a protocol for EQ. The cost of the protocol is
the space used for F0. But since D (EQ) = Ω (n) we can conclude that space is Ω (n).

Alice creates her half of the stream
Bob creates his half of the stream
Alice and Bob simulate F0 algorithm
if F̂0 (A) < 0.3n then

Bob outputs x = y
end if
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if F̂0 (A) > 0.3n then
Bob outputs x 6= y

end if

13.4 Estimators for F2

Definition 151. An (ε, δ)-estimator for F2 is a randomised streaming algorithm that, with a probability
≥ 1− δ, returns F̂2 such that

∣∣∣F̂2 − F2

∣∣∣ ≤ εF2.

Algorithm 2 A basic F2 estimator
Let H : [n]→ {−1,+1} be a uniformly random function (which means Pr [H (i) = +1] = 1

2∀i).
X ← 0
for all j = 1 . . .m do

X ← X + H (aj)
end for
return X2

Recall that F2 (A) =
∑n

i=1 m2
i , with mi = |{j : aj = i}| and note that

X2 =

 m∑
j=1

H (aj)

2

=

(
n∑

i=1

miH (i)

)2

=
n∑

i=1

(miH (i))2 +
∑
i 6=j

mimjH (i) H (j) .

Then

E
[
X2
]

=
n∑

i=1

m2E
[
H (i)2

]
+
∑
i 6=j

mimjE [H (i)]E [H (j)]

=
n∑

i=1

m2
i (since E

[
H (i)2

]
= 1 and E [H (i)] = E [H (j)] = 0)

= F2 .

So we know that E
[
X2
]

= F2. To ensure that X2 is a good F2 estimator, we need to control the variance.
To do that, we use Chebyshev’s Inequality:

Pr [|X − E [X]| ≥ α] ≤ V ar [X]
α2

In our case we need α := εF2 so we get

Pr [|X − E [X] ≥ εF2|] ≤
V ar [X]
ε2F 2

2

.
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The basic estimator has V ar
[
X2
]
≤ 2F 2

2 . If we directly used Chebyshev’s Inequality, then the right hand
side above would become 2

ε2 , which is too high to say anything meaningful. Instead, we do the following:
Let X1, . . . , Xs be s independent and identically distributed basic estimators.

(
Xi ∼ X2

)
Let Y := 1

s

∑
Xi. Then E [Y ] = E

[
X2
]

= F2 and V ar [Y ] =
V ar[X2]

s (exercise).
If we set s := 16

ε2 = O
(

1
ε2

)
, then Pr [|Y − E [Y ]| ≥ εF2] ≤ 1

8 .

In this case the amound of space needed is s log (n) = O
(

log(n)
ε2

)
(plus space to store randomness, which,

because it turns out to be sufficient to have 4-wise independence, adds O (log n) space).

13.5 Gap-Hamming-Distance

If 0 ≤ k ≤ 2, k 6= 1, one can approximate Fk in O
(

log n
ε2

)
space. If k > 2 then Fk required Θ̃

(
n1− 2

k

)
space

In practice 1
ε2 dominates for k ≤ 2. This can become a problem. If you want to have a precision of 0.99

(⇒ ε = 0.01), this would result in a factor of 10000 for space.
It turns out that this 1/ε2 factor is necessary. The reduction comes from the Gap-Hamming-Distance

problem.

Definition 152. Gap Hamming Distance (GHD)
Alice gets x ∈ {0, 1}n
Bob gets y ∈ {0, 1}n

Then GHD(x, y) :=

 1 if ∆ (x, y) ≥ n
2 +
√

n
0 if ∆ (x, y) ≤ n

2 −
√

n
∗ otherwise (any answer ok)

where ∆ is the Hamming Distance ∆ (x, y) = |x⊕ y| =number of i such that xi 6= yi

13.5.1 GHD History

• 2003: defined by Indyk and Woodruff

• 2004: Woodruff proved R→ (GHD) = Ω (n)⇒ streaming requires Ω
(

1
ε

)
space

• 2009: Brody and Chakrabarti: k-round protocol requires 1

2O(k2) communication

• 2010: Brody, Chakrabarti, Regev, Vidick and de Wolf: At least Ω
(

n
k2 log k

)
needed

• 2011: STOC, Chakrabarti and Regev showed Ω (n) for all k

Next class, we’ll look at the reduction of GHD to a streaming problem, and we’ll go over the BCRVW
lower bound.
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Lecture 14
Lower Bounds for Property Testing,
Conclusion

Scribe: Søren Frederiksen, Jesper A. S. Nielsen

14.1 Streaming algorithms

We first recall some of the definitions from last time.

• Hamming weight |x| = |{i|xi = 1}|.

• Hamming distance ∆(x, y) = |{i|xi 6= yi}|.

