
Sixth Cargese Workshop on Combinatorial Optimization September 14, 2015

Lecture 1: Low-stretch trees

Nick Harvey University of British Columbia

Abstract

The main theme of the workshop is fast algorithms, particularly those that relate to fast solvers
for linear systems involving the Laplacian of a graph. In my lectures, I will discuss three key technical
ingredients that underlie those solvers.

In this first lecture, I will discuss “low-stretch trees”. Given a graph, the goal is to find a spanning
subtree such that, on average, distances in the tree approximate distances in the graph. These trees
have many uses, but we will eventually see that they are particularly useful as preconditioners of
Laplacian matrices.

1 Introduction

Many optimization problems on graphs are easier to solve when the graph is a tree. For example, the
problem might have a unique or obvious solution on a tree, or the tree structure might facilitate a
solution based on dynamic programming. This naturally leads to the idea of trying to approximate an
arbitrary graph by a tree. This idea has proven to be useful in many contexts, including approximation
algorithms, online algorithms, and solving systems of linear equations.

There are several variants of this problem and notions of approximation that are valuable to
consider. The particular form of the problem discussed in this lecture is as follows:

• the input graph is undirected, simple, and unweighted,

• the goal is to minimize the distance in the tree, averaged over all adjacent pairs of vertices in the
graph,

• the tree must be a spanning subtree of the graph (no additional edges or vertices),

• the algorithm must output a single tree, not a distribution.

Trees of this sort are called “low-stretch trees”, and they are very useful as preconditioners for
symmetric diagonally-dominant systems of linear equations, as was pointed out by Boman and Hen-
drickson in 2001. Over the past 15 years there has been tremendous progress on solving such linear
systems, and almost all of those results rely on low-stretch trees.

We will present a classic result of Alon, Karp, Peleg and West that gave the first non-trivial
construction of low-stretch trees. They also present a solution for the scenario in which the input
graph’s edges can have arbitrary lengths, but we will not have time to discuss those additional details.

2 Preliminaries

Let G = (V,E) be an unweighted, undirected graph. Let n = |V | and m = |E|. Let d(u, v) denote the
distance (number of edges on a shortest path) between vertices u and v. Let B(v, i) be the vertices

1

within distance i of v. Let E(v, i) be the edges with both endpoints in B(v, i). Let δ(v, i) be the edges
with exactly one endpoint in B(v, i). The diameter of a graph is maxu,v d(u, v).

It will be useful to also consider unweighted multigraphs. Since parallel edges are indistinguishable,
it will be convenient to simply record the number of parallel edges with the same endpoints. For that
purpose, let ce be a positive integer denoting the number of parallel copies of e. This will be called the
“capacity” or “multiplicity” of e. For a subset F ⊆ E, let c(F) =

∑
e∈F ce.

2.1 Low-diameter decompositions

One of the main techniques we will use is a low-diameter decomposition of a graph. This is a
fundamental idea that has played a role in distributed computing, approximation algorithms, metric
embeddings, etc.

A partition of a graph G = (V,E) is a partition of V into parts U1 ∪ U2 ∪ · · · that are pairwise
disjoint. A cluster is the subgraph of G induced by one of the Ui. An edge of G is called an internal
edge if both endpoints belong to the same cluster, otherwise it is called an inter-cluster edge.

Lemma 1. Let G = (V,E) be a graph with positive integer edge multiplicities ce. Let C = c(E) and
let D be an arbitrary parameter. There is a partition of G such that

• every cluster has diameter at most D,

• the fraction of edges that are inter-cluster is α = 4 ln(C)/D, taking multiplicities into account.

References: Awerbuch 1985 Section 4, Leighton-Rao 1999 Section 2.2, Shmoys-Williamson 2010 Lemma 8.7.

3 Low-stretch trees

Let G = (V,E) be an undirected, simple, unweighted graph. Let T be a spanning subtree of G. The
notation dT (u, v) is the number of edges in the unique path between u and v in T . The average stretch
of T is defined to be

1

|E|
∑

(u,v)∈E

dT (u, v)

More generally, if G has edge multiplicities given by c : E → N, then the stretch is defined to be

1

c(E)

∑
(u,v)∈E

ce · dT (u, v).

(The distance dT (u, v) does not depend on c.)

Theorem 2. Let ε > 0 be any fixed constant. Let G be a graph with n vertices and no edge
multiplicities. Then G has a spanning subtree with average stretch nO(ε).

References: Alon-Karp-Peleg-West Section 5.2.

At a high level, their algorithm is a fairly natural recursive use of low-diameter decompositions.
Pseudocode is shown in Algorithm 1. As we will see, one the the key details is to carefully choose the
diameter D to be a function D = D(C) of the total capacity C = c(E).

