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Abstract

Bayesian optimization with Gaussian pro-
cesses has become an increasingly popular
tool in the machine learning community. It
is efficient and can be used when very little
is known about the objective function, mak-
ing it popular in expensive black-box opti-
mization scenarios. It uses Bayesian methods
to sample the objective efficiently using an
acquisition function which incorporates the
posterior estimate of the objective. However,
there are several different parameterized ac-
quisition functions in the literature, and it is
often unclear which one to use. Instead of us-
ing a single acquisition function, we adopt a
portfolio of acquisition functions governed by
an online multi-armed bandit strategy. We
propose several portfolio strategies, the best
of which we call GP-Hedge, and show that
this method outperforms the best individ-
ual acquisition function. We also provide a
theoretical bound on the algorithm’s perfor-
mance.

1 INTRODUCTION

Bayesian optimization is a powerful strategy for find-
ing the extrema of objective functions that are expen-
sive to evaluate. It is applicable in situations where
one does not have a closed-form expression for the
objective function, but where one can obtain noisy
evaluations of this function at sampled values. It is
particularly useful when these evaluations are costly,
when one does not have access to derivatives, or when
the problem at hand is non-convex. Bayesian opti-
mization has two key ingredients. First, it uses the
entire sample history to compute a posterior distribu-
tion over the unknown objective function. Second, it
uses an acquisition function to automatically trade off
between exploration and exploitation when selecting

the points at which to sample next. As such, Bayesian
optimization techniques are some of the most efficient
approaches in terms of the number of function evalu-
ations required [30, 23, 25, 3, 5]. The term Bayesian
optimization was coined in the seventies [30], but a
version of the method has been known as Efficient
Global Optimization (EGO) in the experimental de-
sign literature since the nineties [37]. In recent years,
the machine learning community has increasingly used
Bayesian optimization to optimize expensive objective
functions. Examples can be found in robot gait design
[26], online path planning [28, 29], intelligent user in-
terfaces for animation [6, 4], algorithm configuration
[20], efficient MCMC [34], sensor placement [38, 33],
and reinforcement learning [5]. Consistency of the
method was shown in [27] for 1D processes and in
[39] for general Gaussian processes with an acquisition
function known as expected improvement. Rates of
convergence for an acquisition function, known as up-
per confidence bound, were provided last year in [38].
A more recent report [9] discusses more general con-
vergence rates. We refer readers interested in a more
in depth review of Bayesian optimization to [5].

Our main argument is that the choice of acquisition
function is not trivial. Several different acquisition
functions have been proposed in the literature, none of
which work well for all classes of functions. Building
on recent developments in the field of online learning
and multi-armed bandits [10], this paper proposes a
solution to this problem. The solution is based on a
hierarchical hedging approach for managing an adap-
tive portfolio of acquisition functions.

The paper will show that the proposed strategy of
combining acquisition functions results in large im-
provements over the single acquisitions strategies pro-
posed in statistics and optimization (expected im-
provement) and more recently in machine learning (up-
per confidence bounds). This will be shown with syn-
thetic experiments (so that we can assess the effect of
dimensionality), a suite of optimization problems bor-



rowed from the global optimization literature (some of
which are repeatedly cited as being very hard) and a
hard, nonlinear, 9D continuous Markov decision pro-
cess with a reward that has many modes and relatively
large plateaus in between. The nature of the reward
function in the control problem will cause gradient
methods to do much worse than the Bayesian opti-
mization strategies. Finally, the paper will also present
a theoretical analysis of the proposed techniques.

We review Bayesian optimization and popular acqui-
sition functions in Section 2. In Section 3, we propose
the use of various hedging strategies for Bayesian opti-
mization [2, 11]. In Section 4, we present experimental
results using standard test functions from the litera-
ture of global optimization. The experiments show
that the proposed hedging approaches outperform any
of the individual acquisition functions. We also pro-
vide detailed comparisons among the hedging strate-
gies. Finally, in Section 5 we present a bound on the
cumulative regret which helps provide some intuition
as to algorithm’s performance.

2 BAYESIAN OPTIMIZATION

We are concerned with the task of optimization on a
d-dimensional space: maxx∈A⊆Rd f(x).

We define xt as the tth sample and yt = f(xt)+εt, with

εt
iid∼ N (0, σ2), as a noisy observation of the objective

function at xt. Other observation models are possible
[5, 12, 14, 36], but we will focus on real, Gaussian
observations for ease of presentation.

