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Summary

The application of the Bayesian learning paradigm to neural networks results in a flexi-

ble and powerful nonlinear modelling framework that can be used for regression, den-

sity estimation, prediction and classification. Within this framework, all sources of

uncertainty are expressed and measured by probabilities. This formulation allows for

a probabilistic treatment of our a priori knowledge, domain specific knowledge, model

selection schemes, parameter estimation methods and noise estimation techniques.

Many researchers have contributed towards the development of the Bayesian learn-

ing approach for neural networks. This thesis advances this research by proposing

several novel extensions in the areas of sequential learning, model selection, optimi-

sation and convergence assessment. The first contribution is a regularisation strategy

for sequential learning based on extended Kalman filtering and noise estimation via

evidence maximisation. Using the expectation maximisation (EM) algorithm, a similar

algorithm is derived for batch learning. Much of the thesis is, however, devoted to

Monte Carlo simulation methods. A robust Bayesian method is proposed to estimate,

jointly, the parameters, number of parameters, noise statistics and signal to noise ratios

of radial basis function (RBF) networks. The necessary computations are performed

using a reversible jump Markov chain Monte Carlo (MCMC) simulation method. The

derivation of an efficient reversible jump MCMC simulated annealing strategy to per-

form global optimisation of neural networks is also included. The convergence of these

algorithms is proved rigorously.

This study also incorporates particle filters and sequential Monte Carlo (SMC) meth-

ods into the analysis of neural networks. In doing so, new SMC algorithms are de-

vised to deal with the high dimensional parameter spaces inherent to neural models.

The SMC algorithms are shown to be suitable for nonlinear, non-Gaussian and non-

stationary parameter estimation. In addition, they are applied to sequential noise esti-

mation and model selection.

Keywords: Bayesian methods, neural networks, Markov chain Monte Carlo, extended

Kalman filtering, EM, sequential Monte Carlo, particle filters, model selection and noise

estimation.
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Notation

Symbols
����� � Stacked vector ����� ���
	������������������������������������������������������ .����� Vector with  -th component missing �!���"�
	��#������������������������������������������$#� � .%'&)( � Entry of the matrix

%
in the * �,+ row and  �,+ column.% ��� - ( ��� . ( ��� / Three-dimensional matrix of size 021435176 .8:9

Identity matrix of dimension ;<14; .= 9
Euclidean ; -dimensional space.>
The set of natural numbers (positive integers).

0 	���� Distribution of � .
0 	��!? @A� Conditional distribution of � given @ .

0 	��B��@A� Joint distribution of � and @ .�DC 0 	���� � is distributed according to 0 	��E� .�!?�@<C 0 	���� The conditional distribution of � given @ is 0 	���� .F 	�G7� Sigma field of subsets of the space G .H 	�I<� The computation complexity is order I operations.

Operators and functions% � Transpose of matrix
%

.% ���
Inverse of matrix

%
.

tr 	 % � Trace of matrix
%

.? % ? Determinant of matrix
%

.J�K 	���� Indicator function of the set L ( M if �'N L , O otherwise).P�QSR 	�T���� Dirac delta function (impulse function).U �V Highest integer strictly less than � .W 	X��� Expectation of the random variable � .Y�Z 6 	���� Variance of the random variable � .[:\�] 	�^_� Exponential function.` 	�^_� Gamma function.a�bc 	�^_� Logarithmic function of base d (
afe

).gih e , gij \ Extrema with respect to an integer value.h eBk , l�m ] Extrema with respect to a real value.jon c gih eQ The argument � that minimises the operand.

jon c gij \Q The argument � that maximises the operand.p�qrp
TV Total variation norm

p�qrp
TV
� l�m ]sutwv!xzyr{ q 	�|}�A~ h eBksutwv!xzyr{ q 	�|}� .
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Standard probability distributions

Bernoulli
F 6 	��A� � Q 	 M ~��A� x ��� Q {

Gamma
� Z 	�� ���A� �	�
 x��#{ � � ��� [:\�] 	�~����� J�� � ( ��� { 	X�E�

Gaussian � 	�� ��� � ? ����� ? ������� [:\E] � ~ �� 	�� ~!� � � � ��� 	�� ~!� ��"
Inverse Gamma # � 	�� ��� � � �
 x��#{ � � � ��� [:\�] 	�~�%$ ��� J&� � ( ��� { 	��E�
Poisson '}; 	)( � *,+-/. [:\E] 	 ~0(!� J21 	����
Student t 354 	76<��( �8� � 
 ��9: x;� ��� { "
 �	9: � " < *��=?> ��@���A MCB � ��� (u	�� ~D62� �FE � x;� ��� { @��
Uniform G s A�H

s T � E ��� J s 	����
Abbreviations

AIC Akaike’s Information Criterion.

a.s. Almost Surely.

BIC Bayesian Information Criterion.

EKF Extended Kalman Filter.

EM Expectation Maximisation.

i.i.d. Independent Identically Distributed.

MAP Maximum A Posteriori.

MDL Minimum Description Length.

MCMC Markov Chain Monte Carlo.

MH Metropolis-Hastings.

MLP Multi-Layer Perceptron.

MS Mean Square.

RBF Radial Basis Function.

RMS Root Mean Square.

SA Simulated Annealing.

SIR Sampling Importance Resampling.

SIS Sequential Importance Sampling.

SMC Sequential Monte Carlo.
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Introduction

1.1 Motivation

Models are abstractions of reality to which experiments can be applied to improve

our understanding of phenomena in the world. They are at the heart of science and

permeate throughout most disciplines of human endeavour, including economics, en-

gineering, medicine, politics, sociology and data management in general. Models can

be used to process data to predict future events or to organise data in ways that allow

information to be extracted from it.

There are two common approaches to constructing models. The first is of a deduc-

tive nature. It relies on subdividing the system being modelled into subsystems that

can be expressed by accepted relationships and physical laws. These subsystems are

typically arranged in the form of simulation blocks and sets of differential equations.

The model is consequently obtained by combining all the sub-models.

The second approach favours the inductive strategy of estimating models from mea-

sured data. This estimation process will be referred to as “learning from data” or sim-

ply “learning” for short. In this context, learning implies finding patterns in the data

or obtaining a parsimonious representation of data that can then be used for several

purposes such as forecasting or classification. Learning is of paramount importance

in nonlinear modelling due to the lack of a coherent and comprehensive theory for

nonlinear systems.

Learning from data is an ill-posed problem. That is, there is a continuum of solu-

tions for any particular data set. Consequently, certain restrictions have to be imposed

on the form of the solution. Often a priori knowledge about the phenomenon being

modelled is available in the form of physical laws, generally accepted heuristics or

mathematical relations. This knowledge should be incorporated into the modelling

process so as to reduce the set of possible solutions to one that provides reasonable re-

sults. The ill-posed nature and other inherent difficulties associated with the problem

12
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of learning can be clearly illustrated by means of a simple noisy interpolation example.

Consider the data plotted in Figure 1.1-A. It has been generated by the following

equation:

������� B��
where � � represents the true function between the input � and the output � and �

denotes zero mean uniformly distributed noise. The learning task is to use the noisy

data points plotted in Figure 1.1-A to estimate the true relation between the input and

the output.

We could attempt to model the data by polynomials of different order fitted to the

data by conventional least squares techniques. Let us assume that we try to fit second

and sixth order polynomials to the data. As shown in Figure 1.1-B, the 6th order

polynomial approximates the data better than the second order polynomial. However,

if we plot the true function and the two estimators as in Figure 1.1-C, we find that the

second order estimator provides a better approximation to the true function. Moreover,

the second order estimator provides a far better approximation to the true function for

novel (extrapolation) data, as depicted in Figure 1.1-D.

In conclusion, very complex estimators will approximate the training data points

better but may be worse estimators of the true function. Consequently, their predictions

for samples not encountered in the training data set may be worse than the predictions

produced by lower complexity estimators. The ability to predict well with samples

not encountered in the training data set is usually referred to as generalisation in the

machine learning literature. Note that if we had known the attributes of the noise

term a priori, we could have inferred that the 6th order polynomial was fitting it.

Alternatively, if we had had any data in the interval 	 M � M �
	#� , we would have noticed

the problems associated with using the 6th order polynomial. The last two remarks

indicate, clearly, that a priori knowledge and the size and scope of the data set play a

significant role in learning.

The previous simple example has unveiled several of the difficulties that arise when

we try to infer models from noisy data, namely:

� The learning problem is ill-posed. It contains infinitely many solutions.

� Noise and limited training data pose limitations on the generalisation perfor-

mance of the estimated models.

� We have to select a set of nonlinear model structures with enough capacity to

approximate the true function.

� We need techniques for fitting the selected models to the data.
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Figure 1.1 Data generated by the system ���������
	 and the true function ������� . (A) shows

the noisy data and the true function [ �� ], (B) shows the noisy data and the approximations to it

by second order [- -] and sixth order [—] polynomials, (C) shows a comparison between the true

function and the estimators, and (D) depicts the performance of the estimators on novel data.

In addition, there are other problems such as:

� The data sequences being approximated might be non-stationary. That is, the

statistics of the data might change with time.

� The right set of inputs has to be selected from several possible alternatives.

Before discussing ways of dealing with these difficulties, a more precise statement of

the learning problem is needed.

1.1.1 The learning problem and neural networks

Many physical processes may be described by the following nonlinear, multivariate

input-output mapping:

@�� ��� ��	������ B�� � (1.1)
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where ��� N = �
corresponds to a group of input variables, @ � N =��

to the output or

target variables, � � N = �
to an unknown noise process and 4 ��� M �8�E��^�^�^�� is an index

variable over the data. Depending on how the data is gathered, we can identify two

types of learning: batch learning and sequential learning. In the context of batch

learning, the learning problem involves computing an approximation to the function
� and estimating the characteristics of the noise process given a set of I input-output

observations:

H ��� �A��� � �o��^�^�^�� �	�}��@A����@ �o��^�^�^u��@	�
�
In contrast, in the sequential learning scenario, the observations arrive one at a time.

Typical instances of the learning problem include regression, where @ ��� � ( ��� � 1 is con-

tinuous; classification, where @ corresponds to a discrete group of classes; and nonlin-

ear dynamical system identification, where the inputs and targets correspond to several

delayed versions of the signals under consideration.

The disturbances � � may represent both measurement noise and unknown inputs.

This study will assume that they can be added directly to the output. The basis for

this assumption is that noise in the input together with other system disturbances will

propagate through the system and therefore can be lumped into one single measure-

ment noise term (Ljung, 1987). When introducing sequential Monte Carlo methods in

Chapter 6, this assumption will be weakened by adopting a more general formulation:@�� � � �S	������ � ��� . In some scenarios, one might, however, be interested in modelling the

distribution of the input data 0 	���� (Cornford et al., 1998; Wright, 1998). This topic,

however, lies beyond the scope of this thesis.

The goal of learning, as posed here, is to obtain a description of the conditional

distribution 0 	)@ ? ��� . As the dimension of this distribution can be very large, it is con-

venient to adopt a variational approach and project it into a lower dimensional space.

This can be accomplished by introducing a set of parameters � N =�
, leading to the

distribution 0 	)@ ? � � ��� . For example, if we believe that the data has been generated by

a Gaussian distribution, we only need two sufficient statistics to describe it, namely its

mean and covariance. These statistics can, in turn, be described by a low-dimensional

set of parameters. These parameters will allow us to infer the outputs @ whenever we

observe new values of the inputs � .

The regression function of @ on � 	 ��� = ���� = � � is a multivariate, nonlinear and

1 � 9�� ��� 9�� � is an � by � matrix, where � is the number of data and � the number of outputs. The notation� 9�� ��� ����� � 9�� �! � : � �" $#$#%#& � ��� �('*) is adopted to denote all the observations corresponding to the + -th output

(+ -th column of � ). To simplify the notation, �-, is equivalent to �-, � 9�� � . That is, if one index does not

appear, it is implied that we are referring to all of its possible values. Similarly, � is equivalent to � 9�� ��� 9�� � .
The shorter notation will be favoured. The longer notation will only be invoked to avoid ambiguities and

emphasise certain dependencies.
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possibly time-varying mapping. When the exact nonlinear structure of this mapping

cannot be established a priori, it may be synthesised as a combination of parametrised

basis functions. That is:�
� ��	������ � ��� � � � ( $�� � � ( $�����^�^�^�� � � � ( �	� � � ( �
��� & � � ( & 	 � � ( & � ������ ^�^�^���� (1.2)

where
� � ( & 	����S� � � ( & � denotes a multivariate basis function. These multivariate basis

functions may be generated from univariate basis functions using radial basis, ten-

sor product or ridge construction methods. This type of modelling is often referred to

as “non-parametric” regression because the number of basis functions is typically very

large. Equation (1.2) encompasses a large number of nonlinear estimation methods

including projection pursuit regression (Friedman and Stuetzle, 1981; Huber, 1985),

Volterra series (Billings, 1980; Mathews, 1991), fuzzy inference systems (Jang and Sun,

1993), generalised linear models (Nelder and Wedderburn, 1972), multivariate adap-

tive regression splines (MARS) (Denison, 1998; Friedman, 1991) and many artificial

neural network paradigms such as functional link networks (Pao, 1989), multi-layer

perceptrons (MLPs) (Rosenblatt, 1959; Rumelhart et al., 1986), radial basis function

networks (RBFs) (Lowe, 1989; Moody and Darken, 1988; Poggio and Girosi, 1990),

wavelet networks (Bakshi and Stephanopoulos, 1993; Juditsky et al., 1995) and hing-

ing hyper-planes (Breiman, 1993). For an introduction to neural networks, the reader

may consult any of the following books (Bishop, 1995b; Haykin, 1994; Hecht-Nielsen,

1990; Ripley, 1996).

Neural networks can approximate any continuous function arbitrarily well as the

number of neurons (basis functions) increases without bound (Cybenko, 1989; Hornik

et al., 1989; Poggio and Girosi, 1990). In addition, they have been successfully applied

to many complex problems, including speech recognition (Robinson, 1994), hand writ-

ten digit recognition (Le Cun et al., 1989), financial modelling (Refenes, 1995) and

medical diagnosis (Baxt, 1990) among others. This thesis will consider two types of

neural network architectures: fixed dimension MLPs and variable dimension RBFs.