Let us now analyze the stretch of the resulting tree. Consider any edge {v, w} ∈ E. Let P be the
path between v and w in T . In general P may contain edges from T ′ and edges from several Ti.

2

Algorithm 1: An algorithm for finding a low-stretch spanning subtree of G.

1 Function LowStretchTree(G = (V,E), c):
2 Let C = c(E).
3 Call BuildPartition to find a low-diameter decomposition of G (with multiplicities c) and

diameter D = D(C). The resulting clusters are U1, U2, . . .
4 Compute a shortest-path tree Ti within each cluster Ui, rooted arbitrarily.
5 Construct graph G′ by contracting each cluster Ui into a super-vertex ui. Let the vector c′ record

the multiplicities of any parallel edges that are created.
6 T ′ ← LowStretchTree(G′, c′)
7 Return T ← T ′ ∪

⋃
i Ti. (An edge in T ′ with multiplicity greater than one is mapped to an

arbitrary pre-image in G.)

(a) G (b) Low-diameter decomposition of
G. Green edges are inter-cluster.

(c) Contracted graph G′

(d) Spanning tree T ′ (e) Spanning tree T (f) Path between v and w in T

Figure 1: Example.

3

Case 1: Internal edge. First suppose {v, w} is internal to a cluster Ui. Since the diameter of each cluster
is at most D and Ti is a shortest path tree within that cluster, then P has length at most 2D.

Case 2: Inter-cluster edge. Otherwise {v, w} is an inter-cluster edge, say v ∈ Ua and w ∈ Ub. Then P is
formed from a path P ′ in T ′ between the super-vertices ua and ub, together with paths in Ti for every
super-vertex ui traversed by P ′. As before, the portions within each Ti have length at most 2D. The
main question is the length of P ′.

The distribution on pairs {ua, ub} induced by picking an inter-cluster edge in G proportional to
the multiplicities c is the same as when picking an edge in G′ proportional to the multiplicities c′. Under
the latter distribution, the expected number of edges of the ua-ub path in T ′ equals the average stretch
of T ′. In this case the expected number of edges in P is at most

(expected # edges in P ′) + (expected # super-vertices in P ′) · (max diameter of any tree Ti)

= (avg. stretch of T ′) +
(
(avg. stretch of T ′) + 1

)
· 2D(C)

≤ (avg. stretch of T ′) · 5D(C)

Recurrence Analysis. This leads to a recurrence for the stretch of T . Let s(C) be the maximum,
over all graphs with total capacity C, of the average stretch returned by this algorithm. The properties
of the low-diameter decomposition ensure that the fraction of inter-cluster edges is at most α(C) =
4 ln(C)/D(C). Consequently, the total capacity of G′ is at most α(C) ·C. This leads to the recurrence

s(C) ≤ 2D(C) + α(C) · s(α(C) · C) · 5D(C)

≤ 2D(C) + 20 ln(C) · s(α(C) · C) (1)

Now define D(C) = 4 ln(C)Cε/2 ≤ Cε, so that α(C) = C−ε/2. We prove by induction that s(C) ≤ 3Cε,
for sufficiently large C. We have

s(C) ≤ 2Cε + 20 ln(C) · s(C1−ε/2)

≤ 2Cε + 60 ln(C) · Cε−ε2/2

≤ 3Cε.

As all edges in the original graph G have multiplicity one, we have C ≤ n2. This completes the proof
of Theorem 2.

4

4 Low-diameter decompositions

Let the total capacity be C = c(E) =
∑

e∈E ce. Our goals are to find a partition such that:

• every cluster has diameter at most D

• the total capacity of the inter-cluster edges is at most α = 4C ln(C)/D.

The main idea is to use breadth-first search from a single node to find a maximal cluster whose
diameter is roughly the logarithm of the size of the cluster. Maximality ensures that the number of
edges leaving the cluster is a small fraction of the internal capacity. Choosing parameters carefully
ensures that the diameter is at most D.

We claim that the following algorithm produces the desired cluster.

Algorithm 2: Repeatedly build a cluster of diameter at most D such that at most an α-fraction of the
edges are inter-cluster.

1 Function BuildCluster(G = (V,E), c, α):
2 Let v be an arbitrary node in G.
3 Let i∗ = argmin { i ≥ 1 : c(E(v, i+ 1)) < (1 + α) · c(E(v, i)) }.
4 Return B(v, i∗)

5 Function BuildPartition(G = (V,E), c,D):
6 Let C = c(E) and α = 4 ln(C)/D.
7 if α ≥ 1 then
8 Return the trivial partition (V)

9 repeat
10 Let U ← BuildCluster(G, c, α) be a new cluster.
11 Delete the vertices in U from G. (Don’t update C or α.)