The Bayesian optimization procedure is shown in Al-
gorithm 1. As mentioned earlier, it has two com-
ponents: the posterior distribution over the objec-
tive and the acquisition function. Let us focus on
the posterior distribution first and come back to the
acquisition function in Section 2.2. As we accumu-
late observations1 D1:t = {x1:t, y1:t}, a prior distri-
bution P (f) is combined with the likelihood func-
tion P (D1:t|f) to produce the posterior distribution:
P (f |D1:t) ∝ P (D1:t|f)P (f). The posterior captures
the updated beliefs about the unknown objective func-
tion. One may also interpret this step of Bayesian op-
timization as estimating the objective function with a
surrogate function (also called a response surface). We
will place a Gaussian process (GP) prior on f . Other
nonparametric priors over functions, such as random
forests, have been considered [5], but the GP strategy
is the most popular alternative.

1Here we use subscripts to denote sequences of data, i.e.
y1:t = {y1, . . . , yt}.

Algorithm 1 Bayesian Optimization

1: for t = 1, 2, . . . do
2: Find xt by optimizing the acquisition function over

the GP: xt = argmaxx u(x|D1:t−1).
3: Sample the objective function: yt = f(xt) + εt.
4: Augment the data D1:t = {D1:t−1, (xt, yt)}.

5: end for

2.1 GAUSSIAN PROCESSES

The objective function is distributed according to a GP
prior: f(x) ∼ GP(m(x), k(xi,xj)). For convenience,
and without loss of generality, we assume that the prior
mean is the zero function (but see [29, 35, 4] for ex-
amples of nonzero means). This leaves us the more in-
teresting question of defining the covariance function.
A very popular choice is the squared exponential ker-
nel with a vector of automatic relevance determination
(ARD) hyperparameters θ [35]:

k(xi,xj) = exp
(
− 1

2 (xi − xj)
T diag(θ)−2(xi − xj)

)
,

where diag(θ) is a diagonal matrix with entries θ along
the diagonal and zeros elsewhere. The choice of hy-
perparameters will be discussed in the experimental
section, but we note that it is not trivial in this do-
main because of the paucity of data. For an in depth
analysis of this issue we refer the reader to e.g. [4, 33].

We can sample the GP at t points by choosing the
indices {x1:t} and sampling the values of the function
at these indices to produce the data D1:t. The func-
tion values are distributed according to a multivariate
Gaussian distributionN (0,K), with covariance entries
k(xi,xj). Assume that we already have the observa-
tions, say from previous iterations, and that we want
to use Bayesian optimization to decide what point xt+1

should be considered next. Let us denote the value of
the function at this arbitrary point as ft+1. Then, by
the properties of GPs, f1:t and ft+1 are jointly Gaus-
sian: [

f1:t
ft+1

]
∼ N

(
0,

[
K k
kT k(xt+1,xt+1)

])
,

where k = [k(xt+1,x1), k(xt+1,x2), . . . , k(xt+1,xt)].
Using the Sherman-Morrison-Woodbury formula, see
[35] for a comprehensive treatment, one can easily ar-
rive at an expression for the predictive distribution:

P (yt+1|D1:t,xt+1) = N (µt(xt+1), σ2
t (xt+1) + σ2),

where

µt(xt+1) = kT [K + σ2I]−1y1:t,

σ2
t (xt+1) = k(xt+1,xt+1)− kT [K + σ2I]−1k.

In this sequential decision making setting, the number
of query points is relatively small and, consequently,
the GP predictions are easy to compute.



Figure 1: Acquisition functions with different values of the
exploration parameters ν and ξ. The GP posterior is shown
at the top. The other images show the acquisition functions
for that GP. From the top: Probability of improvement,
expected improvement and upper confidence bound. The
maximum of each acquisition function, where the GP is to
be sampled next, is shown with a triangle marker. Note the
increased preference for exploration exhibited by GP-UCB.

2.2 ACQUISITION FUNCTIONS

The role of the acquisition function is to guide the
search for the optimum. Typically, acquisition func-
tions are defined such that high values correspond
to potentially high values of the objective function,
whether because the prediction is high, the uncer-
tainty is great, or both. The acquisition function is
maximized to select the next point at which to evalu-
ate the objective function. That is, we wish to sam-
ple the objective function at argmaxx u(x|D). This
auxiliary maximization problem, where the objective
is known and easy to evaluate, can be easily carried
out with standard numerical techniques such as multi-
start, sequential quadratic programming or DIRECT
[22, 16, 32]. The acquisition function is sometimes
called the infill or simply the “utility” function. In
the following sections, we will look at the three most
popular choices. Figure 1 shows how these give rise to
distinct sampling behaviour.

Probability of improvement (PI): The early work
of Kushner [24] suggested maximizing the probability
of improvement over the incumbent µ+ = maxt µ(xt).
The drawback, intuitively, is that this formulation is
biased toward exploitation only. To remedy this, prac-
titioners often add a trade-off parameter ξ ≥ 0, so that

PI(x) = P (f(x) ≥ µ+ + ξ) = Φ

(
µ(x)− µ+ − ξ

σ(x)

)
,

where Φ(·) is the standard Normal cumulative distri-
bution function (CDF). The exact choice of ξ is left
to the user. Kushner recommends using a (unspeci-
fied) schedule for ξ, which should start high in order
to drive exploration and decrease towards zero as the
algorithm progresses. Lizotte, however, found that us-
ing such a schedule did not offer improvement over a
constant value of ξ on a suite of test functions [25].