MLPs have enjoyed a privileged position in the neural networks community because

of their simplicity, approximating power, relation to biological systems and various his-

torical reasons. Figure 1.2 shows a typical two hidden layer MLP with logistic sigmoid

basis functions in the hidden layers and a single output linear neuron. Networks of this

type can be represented mathematically as follows:�
� � 	�� � � � � � � ��� � � (

� ��� $ � � � � ( $ � ^�^�^ � � � � � � ( ��� & � 	 � � ( & � � B�� � ( & � B�� � ( ��� ^�^�^ � B�� � ( $ ��� B�� � ( �
where � � ( & denotes the bias of the * th neuron in the first layer and � � ( & is a row vector

containing the weights connecting each input with the * th neuron. The logistic sigmoid
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function � is given by:

� 	��� � M
M5B [:\E] 	 ~���

If our goal is to perform classification, then it is convenient to employ a logistic func-
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Figure 1.2 Typical multi-layer perceptron architecture.

tion in the output layer. This allows us to interpret the outputs of the network as

probabilities of class membership. Although the MLPs discussed in this thesis exhibit

a feed-forward architecture, they can be easily extended to recurrent schemes by the

addition of multiple feedback connections or tapped delay lines (de Freitas et al., 1996;

Narendra and Parthasarathy, 1990; Puskorius and Feldkamp, 1994; Qin et al., 1992;

Sjöberg, 1995; Yamada and Yabuta, 1993).

RBF networks tend to be more tractable than MLPs. In these models, the training

of the parameters corresponding to different layers is, to a large extent, decoupled.

Chapters 5 and 7 will discuss an approximation scheme consisting of a mixture of �
RBFs and a linear regression term (Holmes and Mallick, 1998). The number of basis

functions will be estimated from the data. Thus, unless the data is nonlinear, the model

collapses to a standard linear model. More precisely, the linear-RBF model � is given

by:

� � ( � � �
� ��	������ � � � ���� B�� �� ��� � � � O

� � ( $ � �
� �S	������ � ��� ��	 $ ,��
��� � ( ��� �S	 p ��� ~�� � ( � p � B � � B�� �� ��� � ��� M (1.3)
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where, in this case, � ��� � � � � � � q � , p ^ p denotes a distance metric (usually Euclidean or

Mahalanobis), � � N = �
denotes the  -th RBF centre for a model with � RBFs, � �5N = �

denotes the  -th RBF amplitude and � N = �
and � N = � 1 = �

denotes the linear

regression parameters. Figure 1.3 depicts the approximation model for � � �
, � � �

and T � � . Depending on our a priori knowledge about the smoothness of the mapping,
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Figure 1.3 Linear-RBF approximation model with three radial basis functions, two inputs and two

outputs. The solid lines indicate weighted connections.

we can choose different types of basis functions (Girosi et al., 1995). The most common

choices are:

� Linear: ��	��#� � �
� Cubic: � 	��� � � �
� Thin plate spline: � 	��#� � � � a,e 	��#�
� Multi-quadric: � 	��� � � � � B ( � � ��@��
� Gaussian: � 	��� � [:\�] � ~ ( � � �

For the last two choices of basis functions, ( will be treated as a user-set parameter.

Nevertheless, the Monte Carlo estimation strategies described in Chapters 5, 6 and 7

can treat the choice of basis functions as a model selection problem. It is possible to

place a prior distribution on the basis functions and allow the Monte Carlo algorithms

to decide which of them provide a better solution.
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1.2 Scope and Contributions of this Thesis

In the example presented earlier, it was shown that the ability of a model to predict ac-

curately with novel data depends on the amount of data, the complexity of the model

and the noise in the data. It was then argued that artificial neural networks provide a

general and flexible nonlinear modelling strategy. From this standpoint, the learning

problem involves estimating the neural network’s parameters, the number of parame-

ters, the type of basis functions and the statistics of the noise. In addition, we might

have to select the most appropriate set of input signals.

A great deal of effort has been devoted to the solution of the parameter estimation

problem. The other problems have received less attention. In contrast, the issues of

noise estimation and model selection will be central to the scope of this thesis. It will be

possible to manage these more demanding tasks by embracing the Bayesian learning

paradigm. Despite the fact that the problems of input variable selection and basis

function selection are not treated explicitly, the solution to these is a natural extension

of the model selection frameworks presented in Chapters 6 and 7.

Another important theme in this thesis is the issue of sequential learning and infer-

ence. Sequential training methods for neural networks are important in many applica-

tions involving real-time signal processing, where data arrival is inherently sequential.

Furthermore, one might wish to adopt a sequential processing strategy to deal with

non-stationarity in signals, so that information from the recent past is given greater

weight than information from the distant past. Computational simplicity in the form

of not having to store all the data might also constitute an additional motivating factor

for sequential methods.

This thesis proposes the following:

� A novel approach to perform regularisation in sequential learning. This approach

establishes theoretical links between extended Kalman filters with adaptive noise

estimation, gradient descent methods with multiple adaptive learning rates and

training methods with multiple smoothing regularisation coefficients.

� An expectation maximisation (EM) algorithm to estimate the parameters of an

MLP, the noise statistics and the model uncertainty jointly. The method is appli-

cable to non-stationary parameter spaces.

� A robust Bayesian method to estimate, jointly, the parameters, number of param-

eters, noise statistics and signal to noise ratios of an RBF network. The necessary

computations are performed using a reversible jump Markov chain Monte Carlo

(MCMC) simulation method. In addition, it presents an efficient reversible jump

MCMC simulated annealing strategy to perform global optimisation of RBF net-
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works. Furthermore, it proves the convergence of these algorithms rigorously2.

� The use of particle filters and sequential Monte Carlo (SMC) methods to the neu-

ral networks field. In doing so, new SMC algorithms are devised to deal with the

high dimensional parameter spaces inherent to neural network models. These al-

gorithms are suitable for nonlinear, non-Gaussian and non-stationary modelling.

� A new and general sequential Monte Carlo approach to perform sequential noise

estimation and model selection. The method is demonstrated on RBF networks.

1.3 Thesis Organisation

The chapters are, to a large extent, self contained and can be read independently. Chap-

ter 2 is of an introductory nature. At the end of each of the main chapters, Chapters

3 to 7, the proposed methods and algorithms are demonstrated on experiments with

synthetic data. In Chapter 8, further tests on a few real problems are presented. A

summary of the thesis follows:

Chapter 2: Learning and Generalisation

This chapter provides a brief review of learning theory from a neural networks perspec-

tive. It addresses both the classical and Bayesian approaches. In addition, it introduces

the sequential learning problem.

Chapter 3: Sequential Bayesian Learning with Gaussian Approximations

Sequential learning methods, in particular Gaussian approximation schemes, are intro-

duced in this chapter. It is shown that an hierarchical Bayesian modelling approach

enables one to perform regularisation in sequential learning. Three inference levels

are identified within this hierarchy, namely model selection, parameter estimation and

noise estimation. In environments where data arrives sequentially, techniques such

as cross-validation to achieve regularisation or model selection are not possible. The

Bayesian approach, with extended Kalman filtering at the parameter estimation level,

allows for regularisation within a minimum variance framework. A multi-layer percep-

tron is used to generate the extended Kalman filter nonlinear measurements mapping.

Several algorithms are described at the noise estimation level, thus permitting the im-

plementation of on-line regularisation. Another contribution of this chapter is to show

2These contributions were strongly motivated by the work of Christophe Andrieu and Arnaud Doucet

(Andrieu and Doucet, 1998b; Andrieu and Doucet, 1998a; Andrieu and Doucet, 1999).
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the theoretical links between adaptive noise estimation in extended Kalman filtering,

multiple adaptive learning rates and multiple smoothing regularisation coefficients.

Chapter 4: Dynamic Batch Learning with the EM Algorithm

This chapter extends the sequential Gaussian approximation framework discussed in

the previous chapter to the batch learning scenario. In it, an EM algorithm for nonlinear

state space models is derived. It is used to estimate jointly the neural network weights,

the model uncertainty and the noise in the data. In the E-step, a forward-backward

Rauch-Tung-Striebel smoother is adopted to compute the network weights. For the

M-step, analytical expressions are derived to compute the model uncertainty and the

measurement noise. The method is shown to be intrinsically very powerful, simple and

stable.

Chapter 5: Robust Full Bayesian Learning with MCMC

This chapter begins the presentation of Monte Carlo methods, a major theme in this

thesis. The reversible jump MCMC simulation algorithm is applied to RBF networks, so

as to compute the joint posterior distribution of the radial basis centres and the number

of basis functions. This area of research is advanced in three important directions.

First, a robust prior for RBF networks is proposed. That is, the results do not depend

on any heuristics or thresholds. Second, an automated growing and pruning reversible

jump MCMC optimisation algorithm is designed to choose the model order according

to classical AIC, BIC and MDL criteria. This MCMC algorithm estimates the maximum

of the joint likelihood function of the radial basis centres and the number of bases using

simulated annealing. Finally, some geometric convergence theorems for the proposed

algorithms are presented.

Chapter 6: Sequential Monte Carlo Methods

Here, a novel strategy for training neural networks using sequential Monte Carlo (SMC)

algorithms is discussed. Various hybrid gradient descent/sampling importance resam-

pling algorithms are proposed. In terms of both modelling flexibility and accuracy, SMC

algorithms provide a clear improvement over conventional Gaussian schemes. These

algorithms may be viewed as a global learning strategy to learn the probability distribu-

tions of the network weights and outputs in a sequential framework. They are also well

suited to applications involving on-line, nonlinear and non-Gaussian signal processing.
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Chapter 7: Sequential Bayesian Model Selection

This chapter extends the model selection strategy discussed in Chapter 5 to the se-

quential learning case. This problem does not usually admit any type of closed-form

analytical solutions and, as a result, one has to resort to numerical methods. The chap-

ter proposes an original sequential simulation-based strategy to perform the necessary

computations. It combines sequential importance sampling, a selection procedure and

reversible jump MCMC moves. The effectiveness of the method is demonstrated by

applying it to radial basis function networks.

Chapter 8: Applications

This chapter demonstrates the performance of the various methods on some interest-

ing real data sets. It includes comprehensive comparisons between the proposed algo-

rithms.

Chapter 9: Conclusions

This final chapter summarises the theoretical and experimental results. It discusses

their relevance and suggests a few directions for further research.

Appendices

The appendices contain derivations, proofs of convergence and other ancillary informa-

tion. In particular, they include a Bayesian derivation of the Kalman filter, an example

on how to compute the Jacobian matrix for MLPs, the proof of an inequality used in

the derivation of the EM algorithm, an introduction to MCMC simulation and a proof

of convergence for the algorithms presented in Chapter 5.



2

Learning and Generalisation

The previous chapter provided a glimpse at the learning and generalisation problems.

There it was hinted, by means of a simple example, that in order to obtain a good rep-

resentation of the process being modelled, one needs to estimate the model complexity,

parameters and noise characteristics. In addition, it was mentioned that it is beneficial

to incorporate a priori knowledge so as to mitigate the ill-conditioned nature of the

learning problem. If we follow these specifications, we can almost assuredly obtain a

model that generalises well.

This chapter will briefly review the classical approaches to learning and general-

isation in the neural networks field. Aside from regularisation with noise and com-

mittees of estimators, most of the standard methods fall into two broadly overlapping

categories: penalised likelihood and predictive assessment methods. Penalised likeli-

hood methods involve placing a penalty term either on the model dimension or on the

smoothness of the response (Hinton, 1987; Le Cun et al., 1990; Poggio and Girosi,

1990). Predictive assessment strategies, such as the cross-validation, jacknife or boot-

strap methods (Ripley, 1996; Stone, 1974; Stone, 1978; Wahba and Wold, 1969),

typically entail dividing the training data set into
� � distinct subsets. The model is

subsequently trained using
� � ~ M of the subsets and its performance is validated on

the omitted subset. The procedure is repeated for each of the subsets. This predic-

tive assessment is often used to set the penalty parameters in the penalised likelihood

formulations.

These methods tend to lack a general and rigorous framework for incorporating a

priori knowledge into the modelling process. Furthermore, they do not provide suit-

able foundations for the study of generalisation in sequential learning. To surmount

these limitations, the Bayesian learning paradigm will be adopted in this thesis. This

approach will allow us to incorporate a priori knowledge into the modelling process

and to compute, jointly and within a probabilistic framework, the model parameters,

23
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noise characteristics, model structure and regularisation coefficients. It will also allow

us to do this sequentially.

2.1 Traditional Approaches

One of the most popular approaches to train neural networks has been to compute

an estimator
�
�E	�� � � � � of the regression function �E	���� by minimising the following mean

square empirical risk:

����� � ��	�� � � � ��� � MI
�� � 
�� 	)@ � ~ � ��	�� � � � � � ��� �

The minimisation is often performed by unconstrained gradient descent methods, such

as back-propagation or conjugate gradients (Bishop, 1995b). This approach causes two

types of error, namely the approximation and estimation errors.

The approximation error arises because the exact nonlinear behaviour of the re-

gression function is seldom known and, consequently, ��	���� has to be approximated

by a combination of parameterised basis functions
�
��	�� � � � . If the model structure has

enough capacity to approximate the regression function, the approximation error will

tend to zero as the number of parameters increases.

The estimation error is the result of our lack of knowledge about the conditional

distribution 0 	)@r? � � ��� . Likelihood methods do not attempt to estimate this distribution

but instead minimise the empirical risk. One of the heuristic reasons for doing this is

that the regression function minimises the expected risk or � � 	 0 � norm. That is:

�E	�^_� � jon c gih e� x
	 {�t�� ���� 	�^_���
where

� 	�^_� denotes the possible hypothesis and � represents the target space where the

regression function lies. The estimator
�
��	�� � � � � lies on a hypothesis space � as shown in

Figure 2.1.
���� 	�^_��� corresponds to the mean square expected risk, given by:���� 	�^_��� � p @ ~ � 	�� � � � p �� : x - { � W�� 	)@ ~ � 	�� � � ��� � �

� ���
����� 	)@ ~ � 	�� � � ��� � 0 	)@ � � ? ��� d @ d � (2.1)

From a statistical point of view, the predictor
�
��	�� � � � � obtained by empirical error min-

imisation will approximate
�
�E	�� � � � as the number of data increases without bound. It

can also be expected that as the number of parameters increases, the expression for the

empirical risk becomes more complex and, therefore, the estimation error can increase

(Niyogi and Girosi, 1994).
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Figure 2.1 Graphical representation of the approximation and estimation errors.

To summarise, the approximation error is inversely related to the number of model

parameters, while the estimation error is directly related to the number of parameters.

This tradeoff is well known as the bias/variance tradeoff (Bishop, 1995b; de Freitas,

1997; Geman et al., 1992; Haykin, 1994; Sjöberg et al., 1995; White, 1989). The mean

square error of the function
�
�E	�� � � � � as an estimator of the regression function may be

decomposed into the following two terms:

W � � � ��	�� � � � � ~ ��	���� " � " � W � � � � 	�� � � � �A~ W � � ��	�� � � � � "2" � "
� ��� �

��� / & � 9 � � B � W � � �E	�� � � � � " ~
�E	���� " �
� ��� �

� & �
	
The bias term measures the distance between the average estimator and the regression

function, while the variance term quantifies the spread of the estimator with respect

to the data distribution. To achieve good modelling performance, both the bias and

the variance would have to be small. Unfortunately, with increasing model complexity,

the variance term increases while the bias term decreases. This tradeoff was clearly

observed in the example of Chapter 1. The second order polynomial was biased with

insignificant variance error. On the other hand the sixth order polynomial was unbiased

but exhibited a large variance error.

