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Lecture 2: Matrix Chernoff bounds

Nick Harvey University of British Columbia

Abstract

The purpose of my second and third lectures is to discuss spectral sparsifiers, which are the second
key ingredient in most of the fast Laplacian solvers. In this lecture we will discuss concentration
bounds for sums of random matrices, which are an important technical tool underlying the simplest
sparsifier construction.

1 Introduction

I thought it was a rather trivial lemma, but many things are only trivial once you know them.
Herman Chernoff

The use of randomization in algorithms has been increasingly prevalent since the mid 1970s. The
Chernoff bound has been a hugely important tool in randomized algorithms and learning theory since the
mid 1980s. It is a concentration inequality for random variables that are the sum of many independent,
bounded random variables. A formal statement is:

Theorem 1. Let X1, . . . , Xk be independent, random, real variables with 0 ≤ Xi ≤ R.
Let µmin ≤

∑
i E [Xi ] ≤ µmax. Then, for all δ ≥ 0,

Pr
[∑k

i=1Xi ≥ (1 + δ)µmax

]
≤
(

eδ

(1+δ)1+δ

)µmax/R
≤

{
e−δ

2µmax/3R (if δ ≤ 1)

e−δµmax/3R (if δ > 1)

Pr
[∑k

i=1Xi ≤ (1− δ)µmin

]
≤
(

e−δ

(1−δ)1−δ

)µmin/R
≤ e−δ

2µmin/2R (if δ ≤ 1).

In modern research it has been increasingly useful to study concentration for sums of random
matrices. Many uses have appeared in compressed sensing, machine learning, and randomized numerical
linear algebra. There was a long literature proving matrix concentration bounds, culminating in the
following result of Tropp, which shows that the Chernoff bound has a perfect generalization to matrices.
The formal statement is syntactically almost identical to the previous theorem.

Theorem 2 (Tropp). Let X1, . . . , Xk be independent, random, symmetric, real matrices of size d× d
with 0 � Xi � R · I. Let µmin · I �

∑
i E [Xi ] � µmax · I. Then, for all δ ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + δ)µmax

]
≤ d ·

(
eδ

(1+δ)1+δ

)µmax/R
≤ d ·

{
e−δ

2µmax/3R (if δ ≤ 1)

e−δµmax/3R (if δ > 1)

Pr
[
λmin(

∑k
i=1Xi) ≤ (1− δ)µmin

]
≤ d ·

(
e−δ

(1−δ)1−δ

)µmin/R
≤ d · e−δ2µmin/2R (if δ ≤ 1).

Portions of these notes are based on scribe notes written by Zachary Drudi.
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Here λmax and λmin respectively refer to the maximum and minimum eigenvalues of their argument.
We are also using the partial ordering � on symmetric matrices defined by A � B if and only if B −A
is positive semi-definite (i.e. λmin(B −A) ≥ 0). This is called the Löwner ordering.

We will use Theorem 2 in the next lecture to construct “graph sparsifiers” — subgraphs which
approximation the graph in a very strong sense. Sparsifying the graph is a very useful subroutine for
fast algorithms, such as fast Laplacian solvers.

Although the Chernoff bound is quite powerful (and certainly useful), its proof is quite straight-
forward, as Chernoff himself remarks in the quotation above. The matrix Chernoff bound is also quite
comprehensible, especially since its proof has a very similar structure to the scalar bound. The main
difficulty is understanding what scalar inequalities have generalizations to matrices. The field that
studies such inequalities is called matrix analysis.

2 Matrix Analysis

In this section we briefly discuss some results that we will need.

Definition 3 (Spectral mapping). Let f : R→ R be a function. We extend f to a new function f(A)
on symmetric matrices by applying f to the eigenvalues of A. That is, let A = UDUT be the spectral
decomposition of A, where U is orthogonal and D is diagonal. Define f(A) = Uf(D)UT , where f(D)
is the diagonal matrix with f(D)i,i = f(Di,i).

We will primarily be interested in the case f = exp or f = log.

Definition 4. A function f : R→ R is

• Operator monotone if f(A) � f(B) whenever A � B.

• Operator concave if f
(
(1− x)A+ xB

)
� (1− x)f(A) + xf(B) for all x ∈ [0, 1] and all A,B.

In many ways, the Löwner ordering interacts nicely with the algebra of matrices and with spec-
tral mapping. Many familiar scalar inequalities generalize to the Löwner ordering. However, many
inequalities that one might hope to be true are actually false, so much care is needed!

2.1 The pitfalls of matrix analysis

Hope 1. If f : R → R is monotone (on a certain interval), is f also operator monotone (for matrices
whose eigenvalues lie in that interval)?