Expected improvement (EI): More recent work
has tended to take into account not only the probabil-
ity of improvement, but the magnitude of the improve-
ment a point can potentially yield. Močkus et al. [30]
proposed maximizing the expected improvement with
respect to the best function value yet seen, given by
the incumbent x+ = argmaxxt

f(xt). For our Gaus-
sian process posterior, one can easily evaluate this ex-
pectation, see [21], yielding:

EI(x) =

{
dΦ(d/σ(x)) + σ(x)φ(d/σ(x)) if σ(x) > 0

0 if σ(x) = 0

where d = µ(x)−µ+−ξ and where φ(·) and Φ(·) denote
the PDF and CDF of the standard Normal distribution
respectively. Here ξ is an optional trade-off parameter
analogous to the one defined above.

Upper confidence bound (UCB & GP-UCB):
Cox and John [13] introduce an algorithm they call
“Sequential Design for Optimization”, or SDO. Given
a random function model, SDO selects points for eval-
uation based on a confidence bound consisting of the
mean and weighted variance: µ(x) + κσ(x). As with
the other acquisition models, however, the parameter
κ is left to the user. A principled approach to selecting
this parameter is proposed by Srinivas et al. [38]. In
this work, the authors define the instantaneous regret
of the selection algorithm as r(x) = f(x?)− f(x) and
attempt to select a sequence of weights κt so as to min-
imize the cumulative regret RT = r(x1) + · · ·+ r(xT ).
Using the upper confidence bound selection criterion
with κt =

√
νβt and the hyperparameter ν > 0 Srini-

vas et al. define

GP-UCB(x) = µ(x) +
√
νβtσ(x).

It can be shown that this method has cumulative re-
gret bounded by O(

√
TβT γT ) with high probability.



Here βT is a carefully selected learning rate and γT is
a bound on the information gained by the algorithm at
selected points after T steps. Both of these terms de-
pend upon the particular form of kernel-function used,
but for most kernels their product can be shown to be
sublinear in T . We refer the interested reader to the
original paper [38] for exact bounds.

The sublinear bound on cumulative regret implies that
the method is no-regret, i.e. that limT→∞RT /T = 0.
This in turn provides a bound on the convergence rate
for the optimization process, since the regret at the
maximum f(x∗)−maxt f(xt) is upper bounded by the

average regret RT /T = f(x∗) − 1
T

∑T
t=1f(xt). As we

will note later, however, this bound can be quite loose
in practice.

Algorithm 2 GP-Hedge

1: Select parameter η ∈ R+.
2: Set gi0 = 0 for i = 1, . . . , N .
3: for t = 1, 2, . . . do
4: Nominate points from each acquisition function:

xi
t = argmaxx ui(x|D1:t−1).

5: Select nominee xt = xj
t with probability pt(j) =

exp(ηgjt−1)/
∑k

`=1 exp(ηg`t−1).
6: Sample the objective function yt = f(xt) + εt.
7: Augment the data D1:t = {D1:t−1, (xt, yt)}.
8: Receive rewards rit = µt(x

i
t) from the updated GP.

9: Update gains git = git−1 + rit.

10: end for

3 PORTFOLIO STRATEGIES

There is no choice of acquisition function that can be
guaranteed to perform best on an arbitrary, unknown
objective. In fact, it may be the case that no sin-
gle acquisition function will perform the best over an
entire optimization — a mixed strategy in which the
acquisition function samples from a pool (or portfo-
lio) at each iteration might work better than any sin-
gle acquisition. This can be treated as a hierarchical
multi-armed bandit problem, in which each of the N
arms is an acquisition function, each of which is it-
self an infinite-armed bandit problem. In this section
we propose solving the selection problem using three
strategies from the literature, the application of which
we believe to be novel.

Hedge is an algorithm which at each time step t se-
lects an action i with probability pt(i) based on the
cumulative rewards (gain) for that action (see Auer
et al. [2]). After selecting an action the algorithm re-
ceives reward rit for each action and updates the gain
vector. In the Bayesian optimization setting, we can
define N bandits each corresponding to a single ac-
quisition function. Choosing action i corresponds to
sampling from the point nominated by function ui,

i.e. xi
t = argmaxx ui(x|D1:t−1) for i = 1, . . . , N . Fi-

nally, while in the conventional Bayesian optimization
setting the objective function is sampled only once per
iteration, Hedge is a full information strategy and re-
quires a reward for every action at every time step.
We can achieve this by defining the reward at xi

t as
the expected value of the GP model at xi

t. That is,
rit = µt(x

i
t). We refer to this method as GP-Hedge.