Two interesting bounds on the generalisation error for logistic MLPs and radial basis

function networks have been derived by Barron and Niyogi and Girosi respectively

(Barron, 1993; Niyogi and Girosi, 1994). These bounds are based on a lemma by

Jones on the convergence rate of particular iterative approximation schemes (Barron,
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1993; Breiman, 1993; Girosi and Anzellotti, 1995; Jones, 1992) and on the Vapnik-

Chervonenkis dimension (Vapnik, 1982). The bound for MLP’s is given by:

W�� 	 ��	���� ~ � ��	�� � � � ��� � � MLP

� H � M6 � B H � 6 T a,e 	�I<�
I �

where
H

denotes the order of convergence, T is the dimension of the input, 6 is the

number of model parameters and I is the number of data. The bound for radial basis

functions is similar to the one for MLPs:

W � 	 ��	���� ~ � ��	�� � � � ��� � � RBF

� H � M6 � B H ��� 6 T a,e 	76 I<�A~ a,e 	��A�
I � ��@�� �

where � is a small number. On the basis of these bounds, the typical dependence of the

generalisation error on the number of parameters and samples can be plotted as shown

in Figure 2.2.
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Figure 2.2 The generalisation error dependence on the number of parameters ( � ) and data ( � ).

Theoretically, the convergence bounds can be used to determine the optimal choice

of the number of parameters. By taking their derivatives with respect to the number of

parameters and equating them to zero, one can find relations for the optimal number

of parameters as a function of the number of data and the input dimension:6��
MLP � � I

T a,e 	�I<� � ��@�� and 6	�
RBF � � I

T a,e 	�I<� � ��@ �
It should be noted that the equations above are proportionalities and not equalities.

That is, there is no knowledge about the constants of proportionality. Moreover, one



Learning and Generalisation 27

should not be led erroneously to the conclusion that the estimation problem can be

solved by simply using these theoretical relations of proportionality. The optimisa-

tion algorithms often converge to local minima (Saarinen et al., 1993). Typical error

surfaces will, therefore, look more complex than the one depicted in Figure 2.2. A

few examples on how optimisation algorithms affect the dependence of the generali-

sation error on the number of parameters and the size of the data set are presented

in (Lawrence et al., 1996). Chapters 5 and 6 will describe global simulation methods

that can mitigate the problem of local minima, in addition to being able to estimate the

number of model parameters.

Within the learning paradigm discussed so far, the best one can do to obtain an

acceptable generalisation performance is to balance the bias and variance terms. The

only ways to reduce the bias and variance error terms simultaneously are to either in-

crease the number of data or to model the noise characteristics and incorporate a priori

knowledge about the form of the estimator. It will be shown later that the Bayesian

learning paradigm allows us to accomplish this in a probabilistic setting.

One way, perhaps the simplest, of making use of a priori knowledge is to impose

smoothness constraints on the model. That is, small changes in the input should lead

to small changes in the output. This scheme is known as regularisation. It reduces the

infinite number of possible solutions to the learning problem to one that balances the

bias and variance error terms.

To obtain a function that is simultaneously close to the data and smooth, the em-

pirical modelling error criterion may be extended as follows:

� / � � �E	�� � � � ��� � MI
�� � 
�� 	)@��u~ � �E	������ � � ����� � B ���

where � is a positive parameter that serves to balance the tradeoff between smoothness

and data approximation. A large value of � places more importance on the smoothness

of the model, while a small value of � places more emphasis on fitting the data. The

functional � penalises excessive model complexity. The regularisation parameter is

often obtained by cross-validation.

Several methods have been proposed for the design of the regularisation functional.

Girosi, Jones and Poggio (Girosi et al., 1995) have proposed the following functional:

� � � ��� ?����	�� ��? �
	
 	��w� d �

where the tildes indicate Fourier transforms and M $ 	
 	��w� is chosen to be a high-pass

filter. In other words, the functional returns the high frequency components (oscilla-

tions) of the mapping. Therefore, a large value of � simply indicates that any excessive

oscillation will constitute a major contribution to the modelling error. This approach,
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in connection with one hidden layer neural networks, has led Girosi, Jones and Poggio

to the formulation of generalised regularisation networks. From a unifying theoreti-

cal point of view, their work is particularly interesting since they show how different

choices of
	
 	��w� may lead to various approximation schemes including radial basis, ten-

sor splines and additive models.

Weight decay (Hinton, 1987) is another very popular choice of regularisation func-

tional. It is given by:

� �
�� & 
�� � �&

One of the reasons for using weight decay is that superfluous parameters are forced

to decay to zero. Previously, it was discussed that the generalisation performance de-

teriorates if the number of parameters increases excessively. Using weight decay, only

a few of the parameters contribute to the mapping and hence the generalisation error

decreases. From an intuitive point of view, we should notice that for MLPs with very

small weights, the network outputs become approximately linear functions of the in-

puts. This is a consequence of the fact that logistic sigmoid functions are approximately

linear for small values of their arguments.

Other common approaches to controlling the complexity of the estimates include

early stopping, training with noise, committees (mixtures) of networks and growing

and pruning techniques. Early stopping is a predictive assessment method that involves

partitioning the data into two sets, a validation set and a training set. During training,

the performance of the estimator is periodically tested on the validation set. As soon

as the validation error starts increasing, training stops. Early stopping has several

shortcomings. Firstly, the amount of training data is usually halved. Secondly, the

estimator will be biased towards the validation set, thus requiring an extra test set.

Finally, early stopping relies on the assumption that the path taken through parameter

space by the optimisation algorithm passes through an acceptable solution. This is not

always the case with multi-modal error surfaces.

It has been shown that training with noise added to the inputs is equivalent to

regularisation (Bishop, 1995a; Leen, 1995; Wu and Moody, 1996). The minimisation

of the empirical risk (
� �

) with noise, of “small” amplitude, added to the input data is

equivalent to minimisation of the regularised risk (
� / ). Bishop (Bishop, 1995b) sheds

some light on this topic by stating that the heuristic basis for training with noise is

that the noise will “smear out” each data point and preclude the network from fitting

individual data points precisely, and hence will reduce over-fitting.

Several researchers have argued that the performance of estimators may be con-

siderably improved by combining several estimators of different complexity and model

structure (Jacobs, 1995; Perrone, 1995; Perrone and Cooper, 1993): see (Genest and



Learning and Generalisation 29

Zidek, 1986) for a comprehensive review. If the individual models are trained so that

their variance error terms are bigger than their bias error terms, then model combi-

nation may reduce the variance error component, as it involves averaging over all the

estimates. It can be argued that combining models, in this way, is a brittle strategy.

The resulting model still needs to be subject to the same model choice criteria as the

individual models.

Finally, some effort has also been devoted to the study of growing and pruning tech-

niques. The idea behind growing and pruning algorithms is to control the complexity

of the estimator by eliminating and adding parameters to the estimator as the data is

processed. Examples of this type of algorithm include the upstart algorithm (Frean,

1990), cascade correlation (Fahlman and Lebiere, 1988), optimal brain damage (Le

Cun et al., 1990) and the resource allocating network (Platt, 1991). Chapter 5 will

present a deeper discussion of these techniques and mention some of their shortcom-

ings.

2.2 The Bayesian Learning Paradigm

The Bayesian learning paradigm is founded upon the premise that all forms of uncer-

tainty should be expressed and measured by probabilities (Bernardo and Smith, 1994).

Although the paradigm can be expressed in formal terms, based on mathematical ab-

straction and rigorous analysis, it relies upon subjective experience. That is, it offers a

rationalist and coherent theory where individuals’ uncertainties are described in terms

of subjective probabilities. However, once the individuals’ views of uncertainty are spec-

ified, and assuming they have access to the same data, the results should be unique and

reproduceable.

At the centre of the Bayesian paradigm is a simple and extremely important expres-

sion known as Bayes’ rule. Given some data
� ��� � ��� �A��� �}��@A��� �
� and a set of models to

describe it � $ , � � O � M �8�E������� , the expression for Bayes’ rule is:

0 	 � & ? � ��� �"� � 0 	 � ��� �D? � & �
0 	 � ��� � � 0 	 � & �

� 0 	 � ��� � ? � & �
	 $ 0 	 � ��� � ? � $� 0 	 � $o� 0 	 � & �

The various distributions in the rule are known as the posterior, likelihood, prior and

evidence (also known as the innovation or predictive distribution) in the following

order:

Posterior
� Likelihood

Evidence
Prior

Our subjective beliefs and views of uncertainty are expressed in the prior. Once the

data becomes available, the likelihood allows us to update these beliefs. The resulting
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posterior distribution incorporates both our a priori knowledge and the information

conveyed by the data.

Let us assume that the parameter space for a generic neural network can be written

as a finite union of subspaces G �
<
� $������$ 
 � � � � 1 G $ > , where � denotes the number of

parameters, while G7$ represents the parameter space for model order � . For example,

the parameters � N G $ may include the network weights and the noise statistics. It is

natural to assume that there is an inherent uncertainty about the values of the parame-

ters and their number and that this uncertainty can be modelled by a prior distribution

0 	 � � � � . Once the data is gathered, we can obtain the posterior 0 	 � � � ? @ ��� � � �A��� � � using

Bayes’ rule. The Bayesian paradigm allows us to introduce our beliefs about the noise

characteristics and the complexity of the network into the modelling process via the

prior and likelihood distributions. A result of modelling the uncertainty in the model

complexity and the noise is that, once these quantities are properly estimated, we can

obtain models that generalise well.

Since the posterior embodies all the statistical information about the parameters

and their number given the measurements and the prior, one can “theoretically” ob-

tain all features of interest by standard probability marginalisation and transformation

techniques. For instance, we can estimate the predictive density:

0 	)@ � ��� ? � ��� � ��� ��@ ��� � � � � y 0 	)@ � ��� ? � � � � � � ��� � 0 	 � � � ? � ��� � ��@ ��� � � d � d � (2.2)

and consequently forecast quantities of interest, such as:

W 	)@	� ���B? �A��� � ������@A��� � � � � y � ��	 � � � � �	� ����� 0 	 � � � ? �A��� �}��@A��� � � d � d � (2.3)

Note that the predictions must be based on all possible values of the network parame-

ters weighted by their probability in view of the training data. The posterior distribu-

tion also enables us to evaluate posterior model probabilities 0 	 � ? � ��@ � , which can be

used to perform model selection by selecting the model order as jon c gij \$ t�� � (
	
	
	 ( $�������� 0 	 � ? � ��@A� .
In addition, we can perform parameter estimation by computing, for example, any of

the following classical estimates:

MAP estimate : Maximise the probability such that the solution is the largest mode

(peak) of 0 	 � ? � � � ��@A� . For uniform fixed priors, the resulting solution is the max-

imum likelihood estimate.

Minimum variance estimate : Minimise the error function

H p � ~ �
� p � 0 	 � ? � � � ��@ � d �

so that the estimate is the expected value or conditional mean
W 	 � ? � � � ��@ � .

These estimates are illustrated in Figure 2.3.



Learning and Generalisation 31

θ

θ

||

p(  |k,x,y)

variance
θ̂

MAP
θ̂minimum

Figure 2.3 Parameter estimation criteria based on the marginal posterior distribution.

Within the Bayesian paradigm, learning is posed as an integration problem. The

integrals appear whenever we attempt to carry out normalisation, marginalisation or

expectations (Bernardo and Smith, 1994; Gelman et al., 1995). To solve these, typi-

cally high-dimensional, integrals, we can either resort to analytical integration, approx-

imation methods, numerical integration or Monte Carlo simulation. Many real-world

signal processing problems involve elements of non-Gaussianity, nonlinearity and non-

stationarity, thus precluding the use of analytical integration. Approximation methods,

such as Gaussian approximation and variational methods, are easy to implement. In

addition, they tend to be very efficient from a computational point of view. Yet, they do

not take into account all the salient statistical features of the processes under consider-

ation, thereby often leading to poor results. Numerical integration in high dimensions

is far too computationally expensive to be of any practical use. Monte Carlo meth-

ods provide the middle ground. They lead to better estimates than the approximate

methods. This occurs at the expense of extra computing requirements, but the advent

of cheap and massive computational power, in conjunction with some recent develop-

ments in applied statistics, means that many of these requirements can now be met.

Monte Carlo methods are very flexible in that they do not require any assumptions

about the probability distributions of the data. From a Bayesian perspective, Monte

Carlo methods allow one to compute the full posterior probability distribution. The

remaining chapters shall treat, in more detail, the problems of Gaussian approximation

and Monte Carlo methods in the neural networks context.

In the past, there have been a number of attempts to apply the Bayesian learn-

ing paradigm to neural networks. In the early nineties, Buntine and Weigend (1991)
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and Mackay (1992) showed that a principled Bayesian learning approach to neural

networks can lead to many improvements. For instance, Mackay showed that by ap-

proximating the distributions of the weights with Gaussians and adopting smoothing

priors, it is possible to obtain estimates of the weights and output variances and to

automatically set the regularisation coefficients.

Neal (1996) cast the net much further by introducing advanced Bayesian simulation

methods, specifically the hybrid Monte Carlo method (Brass et al., 1993; Duane et al.,

1987), into the analysis of neural networks. Theoretically, he also proved that certain

classes of priors for neural networks, whose number or hidden neurons tends to infinity,

converge to Gaussian processes.

More recently, Rios Insua and Müller (1998) , Marrs (1998) and Holmes and Mallick

(1998) have addressed the issue of selecting the number of hidden neurons with grow-

ing and pruning algorithms from a Bayesian perspective. In particular, they apply

the reversible jump Markov chain Monte Carlo (MCMC) algorithm of Green (Green,

1995; Richardson and Green, 1997) to feed-forward sigmoidal networks and radial ba-

sis function networks to obtain joint estimates of the number of neurons and weights.

Once again, their results indicate that it is advantageous to adopt the Bayesian frame-

work and MCMC methods to perform model order selection. There has also been some

recent work on designing uninformative priors for MLPs and performing model selec-

tion with the Bayesian information criterion (Lee, 1999).

The Bayesian learning approach also has the advantage of being well-suited to the

problem of sequential learning, as shown in the next section.