This is false. Consider function f(x) = x2, which is monotone on the positive reals. Define
A = ( 1 1

1 1 ) and B = ( 2 1
1 1 ). Then A � B since B−A = ( 1 0

0 0 ), but f(A) � f(B) since f(B)−f(A) = ( 3 1
1 0 ),

which has a negative eigenvalue. The same A and B also show that exp is not operator monotone.

Hope 2. If f : R→ R is concave (on a certain interval), is it also operator concave (for matrices whose
eigenvalues lie in that interval)?

Also false. Consider f(x) = −x3, which is concave on the positive reals. The same matrices A and
B provide a counterexample with x = 0.5.

Before the reader becomes too dismayed, the take-away lesson should not be that matrix analysis
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is useless. We will see next that there are many useful and powerful inequalities in matrix analysis. The
lesson is that one much carefully determine which matrix inequalities are true before using them!

2.2 Some inequalities of matrix analysis

Proofs for the results of this section may be found in my 2013 lecture notes, with the exception of
Theorem 9.

Claim 5. Let f : R → R and g : R → R satisfy f(x) ≤ g(x) ∀x ∈ [l, u]. Suppose A is symmetric and
the eigenvalues of A all lie in [l, u]. Then f(A) � g(A).

Claim 6. If X and Y are random matrices and X � Y , then E [X ] � E [Y ].

Claim 7 (Weyl’s Monotonicity Theorem). Let A and B be symmetric, n × n matrices. Let λi(A)
denote the ith largest eigenvalue of A. If A � B, then λi(A) ≤ λi(B) for all i.

References: Bhatia page 63.

Corollary 8. If f is monotone, then so is the composition tr f defined on matrices.

Theorem 9 (Löwner). log is operator concave.

References: Carlen Theorem 2.6, Horn and Johnson Exercise 6.6.18.

2.3 A commutative multiplication operation

One annoyance with matrix multiplication is that it is not commutative. We will define a new commu-
tative multiplication operation that turns out to be useful.

Definition 10. If A,B are positive definite, define A�B = exp(log(A) + log(B)).

References: Warmuth-Kuzmin Section 4.

Note that if A and B commute then A�B is the usual product AB.

Theorem 11 (Lieb). Fix any symmetric H. The map A 7→ tr exp
(

log(A) +H
)

is concave on the set
of positive definite matrices.

References: Lieb 1973, Epstein 1973, Ohya-Petz 1993 Theorem 3.7.

Corollary 12. For any fixed B, the map A 7→ tr(A�B) is concave.

Proof: tr(A�B) = tr exp(logA+ logB). Apply Lieb’s theorem with H = logB. 2

Corollary 13. Let B be fixed, and A a random matrix. Then E [ tr(A�B) ] ≤ tr(E [A ]�B).

Proof: Apply Jensen’s inequality. 2

Corollary 14. Let A1, . . . , Ak be independent random positive definite matrices. Then

E [ tr(A1 � . . .�Ak) ] ≤ tr(E [A1 ]� . . .� E [Ak ]).

Proof: By symmetry Corollary 12 and Corollary 13 are also true if the roles of A and B are swapped.
Thus we may inductively apply Corollary 13 to obtained the desired result. 2
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3 The Chernoff Bound

We now prove only the first inequality of Theorem 1.

Claim 15.

Pr

[
k∑
i=1

Xi ≥ t

]
≤ inf

θ>0
e−θt ·

k∏
i=1

E
[
eθXi

]
.

Proof: Fix θ > 0.

Pr [
∑

iXi ≥ t ] = Pr [
∑

iθXi ≥ θt ]
= Pr [ exp(

∑
iθXi) ≥ exp(θt) ] (monotonicity of ex)

≤ e−θt · E [ exp(
∑

iθXi) ] (Markov’s inequality)

This expectation can be simplified:

E [ exp(
∑

iθXi) ] = E
[∏

i e
θXi
]

=
∏
i E
[
eθXi

]
(by independence).

Combining these proves the claim. 2

Claim 16. Let X be a random variable with 0 ≤ X ≤ 1. Then

E
[
eθX

]
≤ 1 + (eθ − 1) · E [X ] .

Proof: For x ∈ [0, 1] we have eθx ≤ 1 + (eθ− 1) ·x, by convexity of the left-hand side. Since X ∈ [0, 1],

eθX ≤ 1 + (eθ − 1) ·X

=⇒ E
[
eθX

]
≤ 1 + (eθ − 1) · E [X ] ,

since inequalities are preserved under taking expectation. 2

Proof (of Chernoff Upper Bound). Without loss of generality R = 1.∏k
i=1 E

[
eθXi

]
≤
∏k
i=1

(
1 + (eθ−1) · E [Xi ]

)
(by Claim 16)

= exp
(∑k

i=1 log
(
1 + (eθ−1) · E [Xi ]

))
≤ exp

(∑k
i=1(e

θ−1) · E [Xi ]
)

(using log(1 + x) ≤ x)

≤ exp
(
(eθ − 1)µmax

)
Applying Claim 15 with t = (1 + δ)µmax and θ = ln(1 + δ)

Pr

[∑
i

Xi ≥ (1 + δ)µmax

]
≤ exp

(
− ln(1 + δ) · (1 + δ)µmax

)
· exp(δ · µmax)

=
( eδ

(1 + δ)1+δ

)µmax

�
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4 Tropp’s Matrix Chernoff Bound

We now prove only the first inequality of Theorem 2.