Provided that the objective function is smooth, this
reward definition is reasonable.

Auer et al. also propose the Exp3 algorithm, a vari-
ant of Hedge that applies to the partial information
setting. In this setting it is no longer assumed that
rewards are observed for all actions. Instead at each
iteration a reward is only associated with the partic-
ular action selected. The algorithm uses Hedge as a
subroutine where rewards observed by Hedge at each
iteration are rit/p̂t(i) for the action selected and zero
for all actions. Here p̂t(i) is the probability that Hedge
would have selected action i. The Exp3 algorithm,
meanwhile, selects actions from a distribution that is
a mixture between p̂t(i) and the uniform distribution.
Intuitively this ensures that the algorithm does not
miss good actions because the initial rewards were low
(i.e. it continues exploring).

Finally, another possible strategy is the NormalHedge
algorithm [11]. This method, however, is built to take
advantage of situations where the number of bandit
arms (acquisition functions) is large, and may not be
a good match to problems where N is relatively small.

The GP-Hedge procedure is shown in Algorithm 2.
In practice any of these hedging strategies could be
used, however in our experiments we find that Hedge
tends to outperform the others. Note that it is neces-
sary to optimize N acquisition functions at each time
step rather than 1. While this might seem expensive,
this is unlikely to be a major problem in practice for
small N , as (i) Bayesian optimization is typically em-
ployed when sampling the objective is so expensive as
to dominate other costs; (ii) it has been shown that
fast approximate optimization of u is usually sufficient
[6, 25, 20]; and (iii) it is straightforward to run the
optimizations in parallel on a modern multicore pro-
cessor.

We will also note that the setting of our problem is
somewhere “in between” the full and partial informa-
tion settings. Consider, for example, the situation that
all points sampled by our algorithm are “too distant”
in the sense that the kernels evaluated at these points
exert negligible influence on each other. In this case,
we can see that only information obtained by the sam-
pled point is available, and as a result GP-Hedge will
be over-confident in its predictions when using the full-



information strategy. However, this behaviour is not
observed in practical situations because of smoothness
properties, as well as our particular selection of acqui-
sition functions. In the case of adversarial acquisition
functions one might instead choose to use the Exp3
variant.

4 EXPERIMENTS

To validate the use of GP-Hedge, we tested the opti-
mization performance on a set of test functions with
known maxima f(x?). To see how effective each
method is at finding the global maximum, we use the
“gap” metric [19], defined as

Gt =
[
f(x+)− f(x1)

]/[
f(x?)− f(x1)

]
,

where again x+ is the incumbent or best function sam-
ple found up to time t. The gap Gt will therefore be
a number between 0 (indicating no improvement over
the initial sample) and 1 (if the incumbent is the max-
imum). Note, while this performance metric is eval-
uated on the true function values, this information is
not available to the optimization methods.

4.1 STANDARD TEST FUNCTIONS

We first tested performance using functions common
to the literature on Bayesian optimization: the Branin,
Hartman 3, and Hartman 6 functions. All of these are
continuous, bounded, and multimodal, with 2, 3, and
6 dimensions respectively. We omit the formulae of
the functions for space reasons, but they can be found
in [25]. These functions have been proposed by [15] as
benchmarks for comparing global search methods and
are widely used for this purpose, see e.g. [22].

For each experiment, we optimized 25 times and com-
puted the mean and variance of the gap metric over
time. In these experiments we used hyperparameters
θ chosen offline so as to maximize the log marginal
likelihood of a (sufficiently large) set of sample points;
see [35]. We compared the standard acquisition func-
tions using parameters suggested by previous authors,
i.e. ξ = 0.01 for EI and PI, δ = 0.1 and ν = 0.2 for
GP-UCB [25, 38]. For the GP-Hedge trials, we tested
performance under using both 3 acquisition functions
and 9 acquisition functions. For the 3-function variant
we use the standard acquisition functions with default
hyperparameters. The 9-function variant uses these
same three as well as 6 additional acquisition func-
tions consisting of: both PI and EI with ξ = 0.1 and
ξ = 1.0, GP-UCB with ν = 0.1 and ν = 1.0. While
we omit trials of these additional acquisition functions
for space reasons, these values are not expected to per-
form as well as the defaults and our experiments con-
firmed this hypothesis. However, we are curious to see

if adding known suboptimal acquisition functions will
help or hinder GP-Hedge in practice.