2.3 Sequential Learning

The representation of a dynamical system given by equation (1.1) is adequate from

a functional approximation perspective. In sequential learning, however, the model

parameters vary with time. A representation that reflects this behaviour would be

more useful. The state space representation of a discrete stochastic dynamical system

is a suitable alternative. It is given by the following two relations:

� �f��� � � � B � � (2.4)

@�� � �
� �S	������ � ��� B�� � (2.5)

where it has been assumed that the model parameters constitute the states of the sys-

tem. The noise terms are often called the process noise ( � � ) and the measurement noise

( � � ). Equation (2.4) defines a first order Markov transition prior 0 	 � �f��� ? � ��� , while equa-

tion (2.5) defines the likelihood of the observations 0 	)@A��? � ��� . The problem is completely

defined by specifying the prior distribution 0 	 � � ).
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The posterior distribution 0 	 � � � ��? �A��� ����@A��� ��� , where @A��� � � ��@A���5@ �o� ^�^�^ �i@��%� and

� � � � � � � � � � �o�D^�^�^ � � �$� , constitutes the complete solution to the sequential estima-

tion problem. In many applications, such as tracking, it is of interest to estimate one

of its marginals, namely the filtering density 0 	 � ��? �A��� � ��@A��� ��� . By computing the filter-

ing density recursively, we do not need to keep track of the complete history of the

weights. Thus, from a storage point of view, the filtering density turns out to be more

parsimonious than the full posterior density function. If we know the filtering density

of the network weights, we can easily derive various estimates of the network weights,

including centroids, modes, medians and confidence intervals.
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Figure 2.4 Prediction and update stages in the recursive computation of the filtering density.

The filtering density is estimated recursively in two stages: prediction and update,

as illustrated in Figure 2.4. In the prediction step, the filtering probability density

0 	 � ����� ? �A��� ��������@A��� ������� is propagated into the future via the transition density 0 	 � ��? � �������
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as follows:

0 	 � ��? �A��� ��������@A��� ������� � � 0 	 � ��? � ������� 0 	 � ����� ? �A��� ��������@A��� ������� d � ����� (2.6)

The transition density is defined in terms of the probabilistic model governing the

states’ evolution and the process noise statistics. That is:

0 	 � �S? � ������� � � 0 	 � �S? � ������� � ������� 0 	 � ����� ? � ������� d � �����
� � P 	 � � ~ � ����� ~ � ������� 0 	 � �����:� d � �����

where the Dirac delta function
P 	�^_� indicates that � � can be computed via a purely

deterministic relation when � ����� and �u����� are known. Note that 0 	 ������� ? � ����� � � 0 	 �u����� �
because the process and measurement noise terms are assumed to be independent of

past and present values of the states.

The update stage involves the application of Bayes’ rule when new data is observed:

0 	 � � ? � ��� � ��@ ��� � � � 0 	)@���? � ��� ����� 0 	 � �S? �A��� ��������@A��� �������
0 	)@���? ������@A��� ������� (2.7)

The likelihood density function is defined in terms of the measurements model as fol-

lows:

0 	)@���? � � � ����� � � P 	)@���~ � �E	������ � � � ~ � ��� 0 	 � ��� d � �
The normalising denominator of equation (2.7), that is the evidence density function,

plays a key role in learning schemes that exploit Gaussian approximation (Jazwinski,

1969; Mackay, 1992a; Sibisi, 1989). It is given by:

0 	)@ � ? � � ��@ ��� ����� � � � 0 	)@ � ? � � � � � � 0 	 � � ? � ��� ����� ��@ ��� ����� � d � �

In the sequential learning scenario, the parameter estimation problem may be re-

formulated as having to compute an estimate
�
� � of the states � � using the set of mea-

surements � � ��� ����@A��� �$� . For reasons of optimality, we often want
�
� � to be an unbiased,

minimum variance and consistent estimate (Gelb, 1974), where:

� An unbiased estimate is one whose expected value is equal to the quantity being

estimated.

� A minimum variance (unbiased) estimate is one that has its variance less than or

equal to that of any other unbiased estimator.

� A consistent estimate is one that converges to the true value of the quantity being

estimated as the number of measurements increases.
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The problem of estimating � � given � �A��� � ��@A��� � � is called the smoothing problem if 4 ��� ;
the filtering problem if 4 � � ; or the prediction problem if 4�� � (Gelb, 1974; Jazwinski,

1970). In the filtering problem, the estimate
�
� � can be used to predict future values of

the output. Typically, one is concerned with predicting @A�f��� .
Note that the Bayesian sequential learning task is once again an integration prob-

lem. To solve this problem, we will usually have to perform either numerical integra-

tion, Gaussian approximation or Monte Carlo simulation.

The direct numerical integration method relies on approximating the distribution of

interest by a discrete distribution on a finite grid of points. The location of the grid is a

non-trivial design issue. Once the distribution is computed at the grid points, an inter-

polation procedure is used to approximate it in the remainder of the space. Kitagawa

(Kitagawa, 1987) used this method to replace the filtering integrals by finite sums over

a large set of equally spaced grid points. He chose a piece-wise linear interpolation

strategy. Kramer and Sorenson (Kramer and Sorenson, 1988) adhered to the same

methodology, but opted for a constant interpolating function. Pole and West (Pole and

West, 1990) have attempted to mitigate the problem of choosing the grid’s location by

implementing a dynamic grid allocation method.

When the grid points are spaced “closely enough” and encompass the region of high

probability, the method works well. However, the method is very difficult to implement

in high-dimensional, multivariate problems such as neural network modelling. Here,

computing at every point in a dense multi-dimensional grid becomes prohibitively ex-

pensive (Gelman et al., 1995; Gilks et al., 1996).

Until recently, the most popular approach to sequential estimation has been Gaus-

sian approximation (Bar-Shalom and Li, 1993). In the linear Gaussian scenario, the

Kalman filter provides an optimal recursive algorithm for propagating and updating

the mean and covariance of the hidden states (Gelb, 1974; Jazwinski, 1970). In non-

linear scenarios, the extended Kalman filter (EKF) is a computationally efficient natural

extension of the Kalman filter. It is based on a Taylor expansion of the dynamics and

measurements nonlinear equations about the last predicted state. Typically, first order

expansions are employed. The mean and covariance are propagated and updated by

a simple set of equations, similar to the Kalman filter equations. As the number of

terms in the Taylor expansion increases, the complexity of the algorithm also increases

due to the computation of derivatives of increasing order. For example, a linear expan-

sion requires the computation of the Jacobian, while a quadratic expansion involves

computing the Hessian matrix.

A natural progression on sequential Gaussian approximation is to employ a mix-

ture of Gaussian densities (Kadirkamanathan and Kadirkamanathan, 1995; Li and Bar-

Shalom, 1994; Sorenson and Alspach, 1971). These mixtures can either be static or
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dynamic. In static mixtures, the Gaussian models assumed to be valid throughout the

entire process are a subset of several hypothesised models. That is, we start with a few

models and compute which of them describe the sequential process most accurately.

The remaining models are then discarded. In dynamic model selection, one particular

model out of a set of 6 operating models is selected during each estimation step. Dy-

namic mixtures of Gaussian models are far more general than static mixtures of models.

However, in stationary environments, static mixtures are obviously more suitable. Dy-

namic mixtures are particularly suited to the problem of noise estimation in rapidly

changing environments, such as tracking manoeuvring targets. There each model cor-

responds to a different hypothesis of the value of the noise covariances (Bar-Shalom

and Li, 1993).

Gaussian approximation, because of its simplicity and computational efficiency, con-

stitutes a good way of handling many problems where the density of interest has a

significant and predominant mode. Many problems, however, do not fall into this cat-

egory. Mixtures of Gaussians provide a better solution when there are a few dominant

modes. However, they introduce extra computational requirements and complications,

such as estimating the number of mixture components.

The basic idea in Monte Carlo simulation is that a set of weighted particles (sam-

ples), drawn from the posterior distribution of the model parameters, is used to map

the integrations, involved in the inference process, to discrete sums. When, for simplic-

ity, the model dimension is known and fixed, we may make use of the following Monte

Carlo approximation:

�0 	 � � � ��? �A��� ����@A��� ��� � M
�

�� & 
�� P���� R��� � , 	 d � � � � �
where �

x & {� � � represents the particles used to describe the posterior distribution and
P 	 d ^_�

denotes the Dirac delta function. Consequently, any expectations of the form:

W��	� � 	 � � � � ��� � � � � 	 � � � � � 0 	 � � � � ? � ��� � ��@ ��� � � d � � � �
may be approximated by the following estimate:

W �
� ��	 � � � ������� M
�

�� & 
�� � ��	 � x
& {� � � �

where the particles �
x & {� � � , * � M �������u� �

, are drawn from the posterior density function

and assumed to be “sufficiently” independent for the approximation to hold. Monte

Carlo sampling techniques are an improvement over direct numerical approximation

in that they automatically select particles in regions of high probability. An extensive
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comparison between numerical integration methods (point mass filters) and sequential

Monte Carlo methods is presented in (Bergman, 1999).

The next chapter will show how Gaussian approximations can be used to design effi-

cient sequential training algorithms within a regularisation framework. Later, Chapters

6 and 7 will present more advanced sequential Monte Carlo simulation methods.



3

Sequential Bayesian Learning with Gaussian

Approximations

As mentioned earlier, sequential training of neural networks is important in applica-

tions where data sequences either exhibit non-stationary behaviour or are difficult and

expensive to obtain before the training process. Scenarios where this type of sequence

arise include tracking and surveillance, control systems, fault detection, signal process-

ing, communications, econometric systems, demographic systems, geophysical prob-

lems, operations research and automatic navigation.

This chapter uses Gaussian approximation to solve the sequential Bayesian learning

problem. This choice has proved to be very popular. It has been motivated, primar-

ily, by the optimal linear-Gaussian state space filter developed by Kalman and Bucy

in 1961 (Kalman and Bucy, 1961). This filter has become an essential component of

any modern tracking and time series analysis tool-box or text. Some extensions to the

original work on Kalman filtering include coloured noise filters and nonlinear estima-

tors linearised about the current estimates (Anderson and Moore, 1979). The latter

are known as extended Kalman filters (EKFs). A well known limitation of Kalman esti-

mators is the assumption of known a priori statistics to describe the measurement and

process noise. In many applications, it is not straightforward to choose the right noise

covariance matrices (Jazwinski, 1970). Unfortunately, the optimality of the Kalman

filter often hinges on the designer’s ability to formulate these statistics a priori. To cir-

cumvent this limitation and ensure optimality, it is important to design algorithms to

estimate the noise covariances, without leading to a degradation in the performance of

the Kalman estimator. This chapter will present a possible solution to this problem.

The problem can also be approached from a neural networks and regularisation

perspective. Although there has been great interest in the topic of regularisation in

batch learning tasks, this subject has not received much attention in sequential learn-

ing tasks. By adopting an hierarchical Bayesian framework in conjunction with dynam-

ical state space models, it is possible to derive regularisation algorithms for sequen-

38
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tial estimation. These algorithms are based on estimating the noise processes on-line,

while estimating the network weights with the extended Kalman filter. In addition, this

methodology will be shown to provide a unifying theoretical framework for many se-

quential estimation algorithms that attempt to avoid local minima in the error function.

In particular, it is shown that adaptive noise covariances in extended Kalman filtering,

multiple adaptive learning rates in on-line back-propagation and multiple smoothing

regularisation coefficients are mathematically equivalent.

Section 3.1 describes the sequential learning task using state space models and a

three-level hierarchical Bayesian structure. The three levels of inference correspond

to noise estimation, parameter estimation and model selection. Section 3.2 proposes

a solution to the parameter estimation level based on the application of the extended

Kalman filter to neural networks. Section 3.3 is devoted to the noise estimation level

and regularisation. The algorithms are tested with synthetic data in Section 3.4.

3.1 Dynamical Hierarchical Bayesian Models

As proposed in the previous chapter, the following model is adopted:

� �f��� � � � B � �
@�� � �

��	������ � � � B�� �
The measurements nonlinear mapping

�
��	������ � ��� corresponds to a multi-layer perceptron

(MLP) whose weights are the model states � � . The framework may be easily extended

to encompass recurrent networks, radial basis networks and many other approxima-

tion techniques. The measurements are assumed to be corrupted by noise � � , which

is assumed to be zero mean, uncorrelated Gaussian with adaptive covariance
� � . The

model parameters evolve according to a deterministic component � � and a stochastic

component �u� . The process noise ��� may represent our uncertainty on how the pa-

rameters evolve, modelling errors or unknown inputs. It is assumed to be zero mean

Gaussian with adaptive covariance
� � .

To address the problem of estimating the best model � $ ( � N�� O � M �8�E� � ������� � ������� � ),

the parameters and noise covariances jointly, it is convenient to adopt an hierarchical

Bayesian model comprising three different levels of abstraction1:

Level 1: Parameter estimation

0 	 � �f���w? @A��� �f����� � $E� � �f����� � ��� � 0 	)@ �f��� ? � �f��� � � $E� � �f��� � � � �
0 	)@��f��� ? @A��� ��� � $�� � �f����� � ��� 0 	 � �f��� ? @A��� ��� � $ � � �f����� � ���

(3.1)

1To keep the notation simple, the input variables � are suppressed in the arguments of the probability

distributions.
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Level 2: Noise estimation

0 	 � �f����� � ��? @A��� �f����� � 0 	)@��f��� ? @A��� ��� � $�� � �f����� � ���
0 	)@��f��� ? @A��� ��� � $� 0 	 � �f����� � ��? @A��� ��� � $� (3.2)

Level 3: Model selection

0 	 � $�? @A��� �f����� � 0 	)@��f��� ? @A��� ��� � $o�
0 	)@��f��� ? @A��� ��� 0 	 � $E? @A��� ��� (3.3)

The likelihood function at a particular level constitutes the evidence function at the

next higher level. Therefore, by maximising the evidence function in the parameter

estimation level, we are, in fact, maximising the likelihood of the noise covariances� � and
� � as the new data arrives. This result provides the foundation for the noise

estimation methods described later.

At the parameter estimation level, the EKF algorithm will be used to estimate the

weights of the multi-layer perceptron. The EKF, however, requires knowledge of the

noise covariances. To overcome this difficulty, in Section 3.3, several techniques are

presented to estimate these covariances in slowly changing non-stationary environ-

ments. There, it is shown that algorithms for estimating the noise covariances allow for

regularisation in a sequential framework. The treatment of sequential model selection

will be delayed until Chapter 7.

3.2 Parameter Estimation

The EKF may be applied at the parameter estimation level to compute the network

weights. The EKF is a minimum variance estimator based on a Taylor series expansion

of the nonlinear function
�
� 	����S� � ��� around the previous estimate. That is:

�
�E	 � � � � � � � �

��	 � � � � � � � B � � ��	 � ��� ������ � �
��� x � , 
�� � , { 	 � � ~ �

� � � B ^�^�^

Using this expansion and under the assumptions that the state space model noise pro-

cesses are uncorrelated with each other and with the initial estimates of the parame-

ters � � and their covariance matrix � � , we can model the prior, evidence and likelihood

functions as follows2:

Prior = 0 	 � �f��� ? @A��� ��� � $�� � �f���w� � � � � � 	 � � � � � � B � � �
Evidence = 0 	)@��f��� ? @A��� ��� � $�� � �f����� � ��� � � 	 � ��	 � � ��� ���f������� � �f��� 	 � � B � ��� � ��f��� B � �f�����
Likelihood = 0 	)@��f��� ? � �f����� � $E� � �f����� � ��� � � 	 � ��	 � �f����� ���f������� � �f�����

2See Appendix A for a Bayesian derivation of the Kalman filter.
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where
�

denotes the Jacobian:

� �
� � �E	 � � ���� �

��� x � 
 � � { �

������
�

� � � 9 x � ( � {� � 9 � � � : x � ( � {� � 9 ^�^�^ � � � � x � ( � {� � 9� � � 9 x � ( � {� � :
...