Claim 17.

Pr

[
λmax

( k∑
i=1

Xi

)
≥ t

]
≤ inf

θ>0
e−θt · tr

(
k⊙
i=1

E
[
eθXi

])
.

Proof: Fix θ > 0.

Pr [λmax(
∑

iXi) ≥ t ] = Pr [λmax(
∑

iθXi) ≥ θt ] (homogeneity of max eigenvalue)
= Pr

[
exp

(
λmax(

∑
iθXi)

)
≥ exp(θt)

]
(monotonocity of ex)

≤ e−θt · E
[

exp
(
λmax(

∑
iθXi)

) ]
(Markov’s inequality)

We can bound the maximum eigenvalue by a trace:

exp
(
λmax(

∑
iθXi)

)
= λmax

(
exp(

∑
iθXi)

)
(definition of matrix exponentiation)

≤ tr
(

exp(
∑

iθXi)
)

(max eigenvalue ≤ sum of eigenvalues)

Taking the expectation gives the bound:

Pr [λmax(
∑

iXi) ≥ t ] ≤ e−θt · E
[

tr
(

exp(
∑

iθXi)
) ]
.

This expectation can be bounded:

E
[

tr
(

exp(
∑

iθXi)
) ]

= E
[

tr
(

exp(
∑

i logAi)
) ]

(let Ai = eθXi)
= E [ tr(A1 � · · · �Ak) ] (definition of �)
≤ tr

(
E [A1 ]� · · · � E [Ak ]

)
(by Corollary 14)

Combining these inequalities proves the claim. 2

Claim 18. Let X be a random symmetric d× d matrix with 0 � X � I. Then

E
[
eθX

]
� I + (eθ − 1) · E [X ] .

Proof: For x ∈ [0, 1] we have eθx ≤ 1 + (eθ − 1) · x, by convexity of the left-hand side. Since X has all
eigenvalues in [0, 1], Claim 5 gives

eθX � I + (eθ−1) ·X

=⇒ E
[
eθX

]
� I + (eθ−1) · E [X ] ,

since the Löwner ordering is preserved under taking expectation by Claim 6. 2

Proof (of Matrix Chernoff Upper Bound). Without loss of generality R = 1. Our first observation is
a bound for a sum of logs:∑k

i=1 log E
[
eθXi

]
= k ·

∑k
i=1

1
k log E

[
eθXi

]
� k · log

(∑k
i=1

1
k E
[
eθXi

] )
(by Theorem 9) (1)
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Next:

tr
(

E
[
eθX1

]
� · · · � E

[
eθXk

] )
= tr exp

(∑k
i=1 log E

[
eθXi

] )
(definition of �)

(a)

≤ tr exp
(
k · log

(∑k
i=1

1
k E
[
eθXi

] ))
(by (1) and Corollary 8)

≤ d · λmax

(
exp

(
k · log

(∑k
i=1

1
k E
[
eθXi

] )))
(sum of eigenvalues ≤ d times maximum)

= d · exp
(
k · log λmax

(∑k
i=1

1
k E
[
eθXi

] ))
(definition of spectral mapping)

≤ d · exp
(
k · log λmax

(
I +

∑k
i=1

1
k (eθ−1) E [Xi ]

))
(by Claim 18 and Claim 7)

= d · exp
(
k · log

(
1 + eθ−1

k λmax(
∑k

i=1 E [Xi ])
))

≤ d · exp
(

(eθ−1) · λmax(
∑k

i=1 E [Xi ])
)

(using log(1 + x) ≤ x)

≤ d · exp
(

(eθ−1) · µmax

)
Apply Claim 17 with t = (1 + δ)µmax and θ = ln(1 + δ):

Pr [λmax(
∑

iXi) ≥ (1 + δ)µmax ] ≤ exp
(
− ln(1 + δ) · (1 + δ)µmax

)
·
(
d · exp(δ · µmax)

)
= d ·

( eδ

(1 + δ)1+δ

)µmax

�

Remark. In inequality (a), it is not true that exp is operator monotone, but it is true (by Corollary 8)
that tr exp is monotone.
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