Results for the gap measure Gt are shown in Figure 2.
While the improvement GP-Hedge offers over the best
single acquisition function varies, there is almost no
combination of function and time step in which the 9-
function GP-Hedge variant is not the best-performing
method. The results suggest that the extra acquisi-
tion functions assist GP-Hedge in exploring the space
in the early stages of the optimization process. Fig-
ure 2 also displays, for a single example run, how the
the arm probabilities pt(i) used by GP-Hedge evolve
over time. We have observed that the distribution
becomes more stable when the acquisition functions
come to a general consensus about the best region to
sample. As the optimization progresses, exploitation
becomes more rewarding than exploration, resulting in
more probability being assigned to methods that tend
to exploit. However, note that if the initial portfolio
had consisted only of these more exploitative acquisi-
tion functions, the likelihood of becoming trapped at
suboptimal points would have been higher.

In Figure 3 we compare against the other Hedging
strategies introduced in Section 3 under both the gap
measure and mean average regret. We also intro-
duce a baseline strategy which utilizes a portfolio uni-
formly distributed over the same acquisition functions.
The results show that mixing across multiple acquisi-
tion functions provides significant performance ben-
efits under the gap measure, and as the problems’
difficulty/dimensionality increases we see that GP-
Hedge outperforms other mixed strategies. The uni-
form strategy performs well on the easier test func-
tions, as the individual acquisition functions are rea-
sonable. However, for the hardest problem (Hartman
6) we see that the performance of the naive uniform
strategy degrades. NormalHedge performs particu-
larly poorly on this problem. We observed that this
algorithm very quickly collapses to an exclusively ex-
ploitative portfolio which becomes very conservative
in its departures from the incumbent. We again note
that this strategy is intended for large values of N ,
which may explain this behaviour.

In the case of the regret measure we see that the
hedging strategies perform comparable to GP-UCB,
a method designed to optimize this measure. We fur-
ther note that although the average regret can prove
quite useful in assessing the convergence behavior of
Bayesian optimization methods, the bounds provided
by this regret can be loose in practice. Further, in
the setting of Bayesian optimization we are typically
concerned not with the cumulative regret during opti-
mization, but instead with the regret incurred by the
incumbent after optimization is complete. Similar no-
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Figure 2: (Best viewed in colour.) Comparison of different acquisition approaches on three commonly used literature
functions. The top plots show the mean and variance of the gap metric averaged over 25 trials. We note that the top two
performing algorithms use a portfolio strategy. With N = 3 acquisition functions, GP-Hedge beats the best-performing
acquisition function in almost all cases. With N = 9, we add additional instances of the three acquisition functions, but
with different parameters. Despite the fact that these additional functions individually perform worse than the ones with
default parameters, adding them to GP-Hedge improves performance in the long run. The bottom plots show an example
evolution of GP-Hedge’s portfolio with N = 9 for each objective function. The height of each band corresponds to the
probability pt(i) at each iteration.

tions of “simple regret” have been studied in [1, 8].

Based on the performance in these experiments, we
use Hedge as the underlying algorithm for GP-Hedge
in the remainder of the experiments.

4.2 SAMPLED TEST FUNCTIONS

As there is no generally-agreed-upon set of test func-
tions for Bayesian optimization in higher dimensions,
we seek to sample synthetic functions from a known
GP prior similar to [25]. For further details on how
these functions are sampled see Appendix A. As can
be seen in Figure 4, GP-Hedge with N = 9 is again the
best-performing method, which becomes even more
clear as the dimensionality increases. Interestingly,
the worst-performing function changes as dimension-
ality increases. In the 40D experiments, GP-UCB,
which generally performed well in other experiments,
does quite poorly. Examining the behaviour, it ap-
pears that by trying to minimize regret instead of
maximizing improvement, GP-UCB favours regions of
high variance. However, since a 40D space remains
extremely sparsely populated even with hundreds of
samples, the vast majority of the space still has high
variance, and thus high acquisition value.

4.3 CONTROL OF A PARTICLE
SIMULATION

We also applied these methods to optimize the behav-
ior of a simulated physical system in which the tra-
jectories of falling particles are controlled via a set of
repelling forces. This is a difficult, nonlinear control
task whose resulting objective function exhibits fairly
isolated regions of high value surrounded by severe
plateaus. Briefly, the four-dimensional state-space in
this problem consists of a particle’s 2D position and
velocity (p, ṗ) with two-dimensional actions consist-
ing of forces which act on the particle. Particles are
also affected by gravity and a frictional force resist-
ing movement. The goal is to direct the path of the
particle through regions of the state space with high
reward r(p) so as to maximize the total reward accu-
mulated over many time-steps. In our experiments we
use a finite, but large, time-horizon H. In order to
control this system we employ a set of “repellers” each
of which is located at some position ci = (ai, bi) and
has strength wi (see the top plot of Figure 5). The
force on a particle at position p is a weighted sum of
the individual forces from all repellers, each of which
is inversely proportional to the distance p − ci. For



N

N
N

N

Figure 3: (Best viewed in colour.) Comparison of different hedging strategies on three commonly used literature functions.
The top plots show the mean and variance of the gap metric averaged over 25 trials. Note that both Hedge and Exp3
outperform the best single acquisition function, GP-UCB. The bottom plots show the mean average regret for each method
(lower is better). Average regret is shown in order to compare with previous work [38], however as noted in the text
the gap measure provides a more direct comparison of optimization performance. We see that mixed strategies (i.e. GP-
Hedge) perform comparably to GP-UCB under the regret measure and outperform this individual strategy under the gap
measure. As the problems get harder, and with higher dimensionality, GP-Hedge significantly outperforms other acquisition
strategies.

further details we refer the reader to [18].