12 until G is empty;

Analysis of inter-cluster edges. Consider a single execution of BuildCluster. The new inter-cluster
edges created in that execution have capacity

c(δ(v, i∗)) ≤ c
(
E(v, i∗ + 1) \ E(v, i∗)

)
= c

(
E(v, i∗ + 1))− c

(
E(v, i∗)

)
≤ α · c(E(v, i∗)),

by choice of i∗. Thus, summing over all clusters, the total capacity of all inter-cluster edges is at most
an α fraction of the total capacity of all edges, since clusters are vertex-disjoint.

Diameter of clusters. We claim that i∗ ≤ D/2. If not, we would have c(E(v, i+1)) ≥ (1+α) ·c(E(v, i))
for i = 1, . . . , D/2. Since capacities are positive integers, c(E(v, 1)) ≥ 1. This implies that

c(E(v, i∗)) ≥ c(E(v, 1)) · (1 + α)D/2 > exp(α/2)2 ln(C)/α = C,

which is a contradiction. Therefore each cluster has radius at most D/2 and diameter at most D.

5 Further discussion

5.1 Running time

As mentioned, low-stretch trees form a key ingredient in fast Laplacian solvers, so we ought to be able to
find these trees quickly. The BuildPartition procedure is essentially performing breadth-first search,

5

so it can be implemented in O(m) time. The work of the LowStretchTree procedure is dominated
by calling BuildPartition then computing the Ti trees (again by breadth-first search), so this can be
implemented in O(m) time. The number of levels of recursion is O(1ε log logC) because logC decreases
by a factor 1− ε/2 in each level. So the overall runtime is O(1εm log logn).

5.2 An improvement: sub-polynomial stretch

The low-stretch tree analysis can be improved to get stretch that is sub-polynomial (but not quite
polylog). Pick D(C) = exp

(
(lnC)0.51

)
. We will prove by induction that s(C) ≤ 3D(C). By (1), it

suffices to show that

20 ln(C) · s
(4C lnC

exp
(
(lnC)0.51

)) ≤ D(C).

By induction, the left-hand side is at most

60 lnC · exp

((
ln

4C lnC

exp
(
(lnC)0.51

))0.51) ≤ 60 lnC · exp

((
lnC − (lnC)0.51/2

)0.51)
(a)

≤ 60 exp(ln lnC) · exp

(
(lnC)0.51 − (lnC)0.02/4

)
≤ D(C),

for sufficiently large C. The definition of D(C) is primarily dictated by step (a), which uses that
(x− xb)b ≈ xb− bx2b−1. We need 2b− 1 > 0 (in order to cancel off the other unwanted factors), leading
to the choice b = 0.51.

5.3 Further improvements

Spanning subtrees with stretch O(log2 n log logn), and later with stretch O(log n log logn), have been
developed1. These results are also based on recursively decomposing the graph, but instead of using low-
diameter decompositions they respectively use the “star decomposition” and the “petal decomposition”.
It is conjectured that spanning subtrees with stretch O(log n) exist. Alon et al. showed that every tree
has stretch Ω(log n) in (a) any graph with O(n) edges and girth Ω(log n), and (b) a square grid.

References: Elkin et al. 2008, Abraham-Bartal-Neiman 2008, Abraham-Neiman 2012, Papp 2014.

References

[1] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees. In FOCS, 2008.

[2] I. Abraham and O. Neiman. Using petal-decompositions to build a low stretch spanning tree. In STOC, 2012.

[3] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application to the k-server
problem. SIAM Journal on Computing, 24(1):78–100, 1995.

[4] B. Awerbuch. Complexity of network synchronization. Journal of the ACM, 32(4):804–823, 1985.

[5] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng. Lower-stretch spanning trees. SIAM Journal on
Computing, 38(2):608–628, 2008.

[6] T. Leighton and S. Rao. Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Approx-
imation Algorithms. Journal of the ACM, 46(6):787–832, Nov. 1999.

[7] P. A. Papp. Low-stretch spanning trees, 2014. BSc thesis, Eötvös Loránd University.

[8] D. B. Shmoys and D. P. Williamson. Design of Approximation Algorithms. Cambridge University Press, 2010.

1 Papp observes some flaws in the claims of Elkin et al.

6

	Introduction
	Preliminaries
	Low-diameter decompositions

	Low-stretch trees
	Low-diameter decompositions
	Further discussion
	Running time
	An improvement: sub-polynomial stretch
	Further improvements