...� � � 9 x � ( � {� � � ^�^�^ � � � � x � ( � {� � �

�������
	

�

Since the EKF is a suboptimal estimator based on linearisation of a nonlinear map-

ping,
�
� � is only an approximation to the expected value and, strictly speaking, � � is an

approximation to the covariance matrix:�
� � � W 	 � � ? @ ��� � �
� � � W 	�	 � � ~ �

� ���:	 � � ~ �
� ��� � ? @A��� ���

The EKF may diverge as a result of its approximations. The consistency of the EKF

may be evaluated by means of extensive Monte Carlo simulations (Bar-Shalom and Li,

1993). Substituting the expressions for the prior, likelihood and evidence into equation

(3.1), yields the posterior density function:

Posterior = 0 	 � �f��� ? @A��� �f����� � $ � � �f����� � ��� � � 	 � � �f����� � �f�����
where the updated weights, covariance and Kalman gain ( 
 �f��� ) are given by:


 �f��� � 	 � � B � ��� � ��f��� � � �f��� B � �f���w	 � � B � ��� � ��f��� � ��� (3.4)�
� �f��� � �

� � B�
 �f��� 	)@ �f��� ~ � �E	 � � � � � �f��� ��� (3.5)

� �f��� � � � B � � ~ 
 �f��� � �f���w	 � � B � ��� (3.6)

Figure 3.1 shows a graphical representation of the extended Kalman filter. By grouping

the MLP weights into a single vector � , we can use the EKF equations (equations (3.4)

to (3.6)) to recursively compute new estimates of the weights. The entries of the Jaco-

bian matrix are calculated by back-propagating the � output values ��@ � ( ����@�� ( �#������� ��@�� ( � �
through the network. An example of how to do this for a simple MLP is presented in

Appendix B.

One of the earliest implementations of EKF trained MLPs is due to Singhal and

Wu (Singhal and Wu, 1988). The algorithm’s computational complexity is of the or-

der
H 	 � 6 � � multiplications per time step. Shah, Palmieri and Datum (Shah et al.,

1992) and Puskorius and Feldkamp (Puskorius and Feldkamp, 1991) have proposed

various approximations to the weights covariance so as to simplify this problem. The

EKF is an improvement over conventional MLP estimation techniques, such as on-line

back-propagation, in that it makes use of second order statistics (Ruck et al., 1992;

Schottky and Saad, 1999). These statistics are essential for placing error bars on the
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Figure 3.1 Extended Kalman filter predictor-corrector representation.

predictions and for combining separate networks into committees of networks when

0 	 � ��? @A��� ��� has multiple modes (Bar-Shalom and Li, 1993; Blom and Bar-Shalom, 1988;

Kadirkamanathan and Kadirkamanathan, 1995).

3.3 Noise Estimation and Regularisation

A well known limitation of the EKF is the assumption of known a priori statistics to

describe the measurement and process noise. Setting these noise levels appropriately

often makes the difference between success and failure in the use of the EKF (Candy,

1986). In many applications, it is not straightforward to choose the noise covariances

(Jazwinski, 1970; West and Harrison, 1996). In addition, in environments where the

noise statistics change with time, such an approach can lead to large estimation errors

and even to a divergence of errors. Several researchers in the estimation, filtering and

control fields have attempted to solve this problem (Jazwinski, 1969; Mehra, 1970;

Mehra, 1971; Myers and Tapley, 1976; Tenney et al., 1977). Mehra (Mehra, 1972) and

Li and Bar-Shalom (Li and Bar-Shalom, 1994) give brief surveys of this topic.

It is important to note that algorithms for estimating the noise covariances within

the EKF framework can lead to a degradation of the performance of the EKF. By increas-

ing the process noise covariance
� � , the Kalman gain also increases, thereby producing

bigger changes in the weight updates (refer to equations (3.4) and (3.5)). That is,

more importance is placed on the most recent measurements. Consequently, it may be

asserted that filters with adaptive process noise covariances exhibit adaptive memory.

Additionally, as the Kalman gain increases, the bandwidth of the filter also increases

(Bar-Shalom and Li, 1993). Therefore, the filter becomes less immune to noise and
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outliers.

The amount of oscillation in the model prediction clearly depends on the value of

the process noise covariance. As a result, this covariance can be used as a regularisation

mechanism to control the smoothness of the prediction.

The following subsections derive three algorithms to estimate the noise covariances.

The first two derivations serve to illustrate the fact that algorithms for adapting dis-

tributed learning rates, smoothing regularisers or stochastic noise in gradient descent

methods are equivalent (Figure 3.2). The third algorithm addresses the trade-off be-

tween regularisation and tracking performance in sequential learning.

Smoothing Regularisers

Adaptive Learning Rates

EKF Stochastic Descent

Figure 3.2 One-dimensional example of several adaptive gradient descent methods. To escape from

local minima, we can either increase the momentum of the ball as it approaches a particular local

minimum, allow the ball to bounce randomly within a given vertical interval (stochastic descent)

or stretch the surface with smoothing regularisers.

3.3.1 Algorithm 1: adaptive distributed learning rates

Sutton (Sutton, 1992b) proposed an optimisation approach for linear networks, using

the Kalman filter equations with � � updated by a variation of the least-mean-square

rule (Jacobs, 1988; Sutton, 1992a). The main purpose of the method was to reduce the

computational time at the expense of a small deterioration in the performance of the

estimator. Another important aspect of the algorithm is that it circumvents the problem

of choosing the process noise covariance
�

. The technique involves approximating �
with a diagonal matrix, whose * -th diagonal entry is given by:

0 � � � [:\�] 	7� � �
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where � � is updated by the least-mean-square rule modified such that the learning

rates for each parameter are updated sequentially. The diagonal matrix approximation

to � implies that the model parameters are uncorrelated. This assumption may, of

course, degrade the performance of the EKF estimator.

To circumvent the problem of choosing the process noise covariance
�

when train-

ing nonlinear neural networks, while at the same time increasing computational effi-

ciency, Sutton’s algorithm can be extended to MLPs. The network weights and Kalman

gain are updated using the EKF, while the weights covariance � is updated by back-

propagating the squared output errors (see Appendix B), with � as follows:

� �f��� � � ��� B�� P � ( & �� ( � output layer��� B�� � � ( & ( � P � ( & �� ( � 	 M ~ �� ( ��� � � ( � hidden layer

where the index * corresponds to the * -th neuron in the output layer,  to the  -th
neuron in the hidden layer, T to the T -th input variable and 4 to the estimation step.P � ( & represents the output error for neuron * at time 4 . The symbols ��� ( � and � denote

the output of the  -th neuron in the hidden layer and the learning rate respectively.

This learning rate is a parameter that quantifies a matrix of parameters � � . It will be

referred to as a hyper-parameter.

The EKF equation used to update the weights is similar to the update equations

typically used to compute the weights of neural networks by error back-propagation.

The only difference is that it assumes that there is a different adaptive learning rate

parameter for each weight. By comparing the EKF and gradient descent equations,

we find that the mathematical relation between adaptive learning rates ( � � ) in on-line

back-propagation and Kalman filtering parameters is given by:

� �f��� �
	 � � B � � �:	 � �f��� B � �f���w	 � � B � � � � ��f��� � ���
Thus, adapting the process noise is equivalent to adapting the learning rates.

3.3.2 Algorithm 2: evidence maximisation with weight decay priors

This section derives a sequential method for updating
�

and
�

, based on the evidence

approximation framework with weight decay priors for batch learning (see Chapter 10

of (Bishop, 1995b) and the references therein). In so doing, it is shown that algo-

rithms for adapting the noise covariances are equivalent to algorithms that make use

of smoothing regularisers.

In the evidence approximation framework for batch learning, the prior and likeli-
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hood are expressed as follows:

0 	 � � � M	����u� � @�� � � � @�� [:\E] ��~ � � p � p � � (3.7)

0 	)@A��� �D? � � � M	����u� ��@�� � ����@�� [:\�] ��~ � � �� � 
�� 	)@��u~ � ��	 � � ������� � � (3.8)

where the hyper-parameters � and � control the variance of the prior distribution of

the weights and the variance of the measurement noise. � also plays the role of the reg-

ularisation coefficient. Using Bayes’ rule (equation (3.1)) and taking into account that

the evidence does not depend on the weights, the following posterior density function

may be obtained:

0 	 � ? @A��� �"� � M
� 	 	�� ��� � [:\�] 	 ~ � 	 � ���

where
� 	 	�� ��� � is a normalising factor. For the prior and the likelihood of equations

(3.7) and (3.8),
� 	 � � is given by:

� 	 � � � � � p � p � B � � �� � 
�� 	)@��u~ � ��	 � � ������� � (3.9)

The posterior density may be approximated by applying a Taylor series expansion

of
� 	 � � around a local minimum 	 ����� � and retaining the series terms up to second

order:

� 	 � � � � 	 ����� � B M� 	 � ~ ����� � � | 	 � ~ ����� �
Hence, the Gaussian approximation to the posterior density function becomes:

0 	 � ? @A��� � � � M	����u� � @�� ? |5? ����@�� [:\�] ��~ M� 	 � ~ ����� � � |D	 � ~ ����� �� (3.10)

Maximising the posterior probability density function involves minimising the error

function given by equation (3.9). Equation (3.9) is a particular case of a regularised

error function, as discussed in the first section of Chapter 2.

In the evidence framework, the parameters � are obtained by minimising equation

(3.9), while the hyper-parameters � and � are obtained by maximising the evidence

0 	)@ ��� � ? � ��� � after approximating the posterior density function by a Gaussian function

centred at ����� . In doing so, the following recursive formulae for � and � are obtained:� �f��� � �	 �& 
�� � �& and � �f��� � I ~
�	 �� 
�� 	)@�� ~ � ��	 � ��� ������� � (3.11)

The quantity �
� 	 �& 
�� * R* R � � � represents the effective number of parameters, where

the ( & are the eigenvalues of the Hessian of the un-regularised error function. The



Sequential Bayesian Learning with Gaussian Approximations 46

effective number of parameters, as the name implies, is the number of parameters that

effectively contributes to the neural network mapping. The remaining weights have no

contribution because their magnitudes are forced to zero by the weight decay prior.

It is possible to maximise the posterior density function by performing integrations

over the hyper-parameters analytically (Buntine and Weigend, 1991; Mackay, 1996;

Williams, 1995; Wolpert, 1993). The latter approach is known as the MAP framework

for � and � . The hyper-parameters computed by the MAP framework differ from the

ones computed by the evidence framework in that the former makes use of the total

number of parameters and not only the effective number of parameters. That is, � and� are updated according to:� �f��� � 6
	 �& 
�� � �& and � �f��� � I

	 �� 
�� 	)@�� ~ � ��	 � ��� ������� � (3.12)

By comparing the expressions for the prior, likelihood and evidence in the EKF

framework (Section 3.2) with equations (3.7), (3.8) and (3.10), the following relations

can be established:

� � | ��� � � � � ��� � � ~ | ��� and
� � � ��� � � (3.13)

where
� � and

� � represent identity matrices of sizes 6 and � respectively. Therefore, it

is possible to update
�

and
�

sequentially by expressing them in terms of the sequential

updates of � and � . That is, adapting the noise processes is equivalent to adapting the

regularisation coefficients. A moving window may be implemented to estimate � . The

size of the window is a parameter that requires tuning.

3.3.3 Algorithm 3: evidence maximisation with sequentially updated pri-

ors

In extended Kalman filtering, we have knowledge of the equation describing the evi-

dence function in terms of the noise covariances. Consequently, we can compute
� �

and
� � automatically by maximising the evidence density:

0 	 ��f��� ? @A��� ��� � $�� � �f����� � ��� � � 	 � ��	 � � ��� ���f������� � �f��� 	 � � B � � � � ��f��� B � �f�����
Strictly speaking, this is not a full Bayesian solution. We are computing, solely, the

likelihood of the noise covariances. That is, we are assuming no knowledge of the

prior at the noise estimation level. For simplicity, we have restricted our analysis in this

section to a single output. Let us now define the model residuals:

6 �f��� � ��f��� ~ W � ��f��� ? @A��� ��� � $�� � ��� � �)" ����f��� ~ � �E	 � � ��� ���f�����
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It follows that the probability of the residuals is equivalent to the evidence function at

the parameter estimation level. That is:

0 	 6 �f����� � 0 	 ��f��� ? @A��� ��� � $�� � �f����� � ���
Let us assume, initially, that the process noise covariance may be described by a

single parameter 3 . More specifically:

� � 3 � �

The maxima of the evidence function with respect to 3 may be calculated by differenti-

ating the evidence function as follows:

d

d 3 0 	 6 �f����� � M	����u� ��@�� [:\�] ��~ M� 6 ��f���� �f���w	 � � B � � � � ��f��� B � �f��� �
� ~ M� � �f��� � ��f��� 	 � �f��� 	 � � B � � � � ��f��� B � �f��� � � � @�� B
M� 6 ��f��� � �f��� � ��f��� 	 � �f���w	 � � B � � � � ��f��� B � �f����� � � @�� �

Equating the derivative to zero yields:

6 ��f��� � W � 6 ��f��� " (3.14)

It is straightforward to prove that this singularity corresponds to a global maximum

on
� O ��� � by computing the second derivative. This result reveals that maximising

the evidence function corresponds to equating the covariance over time 6 ��f��� to the

ensemble covariance
W � 6 ��f��� " . That is, maximising the evidence leads to a covariance

matching method.

Jazwinski (Jazwinski, 1969; Jazwinski and Bailie, 1967) devised an algorithm for

updating 3 according to equation (3.14). Since:

6 ��f��� � � �f��� � � � ��f��� B 3 � �f��� � ��f��� B � �f�����
it follows that 3 may be recursively computed according to:

3 �
���� ���
/ :, � 9 ��� � / :, � 9
	 . 
 � "� , � 9 � ) , � 9 if 3 � O

O otherwise

(3.15)

This estimator increases 3 each time the variance over time of the model residuals

exceeds the ensemble variance. When 3 increases, the Kalman gain also increases

and consequently the model parameters update also increases (equations (3.4) and

(3.5)). That is, the estimator places more emphasis on the incoming data. As long as
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the variance over time of the residuals remains smaller than the ensemble covariance,

the process noise input is zero and the filter carries on minimising the variance of the

parameters (i.e. tending to a regularised solution). Section 3.4 discusses an experiment

where this behaviour is illustrated.

The estimator of equation (3.15) is based on a single residual and is therefore of

little statistical significance. This difficulty is overcome by employing a sliding window

to compute the sample mean for I predicted residuals, instead of a single residual.