This problem can be formulated in the setting of
Bayesian optimization by defining the vector of re-
peller parameters x = (w1, a1, b1, . . . ). In the experi-
ments shown in Figure 5 we will utilize three repellers,
resulting in a 9D optimization task. We can then de-
fine our objective as the total H-step expected reward
f(x) = E

[∑H
n=0 r(pn)|x

]
. Finally, since the model de-

fines a probability distribution Px(p0:H) over particle
trajectories we can obtain a noisy estimate of this ob-
jective function by sampling a single trajectory and
evaluating the sum over its immediate rewards.

Results for this optimization task are shown in Fig-
ure 5. As with the previous synthetic examples GP-
Hedge outperforms each of its constituent methods.
We further note the particularly poor performance of
PI on this example, which in part we hypothesize is
a result of plateaus in the resulting objective func-
tion. In particular PI has trouble exploring after it has
“locked on” to a particular mode, a fact that seems ex-
acerbated when there are large regions with very little
change in objective. The figure also shows that gradi-
ent based methods, even when using smart tricks such
as PEGASUS [31], perform badly in comparison as the

reward is severely multi-modal with large plateaus in
between.

5 CONVERGENCE BEHAVIOR

Properly assessing the convergence behaviour of hedg-
ing algorithms of this type is very problematic. The
main difficulty lies with the fact that decisions made
at iteration t affect the state of the problem and the
resulting rewards at all future iterations. As a result
we cannot relate the regret of our algorithm directly
to the regret of the best underlying acquisition strat-
egy: had we actually used the best underlying strategy
we would have selected completely different points [10,
section 7.11].

Regret bounds for the underlying GP-UCB algorithm
have been shown [38]. Starting with Auer et al. we
also have regret bounds for the hedging strategies used
to select between acquisition functions [2] (improved
bounds can also be found in [10]). However, because
of the points stated in the previous paragraph, and
expounded in more detail in the appendix, we cannot
simply combine both regret bounds.

With these caveats in mind we will consider a slightly
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Figure 4: (Best viewed in colour.) We compare the performance of the acquisition approaches on synthetic functions
sampled from a GP prior with randomly initialized hyperparameters. Shown are the mean and variance of the gap metric
over 25 sampled functions. Here, the variance is a relative measure of how well the various algorithms perform while the
functions themselves are varied. While the variance is high (which is to be expected over diverse functions), we can see
that GP-Hedge is at least comparable to the best acquisition functions and ultimately superior for both N = 3 and N = 9.
We also note that for the 10D and 20D experiments GP-UCB performs quite well but suffers in the 40D experiment. This
helps to confirm our hypothesis that a mixed strategy is particularly useful in situations where we do not possess strong
prior information with regards to the choice of acquisition function.

different algorithmic framework. In particular we will
consider rewards at iteration t given by the mean
µt−1(xt), where this assumption is made merely to
simplify the following proof. We will also assume that
GP-UCB is included as one of the possible acquisition
functions due to its associated convergence results (see
Section 2.2). In this scenario we can obtain the follow-
ing bound on our cumulative regret.

Theorem 1. Assume GP-Hedge is used with a collec-
tion of acquisition strategies, one of which is GP-UCB
with parameters βt. If we also have a bound γT on the
information gained at points selected by the algorithm
after T iterations, then with probability at least 1 − δ
the cumulative regret is bounded by

RT ≤
√
TC1βT γT +

[ T∑
t=1

βtσt−1(xUCB
t )

]
+O(

√
T ),

where xUCB
t is the tth point proposed by GP-UCB.

We give a full proof of this theorem in the extended
version of this paper [7]. We will note that this the-
orem on its own does not guarantee the convergence
of the algorithm, i.e. that limT→∞RT /T = 0. We can
see, however, that our regret is bounded by two sub-
linear terms and an additional term which depends
on the information gained at points proposed, but not
necessarily selected. In some sense this additional term
depends on the proximity of points proposed by GP-
UCB to points previously selected, the expected dis-
tance of which should decrease as the number of iter-
ations increases.

We should point out, also, that the regret incurred
by the hedging procedure is with respect to the best
underlying strategy, which need not necessarily be GP-

UCB. We then relate this strategy regret to the regret
incurred by GP-UCB on the actual points proposed
due to the known regret bounds for GP-UCB. An in-
teresting extension to these ideas would be to incorpo-
rate bounds on the other underlying strategies, such
as recent bounds for EI [9].