• Gap-Hamming-Distance: GHD(x, y) =

 0 if ∆(x, y) ≥ n/2 +
√

n
1 if ∆(x, y) ≤ n/2−

√
n

∗ otherwise

We now present the following theorems

Theorem 153. Any 1-pass (ε, δ) streaming algorithm for F0 needs Ω( 1
ε2 ) space.

Theorem 154. Rδ(GHD) = Ω(n).

We will now prove that theorem 154 implies theorem 153. By making a reduction from GHD to F0.

Proof. We create a stream with m := 2n elements from [N ] := [2n] where we let Alice’s ith element be
ai ← 2i − xi and Bob’s ith element be bi ← 2i − yi. Then the stream 〈a1, ..., an, b1, ..., bn〉 will have
n + ∆(x, y) distinct elements.

For our GHD protocol set ε = 1
2
√

n
(note that 1

ε2 = Ω(n)). Now run the (ε, δ)-stream algorithm for F0

on the stream 〈a1, ..., an, b1, ..., bn〉 and output GHD(x, y) = 1 if F̂0 ≥ 3n
2 .

From this we see that if GHD(x, y) = 1 then ∆(x, y) ≥ n
2 +
√

n ⇒ F0 ≥ 3n
2 +

√
n ⇒ F̂0 ≥ F0(1 − ε) =

3n
2 +
√

n− 1
2
√

n
( 3n

2 +
√

n) ≥ 3n
2 .

For the proof of theorem 154 we will instead prove another theorem that generalizes it.

Theorem 155. For all ε < 1/50, any k-round (µ, ε)-distributional protocol for GHD where µ is the uniform
distribution on {(x, y) : GHD(x, y) 6= ∗}, necessarily has a message of length Ω( n

k4 log2 k
).

The proof of this theorem uses the round elimination lemma in a new form which we will prove afterwards

Lemma 156 (Round elimination). ∀k′ ≤ k if there exists a k′-round (µ, ε)-protocol for GHD, then there
exists a (k′ − 1)-round (µ, ε′)-protocol for GHD with ε′ ≤ ε + 1

16k .
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Using this the proof of theorem 155 becomes very simple

Proof of Theorem 155. Fix k, assume all the messages are of length C ≈ n
k4 log2 k

where C ignores some
constant factors. Now if there exists a k-round (µ, ε)-protocol, then there exists a (k− 1)-round (µ, ε + 1

16k )-
protocol. By repeating this argument k times we reach a 0-round (µ, ε + 1

16 )-protocol, which gives us a
contradiction, since any 0-round protocol must make mistakes on half the inputs (when inputs are distributed
uniformly).

Now we just need to prove the round elimination lemma.

Proof of REL. Let P be a k′-round (µ, ε)-protocol with the first message being C bits long, Then there exists
a message m ∈ {0, 1}C and a set S ⊆ {0, 1}n such that |S| ≥ 2n

2C = 2n−C so Alice sends m on every x ∈ S.
Now fix this message m and set S. Now we construct the (k′ − 1)-round protocol Q as follows: Alice

picks z such that z = argminz∈S∆(x, z) and outputs P (z, y). Notice that in this protocol we do not need to
send the first message (m).

The hope of this protocol is that GHD(x, y) = GHD(z, y) when ∆(x, z) is small, and that since |S| is big
then ∆(x, z) is small. From this we see that the possibility of error in the protocol Q comes from

(1) If the original protocol makes an error P (z, y) 6= GHD(z, y).

(2) The distance is not small ∆(x, z) ≥ t := n
k2 log k .

(3) The distance is small ∆(x, z) ≤ t but it does not match GHD(x, y) 6= GHD(z, y).

The error probability of (1) is obviously ε. The one for (2) is o(1) and for (3) it is O( 1
k ), these are more

complicated and will be split into separate proofs.

Proof of (2). For the proof of (2) we use the idea of isoperimetric inequalities. The idea is that of having
two measures on an object, fix one of them and maximize or minimize the other by that constraint. The
original isoperimetric inequality was for shapes on the plane and asked how much area can be enclosed in a
shape with fixed perimeter P? The classic inequality states that the area is maximized when our shape is a
circle.

Define St = {x|∆(x, z) ≤ t for some z ∈ S}. The version of isoperimetric inequality we will use is that
we among all S ⊆ {0, 1}n with fixed |S| what is the minimum |St|.

Harpers inequality gives us that this happens when S is a Hamming ball of some radius r. But this then
implies that St is also a Hamming ball, but of radius r + t. Recall that |S| ≥ 2n−C . Then r & n

2 −
√

C · n ≈
n
2 −

t
2 if we chose the constants of C correctly. From this we also see that St becomes the hamming ball

with radius n
2 + t

2 . From this we get that

Pr[x /∈ St] ≤ Pr[x ∈ Bn/2−t/2] ≤
2n−C

2n
= o(1)

The first equality comes from the fact that the complement of a hamming ball of radius r + t is again a
hamming ball now with radius n− (r + t) which is less than or equal to n

2 −
√

Cn.