Jazwinski (Jazwinski, 1969) shows that for the following sample mean:64/ � MI
�� �

��

6 �f�
�

� ��@���f� � �
we may proceed as above, by maximising 0 	76 /�� , to obtain the following estimator:

3 �
��� ��
� :� ��� � � :� 	 . 
 � �

� if 3 � O

O otherwise

(3.16)

where

W � 6 �/ ? 3 � O � � � � � � � �� B M $�I �
� � � � � �� B � � ��� � �� ��� B ^�^�^ B � � � ��

and

� ��� MI
�� �

��

M� ��@���f� � � �f� � � � � ��� � MI
�� �

?� M� ��@���f� � � �f� � � ����� � � � � MI M� ��@���f� � � �f� �

(3.17)

With this estimator, one has to choose the length I of the moving window used to

update 3 . If the window size is too small, the algorithm places more emphasis on

fitting the incoming data than fitting the previous data. As a result, it might never

converge. On the other hand, if the window size is too large, then the algorithm will

fail to adapt quickly to new environments. The problem of choosing the right window

length results in a regularisation/tracking dilemma. It is a dilemma because we cannot

ascertain, without a priori knowledge, whether the fluctuations in the data correspond

to time varying components of the data or to noise.

It is possible to extend the derivation to a more general noise model by adopting

the following covariance:

� �

�����
�
3 � O ^�^�^ O
O 3 � O
...

. . .

O O 3 �

������
	 (3.18)
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By calculating the derivative of the evidence function with respect to a generic diagonal

entry of
�

and then equating to zero, we obtain an estimator involving the following

system of equations:�����
�
	 � � , � 9� � 9 � � 	 � � , � 9� � : � � ^�^�^ 	 � � , � 9� � � � �
	 � � ,� � 9 � � 	 � � ,� � : � � 	 � � ,� � � � �

...
. . .

	 � � ,�� �� � 9 � � 	 � � ,�� �� � : � � 	 � � ,�� �� � � � �
������
	
�����
�
3 �
3 �
...

3 �

������
	 �

�����
�

���f���
� �
...

� �����

������
	 (3.19)

Multiple hyper-parameters are very handy when one considers distributed priors for au-

tomatic relevance determination (input and basis functions selection) (de Freitas et al.,

1997; Mackay, 1994; Mackay, 1995). Estimating
�

in equation (3.19) is, however, not

very reliable because it involves estimating a large number of noise parameters and, in

addition, it requires a long moving window of size I to avoid ill-conditioning.

We can also maximise the evidence function with respect to
� � � 6 � � and obtain

the following estimator for 6 :

6 �
��� �� 6 �� ~ � �S	 � � B � � � � �� if 6 � O

O otherwise

(3.20)

The hyper-parameter 6 is not as useful as 3 in controlling filter divergence. This is

because 6 can slow down the rate of decrease of the covariance matrix � � , but cannot

cause it to increase, according to the Kalman filter equations.

3.4 Demonstrations of the Algorithms

3.4.1 Experiment 1: comparison between the noise estimation methods

To compare the performance of the various EKF training algorithms discussed in this

chapter, 100 input-output data vectors were generated from the following nonlinear,

non-stationary process:

� � � O �
	 �!����� B � 	 � �����
M5B � ������ B ��� b l 	 M � �B	 4 ~ M ��� B T#�

�� �
� ��� O B Yo�

where �!� denotes the input vectors and ��� the output vectors of 300 time samples each.

The Gaussian process noise standard deviation was set to O � M , while the measurement

noise standard deviation was set to
� l h e 	 O � O 	 4 � . The initial state �

�
was O � M . Figure 3.3

shows the data generated with this model.
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Figure 3.3 Data generated to train MLP.

An MLP, with M�O sigmoidal neurons in the hidden layer and M linear output neuron,

was then trained with the following methods: the standard EKF algorithm, the EKF

algorithm with � � updated by error back-propagation (EKFBP), with evidence maximi-

sation and weight decay priors (EKFEV), with MAP noise adaptation (EKFMAP) and

with evidence maximisation and sequentially updated priors (EKFQ). The initial vari-

ance of the weights, initial weights covariance matrix entries, initial
�

and initial
�

were set to M , M�O , �
and M 1 M�O � � respectively. The length of the sliding window of the

adaptive noise algorithms was set to 10 time steps.

The simulation results for the EKF and EKFQ algorithms are shown in Figure 3.4.

Note that the EKFQ algorithm slows down the convergence of the EKF parameter esti-

mates so as to be able to track the changing measurement variance. Table 3.1 compares

the one-step-ahead root square errors (RSE) obtained with each method. The RSE are

defined as follows:

RSE �

���� �
���� � 
�� 	)@�� ~ � �E	 � ��� � � � �����

According to the table, it is clear that the only algorithm that provides a clear prediction

improvement over the standard EKF algorithm is the evidence maximisation algorithm

with sequential update priors. In terms of computational time, the EKF algorithm with
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Figure 3.4 Simulation results for the EKF and EKFQ algorithms. The top left plot shows the actual

data [ �� ] and the EKF [- -] and EKFQ [—] one-step-ahead predictions. The top right plot shows

the process noise parameter. The bottom plots show the innovations variance for both methods.

� � updated by back-propagation is faster, but its prediction is worse than the one for the

standard EKF. This is not a surprising result considering the assumption of uncorrelated

weights. The EKFEV and EKFMAP performed poorly because they require the network

weights to converge to a good solution before the noise covariances can be updated.

That is, the noise estimation algorithm does not facilitate the estimation of the weights,

as it happens in the case of the EKFQ algorithm. The EKFEV and EKFMAP therefore

appear to be unsuitable for sequential learning tasks.

RSE Mega floating point operations

EKF 25.95 21.9

EKFQ 23.01 24.1

EKFMAP 61.06 22.6

EKFEV 73.94 22.6

EKFBP 58.87 2.2

Table 3.1 Simulation results for 100 runs in experiment 1.
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3.4.2 Experiment 2: Sequential evidence maximisation with sequentially

updated priors

This experiment aims to describe the behaviour of the evidence maximisation algorithm

(EKFQ) of equation (3.16) in a time-varying, noisy and chaotic scenario. The problem

tackled is a more difficult variation of the chaotic quadratic or logistic map. 100 input

( �#� ) and output ( �#�f��� ) data vectors were generated according to the following equation:

��f��� �
��� ��

� �
	 ��S	 M ~ �� � B Yo� M � 4 � M 	 O
� � � ��S	 M ~ �� � B Yo� M 	 O � 4 � � � 	
� � M ��S	 M ~ �� � B Yo� � � 	 � 4 � � OO

where Yo� denotes Gaussian noise with a standard deviation of O � OBM . In the interval

M 	 O � 4 � � � 	 , the series exhibits chaotic behaviour. A single hidden layer MLP with M�O
sigmoidal neurons in the hidden layer and a single output linear neuron was trained to

approximate the mapping between ( ��� ) and ( ��f��� ). The initial weights, weights covari-

ance matrix diagonal entries,
�

and
�

were set to M , M�OO , M 1 M�O ��� and O respectively.

The sliding window to estimate
�

was set to
�

time steps.

As shown in Figure 3.5, during the initialisation and after each change of behaviour

(samples 150 and 225), the estimator for the process noise covariance
�

becomes ac-

tive. That is, each time the environment undergoes a severe change more importance

is given to the new data. As the environment stabilises, the minimum variance minimi-

sation criterion of the Kalman filter leads to a decrease in the variance of the output.

Therefore, it is possible to design an estimator that balances the tradeoff between reg-

ularisation and tracking. The results obtained with the EKF and EKFQ algorithms are

summarised in Table 3.2.

RSE Mega floating point operations

EKF 31.76 21.8

EKFQ 1.37 23.0

Table 3.2 Simulation results for 100 runs of the quadratic chaotic map. The EKFQ algorithm

provides a large improvement over the EKF at a very small computational cost.

3.5 Summary

This chapter presented several algorithms to perform regularisation in sequential learn-

ing tasks. The algorithms are based on Gaussian approximations and on schemes to

adapt the noise processes sequentially. The experiments indicated that one of these al-

gorithms (EKFQ) may lead to improved prediction results when either the data source
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Figure 3.5 Performance of the evidence maximisation for a non-stationary chaotic quadratic map.

The top plot shows the true data [ �� ] and the prediction [—], the middle plot shows the output

confidence intervals while the bottom plot shows the value of the adaptive noise parameter.

is time varying or there is little a priori knowledge about how to tune the noise pro-

cesses. Additional experiments are presented in Chapter 8.

It was shown that the hierarchical Bayesian inference methodology provides an

elegant, unifying treatment of the sequential learning problem. Distributed learning

rates, adaptive noise parameters and adaptive smoothing regularisers were shown to

be mathematically equivalent. This result sheds light on many areas of the machine

learning field. It places many diverse approaches to estimation and regularisation

within a unified framework. Areas where further research is needed include deriv-

ing convergence bounds and implementing other model structures, such as recurrent

networks.

Chapters 6 and 7 will expand the discussion on sequential learning methods. Prior

to that, Chapter 4 will extend the Gaussian approximation strategy to batch learning

tasks. In Chapter 5, Markov chain Monte Carlo methods will be introduced into the

analysis of neural networks. This latter chapter will pave the way for the sequential

algorithms introduced later.



4

Dynamic Batch Learning with the EM Algorithm

In environments where data is available in batches, it is possible to address the general

problem of Bayesian learning with Gaussian approximations, in a principled way, via

the expectation maximisation (EM) algorithm (Dempster et al., 1977). This chapter

will focus on this learning approach and will aim to extend the current work on EM

learning for dynamical linear systems to nonlinear dynamical systems. This approach

will allow the weights of an MLP, the initial conditions and the noise variances to be

computed jointly.

The application of the EM algorithm to learning and inference in linear dynamical

systems has occupied the attention of several researchers in the past. Chen (Chen,

1981) was one of the pioneers in this field. In particular, he applied the EM algorithm

to linear state space models known in the statistics literature as multiple indicators and

multiple causes (MIMIC) models. In these models one observes multiple indicators and

multiple causes of a single latent variable. Chen’s MIMIC model was implemented in a

simulation study relating social status and participation.

Watson and Engle (Watson and Engle, 1983) have suggested using the EM al-

gorithm, in conjunction with the method of scoring, for the estimation of linear dy-

namic factor, MIMIC and varying coefficient regression models. They evaluated their

paradigm experimentally by estimating common factors in wage rate data from several

industries in Los Angeles, USA.

In 1982, Shumway and Stoffer (Shumway and Stoffer, 1982) proposed the use of

the EM algorithm and linear state space models for time series smoothing and forecast-

ing with missing observations. To demonstrate their method, they considered a health

series representing total expenditures for physician services as measured by two differ-

ent sources. The time series produced by each source have similar values but exhibit

missing observations at different periods. In Shumway and Stoffer’s approach, the two

series are automatically merged into an overall expenditure series, which is then used

54
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for forecasting. Nine years later, Shumway and Stoffer (Shumway and Stoffer, 1991)

extended their work to switching linear dynamic models. In essence, they derived a

state space representation with measurement matrices that switch according to a time

varying independent random process. They illustrate their method on an application

involving the tracking of multiple targets.

The method of learning and inference in linear state space models via the EM algo-

rithm has also played a role in the fields of speech analysis and computer vision. Di-

galakis, Rohlicek and Ostendorf (Digalakis et al., 1993) applied it to the speech recog-

nition problem. They made a connection between this method and the Baum-Welch

estimation algorithm for hidden Markov models (HMMs). North and Blake (North and

Blake, 1998) have implemented the method to learn linear dynamic state space models

used for tracking contours in images. Rao and Ballard (Rao and Ballard, 1997) have

also explored the relevance of the EM algorithm together with state space estimation

in the field of vision. They have developed an hierarchical network model of visual

recognition that encapsulates these concepts.

Ghahramani (Ghahramani, 1997) has embedded the EM method for learning dy-

namic linear systems in a graphical models framework. He treats computationally in-

tractable models, such as factorial HMMs and switching state space models, by re-

sorting to Gibbs sampling and variational approximations. In another paper, Roweis

and Ghahramani (Roweis and Ghahramani, 1999) make use of the EM algorithm and

linear state space representations to present a unified view of linear Gaussian models

including factor analysis, mixtures of Gaussians, standard and probabilistic versions of

principal component analysis, vector quantisation, Kalman smoothing and linear hid-

den Markov models.

The chapter is organised as follows. Section 4.1 introduces the nonlinear state

space modelling scheme adopted in this chapter. The application of extended Kalman

smoothing to estimate the weights of an MLP is discussed in Section 4.2. Section 4.3

presents a brief derivation of the EM algorithm, which is used as a step towards the

derivation of the EM algorithm for nonlinear state space models in Section 4.4. Sec-

tion 4.5 examines some of the results obtained with synthetic data, while Section 4.6

provides a brief summary of the chapter.

4.1 Nonlinear State Space Model

To investigate the application of the EM algorithm to dynamic batch learning, the fol-

lowing nonlinear state space representation is used:

� �f��� � | � � B � �
@�� � �

��	������ � � � B�� �
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Once again, the nonlinear mapping
�
��	������ � � � corresponds to a multi-layer perceptron.

The measurement and process noise terms are assumed to be zero mean Gaussian with

covariances
�

and
�

respectively. The matrix | contains information about how the

states evolve. It is particularly useful in tracking applications. However, when the

above model is employed merely for parameter estimation in neural network models,

the matrix | should be viewed as a mechanism to achieve directed trajectories in state

space. In other words, | allows for more general jumps than the simple random walk

that would result by excluding | from the model.

Despite the fact that the data is processed in batches, the model of equation (4.1) al-

lows the weights to be time varying. It is, therefore, possible to deal with non-stationary

data sets. In the event of the data being stationary, we should expect the process noise

term to vanish. Consequently, if we know that the data is stationary, the estimate of the

process noise can be used to determine how well the model explains the data. This is

demonstrated in Section 4.5.