6 CONCLUSIONS

Hedging strategies are a powerful tool in the design
of acquisition functions for Bayesian optimization. In
this paper we have shown that strategies that adap-
tively modify a portfolio of acquisition functions of-
ten perform substantially better — and almost never
worse — than the best-performing individual acqui-
sition function. This behavior was observed consis-
tently across a broad set of experiments including
high-dimensional GPs, standard test problems recom-
mended in the bounded global optimization literature,
and a hard continuous, 9D, nonlinear Markov decision
process. These improvements will allow for advances
in many practical domains of interest where we have
already demonstrated the benefits of simple Bayesian
optimization techniques [29, 6, 5], including robotics,
online planning, hierarchical reinforcement learning,
experimental design and interactive user interfaces.

Our experiments have also shown that full-information
strategies are able to outperform partial-information
strategies in many situations. However, partial-
information strategies can be beneficial in instances
of high N or in situations where the acquisition func-
tions provide very conflicting advice. Evaluating these
tradeoffs is an interesting area of future research.

In this work we give a regret bound for our hedging
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Figure 5: (Best viewed in colour.) Results of experiments
on the repeller control problem. The top plot displays 10
sample trajectories over 100 time-steps for a particular re-
peller configuration (not necessarily optimal). The bottom
plot shows the progress of each of the described Bayesian
optimization methods on a similar model, averaged over 25
runs. For comparison, it also shows the progress of a gra-
dient method with PEGASUS.

strategy by relating its performance to existing bounds
for GP-UCB. Although our bound does not guarantee
convergence it does provide some intuition as to the
success of hedging methods in practice. Another in-
teresting line of future research involves finding similar
bounds for the gap measure.
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A SYNTHETIC TEST FUNCTIONS

As there is no generally-agreed-upon set of test func-
tions for Bayesian optimization in higher dimensions,
we seek to sample synthetic functions from a known
GP prior, similar to the strategy of Lizotte [25]. A GP
prior is infinite-dimensional, so on a practical level for
performing experiments we simulate this by sampling
points and using the posterior mean as the synthetic
objective test function.

For each trial, we use an ARD kernel with θ drawn
uniformly from [0, 2]d. We then sample 100d d-
dimensional points, compute K and then draw y ∼
N (0,K). The posterior mean of the resulting predic-
tive posterior distribution µ(x) (Section 2.1) is used as
the test function. However it is possible that for par-
ticular values of θ and K, large parts of the space will
be so far from the samples that they will form plateaus
along the prior mean. To reduce this, we evaluate the
test function at 500 random locations. If more than
25 of these are 0, we recompute K using 200d points.
This process is repeated, adding 100d points each time
until the test function passes the plateau test (this is
rarely necessary in practice).

Using the response surface µ(x) as the objective func-
tion, we can then approximate the maximum us-
ing conventional global optimization techniques to get
f(x?), which permits us to use the gap metric for per-
formance.

Note that these sample points are only used to con-
struct the objective, and are not known to the opti-
mization methods.



B PROOF OF THEOREM 1

We will consider a portfolio-based strategy using re-
wards rt = µt−1(xt) and selecting between acquisition
functions using the Hedge algorithm. In order to dis-
cuss this we will need to write the gain over T steps,
in hindsight, that would have been obtained had we
used strategy i,

giT =

T∑
t=1

rit =

T∑
t=1

µt−1(xi
t).

We must emphasize however that this gain is condi-
tioned on the actual decisions made by Hedge, namely
that points {x1, . . . ,xt−1} were selected by Hedge. If
we define the maximum strategy gmax

T = maxi g
i
T we

can then bound the regret of Hedge with respect to
this gain.

Lemma 1. With probability at least 1 − δ1 and for a
suitable choice of Hedge parameters, η =

√
8 ln k/T ,

the regret is bounded by

gmax
T − gHedge

T ≤ O(
√
T ).

This result is given without proof as it follows directly
from [10, Section 4.2] for rewards in the range [0, 1].
At the cost of slightly worsening the bound in terms
of its multiplicative/additive constants, the following
generalizations can also be noted:

• For rewards instead in the arbitrary range2 [a, b]
the same bound can be shown by referring to [10,
Section 2.6].

• The choice of η in the above Lemma requires
knowledge of the time horizon T . By referring
to [10, Section 2.3] we can remove this restriction
using a time-varying term ηt =

√
8 ln k/t.

• By referring to [10, Section 6.8] we can also ex-
tend this bound to the partial-information strat-
egy Exp3.

Finally, we should also note that this regret bound
trivially holds for any strategy i, since gmax

T is the max-
imum. It is also important to note that this lemma
holds for any choice of rit, with rewards depending
on the actual actions taken by Hedge. The particu-
lar choice of rewards we use for this proof have been
selected in order to achieve the following derivations.