Proof of (3). This relates to the drunkard’s walk problem. Imagine a drunk walking home from a bar and
with probability 1/2 he takes one step left and with probability 1/2 he takes one step right, and this continues.
We’d like to know how far from the bar the drunk finds himself after t steps. It turns out that with high
probability, his position is Θ(

√
t) away, either to the left to the right. Each case is equally likely. The

important part is that the drunk is Θ(
√

t) steps away from where he started.
The problem is essentially the same as having a t-bit string, w, where 1 means walk left and 0 means

walk right. Then we get that the difference between the number of ones and zeros is Θ(
√

t). Which is the
same as saying that either |w| = t/2 +

√
t or |x| = t/2−

√
t.
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Now back to the proof, assume that ∆(x, z) ≤ t = O( n
k2 log k ) and assume wlog. that GHD(x, y) = 0⇒

∆(x, y) ≤ n
2 −
√

n.

Question: What is Pr[GHD(z, y) = 1]?

Fact: This probability is the same as if y had been fixed and z was random. (Homework 14)

Fact: ∆(x, y) = |x⊕ y|.

Now we take a random z close to x. This gives us that ∆(z, y) will correspond to flipping t bits in x⊕ y
The probability is maximized in extremal cases. That is when ∆(x, z) = t, ∆(x, y) = n/2 −

√
n which

should be somewhat intuitively clear.
Now we want to look at z ⊕ y and find its Hamming weight. We know that z ⊕ y = (x ⊕ y) ⊕ (x ⊕ z)

and this is where the intuition from the drunkard’s walk comes in. Essentially this corresponds to having
a string (x⊕ y) which we flip t random bits in, so now the question becomes how far away do we get from
x⊕ y? Well w.h.p. we walk Θ(

√
t) from it which means that w.h.p. we get

|z ⊕ y| ≤ n

2
−
√

n + Θ
(√

t
)
≤ n

2
−
√

n + Θ
(√

n

k2 log k

)
The short answer for error (3) is a Chernoff-Hoeffding bound, which is a generalization of Chernoff bounds

that we saw in the probability crash course.

14.2 Property Testing

Property testers are algorithms that solves a sort of decision problem on an object or tells that it is not
possible for the object to attain the property by only doing a small amount of work. The algorithm essentially
wants to decide if the object has the property or is far from having the property, for an appropriate definition
of “far”.

Example 157. Given a graph G = (V,E) where |V | = 500.000.000 and the property triangle freeness: no
three vertices are all connected.

The model is that we can query the graph for membership with regards to edges, that is we can query G
is (i, j) ∈ E? And the graph then replies. We want to prove lower bounds on the query complexity and for
the triangle freeness problem we have a query complexity of O(φ( 1

ε )), for some function φ which depends
on 1/ε, but not the size of the graph.

Why do people care about these things? Social networking sites like to analyze cliques in graphs which
triangle freeness is an instance of. Also advertisement companies might like to do some data mining where
these things can be useful.

A new technique for proving property testing lower bounds is due to Blais, Brody and Matulef and can
be found in the paper Property Testing Lower Bound via Communication Complexity (appeared in CCC
2011). The objects they deal with are functions on the form: f : {0, 1}n → {0, 1}.

Example 158. K-linearity.

f is linear if ∃S ⊆ [n], S = {i1, i2, . . . , i|S|} such that f(x) = xi1 ⊕ xi2 ⊕ · · · ⊕ xi|S| , ∀x ∈ {0, 1}n. We say
that f is k-linear if |S| = k and we say that f is ε-far from k-linear if:

∀k-linear functions g, Pr[f(x) 6= g(x)] ≥ ε

Before applying the new technique the lower bound was Ω(
√

k) and the new lower bound will give Ω(k).
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Proof. We will reduce from (k
2 )-disjointness. Alice gets A ⊆ [n] with |A| = k/2. Bob gets B ⊆ [n] with

|B| = k/2. We have a promise that the intersection intersects at exactly one point or not at all: |A∩B| ≤ 1

Alice: Turns A into LinA(x) :=
⊕
i∈A

xi

Bob: constructs LinB(x) :=
⊕
i∈B

xi

Now they must decide if LinA∆B = LinA(x)⊕LinB(x) is k-linear or not. Because of the following facts
the reduction is done.

• A ∩B = ∅ ⇒ LinA∆B is k-linear

• |A ∩B| = 1⇒ LinA∆B is (k − 2)-linear.

• (k − 2) linear functions are 1/2-far away from k-linear functions.

If we had [n] = [8], A = {3, 4, 7} and B = {1, 2, 4} then we get LinA(x) = x3⊕x4⊕x7, LinB(x) = x1⊕
x2 ⊕ x4 and we get LinA∆B = x1 ⊕ x2 ⊕ x3 ⊕ x7.
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