The objective is to estimate the model states (MLP weights)
�
� � and the set of pa-

rameters � ��� � � � ��| � � ���
� given the measurements � � ��� � ��@A��� � � 1, where � and �

denote the mean and covariance of the Gaussian prior 0 	 � � ? � � .
4.2 The extended Kalman smoother

Smoothing often entails forward and backward filtering over a segment of data so as

to obtain improved averaged estimates. Various techniques have been proposed to ac-

complish this goal (Gelb, 1974; Jazwinski, 1970). This study uses the well known

Rauch-Tung-Striebel smoother (Rauch et al., 1965). The forward filtering stage in-

volves computing the estimates
�
� � and � � , over a segment of I samples, with the

following EKF recursions:�
� �f��� 	 � � | � � �
� �f��� 	 � � | � � | � B �


 �f��� � � �f��� 	 � � ��f��� � � B � �f��� � �f��� 	 � � ��f��� " ����
� �f��� � �

� �f��� 	 � B�
 �f��� �X@��f��� ~ � �E	����f����� � � �f��� 	 � � "
� �f��� � � �f��� 	 � ~ 
 �f��� � �f��� � �f��� 	 �

1To clarify the notation, in this chapter, the input variables � are suppressed in the arguments of the

probability distributions.
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where 
 denotes the Kalman gain and
�

the Jacobian matrix. Subsequently, the Rauch-

Tung-Striebel smoother makes use of the following backward recursions:

� ����� � � �����S| � � ���� 	 ������
� ����� 	 � � �

� ����� � ����� � � � � 	 � ~ | � � ������"
� ����� 	 � � � ����� B � ����� � � � 	 � ~ � � 	 ����� " � ������
� � ( ����� 	 � � � � � ������ B � � � � �f��� ( � 	 � ~ | � �)" � ������

where the parameters, covariance and cross-covariance are defined as follows:�
� � 	 � � W � � ��? @A��� � "
� � 	 � � W � 	 � � ~ �

� ���:	 � � ~ �
� ��� � ? @A��� � "

� � ( ����� 	 � � W � 	 � � ~ �
� � �:	 � ����� ~ �

� ����� � � ? @ ��� � "
They may be initialised with the following values:�

� � 	 � � �
� �

� � 	 � � � �
� � ( � ��� 	 � � � � ~ 
 � � � � "�| � � ���

4.3 The EM Algorithm

So far, it has been shown that given a set of parameters � � � � � � ��| � � ��� � and a

matrix of I measurements @ ��� � , it is possible to compute the expected values of the

states with an extended Kalman smoother. This section presents an EM algorithm to

learn the parameters � .

The EM algorithm is an iterative method for finding a mode of the likelihood func-

tion 0 	)@ ��� � ? � � . It proceeds as follows: (E-step 1) estimate the states � � � � given a set

of parameters � , (M-step 1) estimate the parameters given the new states, (E-step 2)

re-estimate the states with the new parameters, and so forth. The most remarkable

attribute of the EM algorithm is that it ensures an increase in the likelihood function

at each iteration. However, as the EKF can only provide an approximation to the true

states � � � � in the E step, the EM algorithm to train MLPs is not necessarily guaranteed

to converge.

It is convenient to think of � � � � either as missing observations or as latent variables.

EM is particularly useful because many models, such as mixtures and hierarchical mod-

els, may be re-expressed in augmented parameter spaces, where the extra parameters

� � � � can be thought of as missing data. That is, in situations where it is hard to max-

imise 0 	)@ ��� � ? � � , EM will allow us to accomplish this by working with 0 	)@ ��� �}� � � � � ? � � .
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To gain more insight into the EM method, let us express the likelihood function as

follows:

0 	)@A��� �D? � � � 0 	)@A��� � ? � � 0 	 �
� � �D? @A��� � � � �

0 	 � � � �D? @A��� � � � � � 0 	 � � � � ��@A��� �D? � �
0 	 � � � �D? @A��� �}� � �

Taking the logarithms of both sides yields the following identity:

a,e 0 	)@A��� � ? � � � afe 0 	 � � � �}��@A��� � ? � �A~ a,e 0 	 � � � � ? @A��� � � � �
Let us treat � � � � as a random variable with distribution 0 	 � � � � ? @A��� � � � old � , where � old is

the current guess. If we then take expectations on both sides of the previous identity,

while remembering that the left hand side does not depend on � � � � , we get:

a,e 0 	)@ ��� � ? � � � W � a,e 0 	 � � � � ��@ ��� � ? � ��" ~ W � a,e 0 	 � � � � ? @ ��� � � � ��" (4.1)

where the expectations involve averaging over the matrix � � � � under the distribution

0 	 � � � � ? @A��� � � � old � . For example:

W � a,e 0 	 � � � �}��@A��� � ? � ��" � � � a,e 0 	 � � � �}��@A��� �D? � ��" 0 	 � � � � ? @A��� � � � old � d � � � �
A key result for the EM algorithm (see Appendix C for a proof) is that the second term

on the right side of equation (4.1) is maximised for � old. That is:

W � a,e 0 	 � � � � ? @A��� � � � old ��" � W � afe 0 	 � � � � ? @A��� � � � ��"
for any � .

To apply the EM algorithm, we need to compute the first term on the right hand

side of equation (4.1) repeatedly. The aim is to maximise this term at each iteration.

One method of maximising it is discussed in detail in the next section. For the time

being, let us assume that we can maximise it, that is:

W � afe 0 	 � � � �}��@A��� � ? � new ��" � W � afe 0 	 � � � �}��@A��� � ? � old ��"
Then, it follows that the likelihood function also increases at every iteration. To demon-

strate this important result, consider the change in likelihood for a single iteration:

a,e 0 	)@A��� � ? � new � ~ afe 0 	)@A��� � ? � old � � < W � a,e 0 	 � � � � ��@A��� �D? � new � " ~ W � a,e 0 	 � � � � ��@A��� �D? � old � " >
~ < W � a,e 0 	 � � � �D? @A��� �}� � new ��" ~ W � a,e 0 	 � � � � ? @A��� �}� � old ��" >

The right hand side of the above equation is positive because we are averaging under

0 	 � � � � ? @A��� � � � old � . Consequently, the likelihood function is guaranteed to increase at

each iteration.

The EM algorithm’s name originates from the steps that are required to increaseW � afe 0 	 � � � �}��@A��� � ? � � " , namely compute the Expectation and then Maximise it. The EM

algorithm thus involves the following steps:
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Initialisation : Start with a guess for �
�
.

E-step : Determine the expected log-likelihood density function of the complete data

given the current estimate � old:

W � afe 0 	 � � � � ��@A��� �D? � ��" � � � afe 0 	 � � � �}��@A��� � ? � ��" 0 	 � � � � ? @A��� � � � old � d � � � �
M-step : Compute a new value of � that maximises the expected log-likelihood of

the complete data. The maximum can be found by simple differentiation of the

expected log-likelihood with respect to � .

Note that at the M-step, we only require an increase in the expected log-likelihood

of the complete data. That is, we do not need to find the maximum. This is the basis

for generalised EM (GEM) algorithms (Dempster et al., 1977; Gelman et al., 1995).

4.4 The EM algorithm for nonlinear state space models

To derive the EM algorithm for nonlinear state space models, we need to develop an

expression for the likelihood of the completed data. The likelihood of the data given

the states, the initial conditions and the evolution of the states may be approximated

by Gaussian distributions. In particular, if the initial mean and covariance of the states

is given by � and � , then:

0 	 � � ? � � � M	����u� � @�� ? �5? ��@�� [:\E] � ~ M� 	 � � ~ � � � � ��� 	 � � ~�� � �
0 	 � ��? � ������� � � � M	����u� � @�� ? � ? ��@�� [:\�] � ~ M� 	 � ��~ | � �����S� � � ��� 	 � � ~ | � ������� �
0 	)@���? � ��� � � � M	����u� � @�� ? � ? ��@�� [:\�] � ~ M� 	)@��u~ � � 	 � � � ������� � � ��� 	)@�� ~ � ��	 � ��� ������� �

Under the model assumptions of uncorrelated noise sources and Markov state evolu-

tion, the likelihood of the complete data is given by:

0 	 � � � � ��@A��� �D? � � � 0 	 � � ? � � ��
� 
�� 0 	 � �S? � ������� � �

�
�
� 
�� 0 	)@���? � ��� � �

Hence, the log-likelihood of the complete data is given by the following expression:

a,e 0 	 � � � �}��@A��� �D? � � � ~
�� � 
�� � M� 	)@�� ~ � ��	 � ��� ������� � � ��� 	)@�� ~ � ��	 � ��� ������� � ~ I � a,e ? � ?

~
�� � 
�� � M� 	 � � ~ | � ������� � � ��� 	 � � ~<| � ������� � ~ I � a,e ? � ?

~ M� 	 � � ~�� � � � ��� 	 � � ~�� �A~ M� a,e ? �5?o~ I �5B 	�I B M ��6� a,e 	����u�
(4.2)
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As discussed in the previous section, all we need to do now is to compute the

expectation of
a,e 0 	 � � � �}��@A��� � ? � � and then differentiate the result with respect to the

parameters � so as to maximise it. The EM algorithm for nonlinear state space models

will thus involve computing the expected values of the states and covariances with the

extended Kalman smoother and then maximising the parameters � with the formulae

obtained by differentiating the expected log-likelihood.

4.4.1 Computing the expectation of the log-likelihood

The derivation requires the following sufficient statistics:

W � � ��? @A��� � " � �
� � 	 �W � � � � �� ? @A��� � " � � � 	 � B �

� � 	 � � � �� 	 �W � � � � ������ ? @ ��� � " � � � ( ����� 	 � B �
� � 	 � � � ������ 	 �

Now, taking the expectation of the log-likelihood for the complete data, by averaging

over � � � � under the distribution 0 	 � � � �D? @A��� � � � old � , one gets the following expression:

W � afe 0 	 � � � �}��@A��� � ? � � " � ~ I � a,e ? � ? ~ I � a,e ? � ?~ M� a,e ? �5?o~ I � B 	�I B M ��6� a,e 	����u�
~

�� � 
�� M� W �B@ �� � ��� @�� ~ @ �� � ��� � �E	 � ��� �����
~ � ��	 � ��� ����� � � ��� @�� B � �E	 � � � ����� � � ��� � �E	 � ��� ����� �

~
�� � 
�� M� W � � �� � ��� � � ~ � �� � ��� | � ����� ~ � ������ | � � ��� � �

B � ������ | � � ��� | � ����� �
~ M� W � � � � � ���

� � ~ � � � � ��� � ~�� � � ���
� � B � � � ��� � �

We need to digress briefly to compute the expectation of the measurements mapping�
��	 � ��� ����� . We should recall that the EKF approximation to this mapping is given by:

�
��	 � � � � � � � �

��	 � � � 	 � � � � � B � � ��	 � ��� ������ � �
��� x � , 
 � � , � � { 	 � � ~

�
� � 	 � � B ^�^�^

Consequently, if we take expectations on both sides of the equation, we get:

W � � � 	 � � � ������" � �
��	 � � � 	 � � ��� �
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and

W � 	 � ��	 � � � � � � ~ � ��	 � � � 	 � � � � ���:	 � �E	 � � � � � �A~ � ��	 � � � 	 � � � � ��� � "
� W � � � ��	 � � � 	 � � � � � B � � ��	 � ��� ������ � �

��� x � , 
�� � , � � { 	 � � ~
�
� � 	 � �A~ � � 	 � � � 	 � � � � � �

� � �E	 � � � 	 � � ����� B � � ��	 � � � ������ � �
��� x � , 
�� � , � � { 	 � � ~

�
� � 	 � �A~ � �E	 � � � 	 � � ������ � �

� W � � � 	 � � ~ �
� � 	 � �:	 � � ~ �

� � 	 � � � � �� �
� � � � � 	 � � ��

Hence, under the distribution 0 	 � � � �D? @A��� � � � old � , it follows that:

W � � ��	 � ��� ��� � � ��	 � ��� ����� � " � � � � � 	 � � �� B � ��	 � � � 	 � � ����� � ��	 � � � 	 � � ����� �
Using this approximation and the fact that the trace and expectation operators are

linear, the expectation of the log-likelihood becomes:

W � a,e 0 	 � � � �}��@A��� � ? � � " � ~ I � a,e ? � ?o~ I � a,e ? � ?~ M� a,e ? �5?o~ I �5B 	�I B M ��62�� a,e 	����u�
~

�� � 
�� M� tr � � ��� �w@��X@ �� ~ � ��	 � � � 	 � � ��� ��@ �� ~<@�� � � 	 � � � 	 � � ����� �
B � �E	 � � � 	 � � ����� � �E	 � � � 	 � � ����� � B � � � � 	 � � �� � �

~
�� � 
�� M� tr � � ��� � � � � 	 � � � �� 	 � B � � 	 � ~��o| 	 � � � 	 � � � ������ 	 � B � � ( ����� 	 � � �

B | 	 � � ����� � � ������ 	 � B � ����� 	 � ��| � � �
~ M� tr � � ��� � � � � 	 � � � � � 	 � B � � 	 � ~�� � � � 	 � � � B � � � � �

Completing squares and using the following abbreviations:

` �
�� � 
�� � � � 	 � � � �� 	 � B � � 	 �

� �
�� � 
�� � � ����� 	 � � � ������ 	 � B � ����� 	 �

� �
�� � 
�� � � � 	 � � � ������ 	 � B � � ( ����� 	 �
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we get our final expression for the approximate expectation of the log-likelihood:

W � afe 0 	 � � � �}��@A��� � ? � � " � ~ I � a,e ? � ? ~ I � a,e ? � ?~ M� a,e ? �5?o~ I � B 	�I B M ��6� a,e 	����u�
~

�� � 
�� M� tr � � ��� � � @�� ~ � �E	 � � � 	 � � ������" � @�� ~ � ��	 � � � 	 � � ������" �
B � � � � 	 � � �� � �

~ M� tr � � ��� � ` ~��o| � � B | � | � � �
~ M� tr � � ��� ��	 � � � 	 � ~��r�:	 � � � 	 � ~�� � � B � � 	 � � � (4.3)

4.4.2 Differentiating the expected log-likelihood

To maximise the expected value of the log-likelihood with respect to the parameters � ,

we need to compute the derivatives with respect to each parameter individually. The

following results for matrix differentiation (see for example (Graham, 1981)):

� afe ? | ?
� | � 	�| ��� � �

�
tr 	 � |}�
� | � � �

�
tr 	�|"� � | �
� | � � | B � � |

are used in the subsequent sections.

