CPSC 421: Introduction to Theory of Computing Assignment #2, due Monday September 26th by 12pm (noon), via GradeScope.com

- [9] 1. Let R and S be regular expressions over some alphabet Σ . Formally prove or disprove each of the following statements. (Here we use "=" to mean that the two regular expressions describe the same language.)
 - [3] a. $(R^*S^*)^* = (R \cup S)^*$.
 - [3] b. $R^* \cup S^* = (R \cup S)^*$
 - [3] c. $(R \cup S)^*S = (R^*S)^*$.
- [9] 2. Prove that the following languages over $\Sigma = \{0, 1\}$ are not regular. You may use the fact that the class of regular languages is closed under unions, concatenations and complements.
 - [3] a. $L = \{ 0^n 1^m : n \le m \}.$
 - [3] b. $L = \{ w : |w| \text{ is a perfect square } \}$. (That is, $|w| = n^2$ for some integer $n \ge 0$.)
 - [3] c. $L = \{ w : w \text{ is not a palindrome } \}$. (A palindrome is a string that reads the same forward and backward.)

[15] 3. Consider the language $F = \{ a^i b^j c^k : i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k \}.$

- [7] a. Show that F is not regular.
- [7] b. Show that F satisfies the condition of the pumping lemma. In other words, give an integer $p \ge 1$ and demonstrate that for all strings $w \in F$ with $|w| \ge p$ we can find $x, y, z \in \{a, b, c\}^*$ such that
 - |y| > 0,
 - $|xy| \le p$, and
 - $xy^n z \in F$ for all $n \ge 0$.
- [1] c. Explain why this does not contradict the pumping lemma.
- [10] 4. Let $\Sigma = \{0, 1\}$ and let B be the collection of strings that contain at least one 1 in their second half. In other words, let

$$B = \{ uv : u \in \Sigma^*, v \in \Sigma^* 1 \Sigma^* \text{ and } |u| \ge |v| \}.$$

- [5] a. Give a PDA that recognizes B.
- [5] b. Give a CFG that generates B.

[20] 5. OPTIONAL BONUS QUESTION

Professor Dumas thinks he understands the pumping lemma. His interpretation is that "a finite automaton has a limited amount of complexity, so if it accepts a very long string, that string must have some repeated structure inside". To formalize his interpretation, he proposes the following conjecture.

Conjecture 1. Let *L* be regular language over Σ . Then there exists an integer $p \ge 1$ such that, for every string $w \in L$ with $|w| \ge p$,

$$\exists x, y, z \in \Sigma^* \text{ and } i \ge 2 \quad \text{such that} \quad w = xy^i z \text{ and } y \neq \epsilon.$$
(1)

Professor Dumas' conjecture is false. Let's try to understand why.

- [10] a. Find a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with with $|Q| \leq 3$ and $|\Sigma| \geq 3$ and a string w that is accepted by M, and has $|w| > |\Sigma|^2$, but does not satisfy (1).
- [10] b. Can you find an even longer string w that is accepted by your M but does not satisfy (1)? You can use computer simulations if you like. If your solution involves any ideas found in the literature or online, be sure to give a citation.