For the next two lemmas we will refer the reader to [38,
Lemma 5.1 and 5.3] for proof. We point out, however,
that these two lemmas only depend on the underlying

2To obtain rewards bounded within some range [a, b] we
can assume that the additive noise εt is truncated above
some large absolute value, which guarantees bounded
means.

Gaussian process and as a result can be used separately
from the GP-UCB framework.

Lemma 2. Assume δ2 ∈ (0, 1), a finite sample space
|A| < ∞, and βt = 2 log(|A|πt/δ2) where

∑
t π
−1
t = 1

and πt > 0. Then with probability at least 1 − δ2 the
absolute deviation of the mean is bounded by

|f(x)− µt−1(x)| ≤
√
βtσt−1(x) ∀x ∈ A,∀t ≥ 1.

In order to simplify this discussion we have assumed
that the sample space A is finite, however this can also
be extended to compact spaces [38, Lemma 5.7].

Lemma 3. The information gain for points selected
by the algorithm can be written as

I(y1:T ; f1:T ) =
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt)).

The following lemma follows the proof of [38, Lemma
5.4], however it can be applied outside the GP-UCB
framework. Due to the slightly different conditions we
recreate this proof here.

Lemma 4. Given points xt selected by the algorithm
the following bound holds for the sum of variances:

T∑
t=1

βtσ
2
t (xt) ≤ C1βT γT ,

where C1 = 2/ log(1 + σ−2).

Proof. Because βt is nondecreasing we can write the
following inequality

βtσ
2
t−1(xt) ≤ βTσ2(σ−2σ2

t−1(xt))

≤ βTσ2 σ−2

log(1 + σ−2)
log(1 + σ−2σ2

t−1(xt)).

The second inequality holds because the posterior vari-
ance is bounded by the prior variance, σ2

t−1(x) ≤
k(x,x) ≤ 1, which allows us to write

σ−2σ2
t−1(xt) ≤ σ−2

log(1 + σ−2σ2
t−1(xt))

log(1 + σ−2)
.

By summing over both sides of the original bound and
applying the result of Lemma 3 we can see that

T∑
t=1

βtσ
2
t−1(xt) ≤ βT

1

2
C1

T∑
t=1

log(1 + σ−2σ2
t−1(xt))

= βTC1I(y1:T ; f1:T ).

The result follows by bounding the information gain by
I(y1:T ; f1:T ) ≤ γT , which can be done for many com-
mon kernels, including the squared exponential [38,
Theorem 5].



Finally, the next lemma follows directly from [38,
Lemma 5.2]. We will note that this lemma depends
only on the definition of the GP-UCB acquisition func-
tion, and as a result does not require that points at any
previous iteration were actually selected via GP-UCB.

Lemma 5. If the bound from Lemma 2 holds, then for
a point xUCB

t proposed by GP-UCB with parameters βt
the following bound holds:

f(x∗)− µt−1(xUCB
t ) ≤

√
βtσt−1(xUCB

t ).

We can now combine these results to construct the
proof of Theorem 1.

Proof of Theorem 1. With probability at least 1 − δ1
the result of Lemma 1 holds. If we assume that GP-
UCB is included as one of the acquisition functions we
can write

−gHedge
T ≤ O(

√
T )− gUCB

T

and by adding
∑T

t=1 f(x∗) to both sides this inequality
can be rewritten as

T∑
t=1

f(x∗)−µt−1(xt) ≤ O(
√
T )+

T∑
t=1

f(x∗)−µt−1(xUCB
t ).

With probability at least 1 − δ2 the bound from
Lemma 2 can be applied to the left-hand-side and the
result of Lemma 5 can be applied to the right. This
allows us to rewrite this inequality as

T∑
t=1

f(x∗)− f(xt)−
√
βtσt−1(xt)

≤ O(
√
T ) +

T∑
t=1

√
βtσt−1(xUCB

t )

which means that the regret is bounded by

RT =

T∑
t=1

f(x∗)− f(xt)

≤ O(
√
T ) +

T∑
t=1

√
βtσt−1(xUCB

t ) +

T∑
t=1

√
βtσt−1(xt)

≤ O(
√
T ) +

T∑
t=1

√
βtσt−1(xUCB

t ) +
√
C1TβT γT .

This final inequality follows directly from Lemma 4
by application of the Cauchy-Schwarz inequality. We
should note that we cannot use Lemma 4 to further
simplify the terms involving the sum over σt−1(xUCB

t ).
This is because the lemma only holds for points that
are sampled by the algorithm, which may not include
those proposed by GP-UCB.

Finally, this result depends upon Lemmas 1 and 5
holding. By a simple union bound argument we can
see that these both hold with probability at least
1 − δ1 − δ2, and by setting δ1 = δ2 = δ/2 we recover
our result.