4.4.2.1 Maximum with respect to |
Differentiating the expected log-likelihood with respect to | yields:

�
� | W � a,e 0 	 � � � �}��@A��� � ? � ��" � ~ M� �

� | tr � � ��� � ` ~��o| � � B | � | � � �
� ~ M� �:~�� � ��� � B � � ��� | � �

Equating this result to zero yields the value of | that maximises the approximate log-

likelihood:

| � � � ���
(4.4)
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4.4.2.2 Maximum with respect to
�

Differentiating the expected log-likelihood with respect to
� ���

gives:

�
� � ��� W � afe 0 	 � � � �}��@A��� � ? � � " �

�
� � ��� � I � a,e ? � ��� ?o~ �� � 
�� M� tr � � ��� � � � � � 	 � � ��

B 	)@�� ~ � �E	 � � � 	 � � �������:	)@��u~ � �E	 � � � 	 � � ������� � � � �
�

I � � ~
�� � 
�� M� � � � � � 	 � � ��B 	)@�� ~ � ��	 � � � 	 � � �������:	)@��u~ � ��	 � � � 	 � � ������� � �

Hence, by equating the above result to zero, the maximum of the approximate log-

likelihood with respect to
�

is given by:

� � MI
�� � 
�� � � � � � 	 � � �� B 	)@���~ � � 	 � � � 	 � � �������:	)@���~ � ��	 � � � 	 � � ������� � � (4.5)

4.4.2.3 Maximum with respect to
�

Following the same steps, the derivative of the expected log-likelihood with respect to
� ���

is given by:

�
� � ��� W � a,e 0 	 � � � �}��@A��� � ? � ��" � I � � ~ M� � ` ~��o| � � B | � | � �

Hence, equating to zero and using the result that | � � � ���
, the maximum of the

approximate log-likelihood with respect to
�

is given by:

� � MI � ` ~ � � ��� � � � (4.6)

4.4.2.4 Maximum with respect to �
It is also possible to treat the initial conditions as parameters and improve their es-

timates in the M-step of the EM algorithm. Finding the derivative of the expected

log-likelihood with respect to the initial states gives:

�
� � W � afe 0 	 � � � �}��@A��� � ? � ��" � M� � ��� ��~�� � � � 	 � B � � �

Hence, the initial value for the states should be:

� � �
� � 	 � (4.7)
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4.4.2.5 Maximum with respect to �

The derivative of the expected log-likelihood with respect to the inverse of the initial

covariance gives:
�

� � ��� W � afe 0 	 � � � �}��@A��� � ? � � " � � � ~ M� � 	 � � � 	 � ~��r�:	 � � � 	 � ~�� � � B � � 	 � �
Therefore, the initial covariance should be updated as follows:

� � � � 	 � (4.8)

4.4.3 The E and M steps for neural network models

The EM algorithm for MLPs is as follows:

Initialisation : Start with a guess for � ��� � � � ��| � � ��� � .
E-step : Determine the expected values

�
� � 	 � , � � 	 � and � � ( ����� 	 � , given the current pa-

rameter estimate � old, using the extended Kalman smoothing equations described

in Section 4.2.

M-step : Compute new values of the parameters � � � � � � ��| � � ���
� using equations

(4.4) to (4.8).

The complexity of this algorithm is
H 	76 � I<� operations per iteration.

4.5 Simple Regression Example

For demonstration purposes, the EM method is applied to the problem of learning the

following nonlinear mapping from 	 �A��� � ��� to � :

� � � l h e 	 �u� ~��#� B � � � B 	 B��
where �u� and � � were chosen to be two normal random sequences of 700 samples each.

The noise process � was sampled from a zero mean Gaussian distribution with variance� � O �
	 . An MLP with four sigmoidal neurons in the hidden layer and a linear neuron

in the output layer was used to approximate the measurements mapping. After 50 iter-

ations, as shown in Figure 4.1, the estimate of observation variance
�

converges to the

true value. In addition, the trace of the process noise covariance
�

goes to zero. Note

that since the data is stationary, the trace of
�

should tend to zero. That is, the trace

of
�

can be used to provide an estimate of how well the model fits the data. The inno-

vations covariance (variance of the evidence function 0 	)@A��? @A��� ������� � � � 	 ����� � � ������� � ������� )
tends to

�
over the entire data set, as shown in Figure 4.2. The top plot of this figure

shows that the MLP approximates the true function without fitting the noise. That is, it

generalises well. Figure 4.1 also shows how the log-likelihood increases at each step,

thereby demonstrating that the algorithm converges well.
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Figure 4.1 The top plots show the log-likelihood function and the convergence rate (log-likelihood

slope) for the simple regression problem. The bottom plots show the convergence of the measure-

ments noise covariance
�

and the trace of the process noise covariance � .

4.6 Summary

In this chapter, an EM algorithm was derived to estimate the neural network weights,

measurement noise and model uncertainty jointly. A simple experiment indicates that

it performs well in terms of model accuracy and generalisation ability. Further research

avenues include extending the method to other types of noise processes, establishing

theoretical convergence bounds and investigating ways of efficiently initialising the al-

gorithm so as to avoid local minima. The latter problem is to a large extent surmounted

by the algorithms proposed in the following chapter.
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Figure 4.2 The top plot shows that the MLP fit, for the regression example, approximates the true

function (the former is almost exactly on top of the latter); it does not fit the noise. As a result the

network exhibits good generalisation performance. The bottom plot shows that the uncertainty in

the predictions (innovations) converges to the uncertainty engendered by the measurement noise.



5

Robust Full Bayesian Learning with MCMC

The previous chapter described an EM batch learning strategy to estimate the noise

statistics and parameters of an MLP network. This chapter moves beyond the confines

of Gaussian approximation to a more flexible class of learning algorithms: Markov

chain Monte Carlo. Readers without a background in MCMC simulation are encouraged

to consult Appendix D for an introduction to the field. This learning strategy, albeit

more computationally expensive, can perform full Bayesian inference. In other words,

it allows one to obtain robust and joint estimates of the signal to noise ratios, noise

statistics, network parameters and number of parameters.

The correct selection of the number of neurons is an essential requirement of neural

network training. There have been three main approaches to this problem, namely

penalised likelihood, predictive assessment and growing and pruning techniques. In

the penalised likelihood context, a penalty term is added to the likelihood function so

as to limit the number of neurons; thereby avoiding over-fitting. Classical examples

of penalty terms include the well known Akaike information criterion (AIC), Bayesian

information criterion (BIC) and minimum description length (MDL) (Akaike, 1974;

Schwarz, 1985; Rissanen, 1987). As mentioned in Chapter 2, penalised likelihood has

also been used extensively to impose smoothing constraints either via weight decay

priors (Hinton, 1987; Mackay, 1992b) or functional regularisers that penalise for high

frequency signal components (Girosi et al., 1995).

In the predictive assessment approach, the data is split into a training set, a valida-

tion set and possibly a test set. The key idea is to balance the bias and variance of the

predictor by choosing the number of neurons so that the errors in each data set are of

the same magnitude.

The problem with the previous approaches, known as the model adequacy problem,

is that they assume one knows which models to test. To overcome this difficulty, vari-

ous authors have proposed model selection methods, whereby the number of neurons

67
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is set by growing and pruning algorithms. Examples of this class of algorithm include

the upstart algorithm (Frean, 1990), cascade correlation (Fahlman and Lebiere, 1988),

optimal brain damage (Le Cun et al., 1990) and the resource allocating network (RAN)

(Platt, 1991). A major shortcoming of these methods is that they lack robustness in

that the results depend on several heuristically set thresholds. For argument’s sake, let

us consider the case of the RAN algorithm. A new radial basis function is added to the

hidden layer each time an input in a novel region of the input space is found. Unfortu-

nately, novelty is assessed in terms of two heuristically set thresholds. The centre of the

Gaussian basis function is then placed at the location of the novel input, while its width

depends on the distance between the novel input and the stored patterns. For improved

efficiency, the amplitudes of the Gaussians may be estimated with an extended Kalman

filter (Kadirkamanathan and Niranjan, 1993). Yingwei, Sundararajan and Saratchan-

dran (Yingwei et al., 1997) have extended the approach by proposing a simple pruning

technique. Their strategy is to monitor the outputs of the Gaussian basis functions con-

tinuously and compare them to a threshold. If a particular output remains below the

threshold over a number of consecutive inputs, then the corresponding basis function

is removed.

Recently, Rios Insua and Müller (1998) , Marrs (1998) and Holmes and Mallick

(1998) have addressed the issue of selecting the number of hidden neurons with grow-

ing and pruning algorithms from a Bayesian perspective. In particular, they apply

the reversible jump Markov chain Monte Carlo (MCMC) algorithm of Green (Green,

1995; Richardson and Green, 1997) to feed-forward sigmoidal networks and radial

basis function (RBF) networks to obtain joint estimates of the number of neurons and

weights.

This chapter also applies the reversible jump MCMC simulation algorithm to RBF

networks so as to compute the joint posterior distribution of the radial basis parameters

and the number of basis functions. It advances this area of research in three important

directions. Firstly, it proposes an hierarchical prior for RBF networks. That is, it uses

a full Bayesian model, which accounts for model order uncertainty and regularisation,

and shows that the results appear to be robust with respect to the prior specification.

Secondly, it proposes an automated growing and pruning reversible jump MCMC op-

timisation algorithm to choose the model order using the classical AIC, BIC and MDL

criteria. This algorithm estimates the maximum of the joint likelihood function of the

radial basis parameters and the number of bases using a reversible jump MCMC simu-

lated annealing approach. It has the advantage of being more computationally efficient

than the reversible jump MCMC algorithm used to perform the integrations with the

hierarchical full Bayesian model. Finally, a geometric convergence theorem for the

homogeneous reversible jump MCMC algorithm and a convergence theorem for the
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annealed reversible jump MCMC algorithm are presented.

The chapter is organised as follows. Section 5.1 discusses the approximation model.

Section 5.2 formalises the Bayesian model and specifies the prior distributions. Section

5.3 is devoted to Bayesian computation. It first proposes an MCMC sampler to perform

Bayesian inference when the number of basis functions is given. Subsequently, a re-

versible jump MCMC algorithm is derived to deal with the case where the number of

basis functions is unknown. A reversible jump MCMC simulated annealing algorithm

to perform stochastic optimisation using the AIC, BIC and MDL criteria is proposed in

Section 5.4. The convergence of the algorithms is established in Section 5.5. The per-

formance of the proposed algorithms is illustrated by computer simulations in Section

5.6. Finally, some conclusions are drawn in Section 5.7. The proofs of convergence are

presented in Appendix E.

5.1 Problem Statement

This chapter adopts the approximation scheme of Holmes and Mallick (1998), consist-

ing of a mixture of � RBFs and a linear regression term. However, the work can be

straightforwardly extended to other regression models. This model, as described in

Chapter 1, is given by:

� � � @�� � � B � � ��� B�� � � � O
� $ � @�� ��	 $��
�� � � � 	 p ���u~�� � p � B � B�� � ��� B�� � � � M (5.1)

where
p ^ p denotes a distance metric (usually Euclidean or Mahalanobis), � � N = �

denotes the  -th RBF centre for a model with � RBFs, � � N = �
denotes the  -th RBF

amplitude and �2N = �
and � N = � 1 =��

denote the linear regression parameters. The

noise sequence � � N = �
is assumed to be zero-mean white Gaussian. It is important to

mention that although the dependency of � , � and � � on � has not been made explicit,

these parameters are indeed affected by the value of � .
As mentioned earlier, depending on our a priori knowledge about the smoothness

of the mapping, we can choose different types of basis functions (Girosi et al., 1995).

The most common choices are:

� Linear: ��	��#� � �
� Cubic: � 	��� � � �
� Thin plate spline: � 	��#� � � � a,e 	��#�
� Multi-quadric: � 	��� � � � � B ( � � ��@��
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� Gaussian: � 	��� � [:\�] �:~ ( � � �
For the last two choices of basis functions, ( is a user-set parameter. For convenience,

the approximation model is expressed in vector-matrix form1:

@ � � � � ��� $ ( ��� � � � ��� � ( ��� � "�� ��� ��� � � $ ( ��� � B�� � (5.2)

That is:

����������
�

@A� ( � ^�^�^�@A� ( �
@ � ( � ^�^�^�@ � ( �

...

@	� ( � ^�^�^�@	� ( �

�����������
	
�

����������
�

M �A� ( � ^�^�^ � � ( � � 	��A��� � � �!^�^�^ � 	��A��� � $ �
M � � ( � ^�^�^ � � ( � � 	�� �o� � � �!^�^�^ � 	�� �o� � $ �
...

...
...

M �	� ( ��^�^�^ � � ( � � 	��	� � � � �!^�^�^ � 	��	� � � $ �

�����������
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� � ( � ^�^�^ � � ( �
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� $ ( � ^�^�^ � $ ( �

���������������
	
B � ��� �

where the noise process is assumed to be normally distributed as follows:

� ��C �
�����
�

�����
�
O
O
...

O

������
	 �

�����
�
� � � O ^�^�^ O
O � �� ^�^�^ O

. . .

O O ^�^�^�� ��
������
	
�
				
�

Once again, it should be stressed that � � depends implicitly on the model order � . The

number � of RBFs and their parameters � ��� � ��� � ( ��� � � � ��� $ ( ��� � ��� � ��� � � , with 6 � M B T B � ,
are unknown. Given the data set � � ��@ � , the objective is to estimate � and � N<G2$ .

5.2 Bayesian Model and Aims

This chapter follows a Bayesian approach where the unknowns � and � are regarded

as being drawn from appropriate prior distributions. These priors reflect our degree

of belief in the relevant values of these quantities (Bernardo and Smith, 1994). An

hierarchical prior structure is used to treat the priors’ parameters (hyper-parameters)

as random variables drawn from suitable distributions (hyper-priors). That is, instead

1As mentioned earlier, the notation � 9�� ��� 9�� � is used to denote an � by � matrix, where � is the number

of data and � the number of outputs. That is, � 9�� ��� ��� � � 9�� �  � : � �  $#$#$#  � ��� � '*) denotes all the observations

corresponding to the + -th output (+ -th column of � ). To simplify the notation, � , is equivalent to �&, � 9�� � .
That is, if one index does not appear, it is implied that we are referring to all of its possible values.

Similarly, � is equivalent to � 9�� ��� 9�� � . The shorter notation will be favoured, while the longer notation will

be invoked to avoid ambiguities and emphasise certain dependencies.



Robust Full Bayesian Learning with MCMC 71

of fixing the hyper-parameters arbitrarily, we acknowledge that there is an inherent

uncertainty in what we think their values should be. By devising probabilistic models

that deal with this uncertainty, it is possible to implement estimation techniques that

are robust to the specification of the hyper-priors.

The remainder of the section is organised as follows. Firstly, an hierarchical model

prior, which defines a probability distribution over the space of possible structures of

the data, is proposed. Subsequently, the estimation and inference aims are specified.

Finally, the analytical properties of the model are exploited to obtain an expression, up

to a normalising constant, of the joint posterior distribution of the basis centres and

their number.

5.2.1 Prior distributions

The overall parameter space G 1 � can be written as a finite union of subspaces G 1
� �

<
� $������$ 
 � � � � 1 G7$ > 1 �

where G � � 	 = � ��� � � 1 	 = � � � and G $ � 	 = � ����� $ � � 1
	 = � � � 1�� $ for � N�� M ��������� � ����� � . That is, � N 	 = � ����� $ � � , � N 	 = � � � and � N � $ . The

hyper-parameter space
� � 	 = � � � ��� , with elements � � ���"��� � � , will be discussed at

the end of this section.

The space of the radial basis centres � $ is defined as a compact set that encom-

passes the input data: � $D� � � � � ��� $ ( & N � gih e 	��A��� � ( & � ~	��
 & ��gij \ 	��A��� � ( & � B ��
 & � $ for * �
M �������u��T with � � ( &�� �

� ( &
for  ��� � . 
 & � p g j \ 	��A��� � ( & � ~ gih e 	��A��� � ( & � p denotes the Eu-

clidean distance for the * -th dimension of the input and � is a user specified parameter

that we only need to consider if we wish to place basis functions outside the region

where the input data lie. That is, � $ is allowed to include the space of the input

data and is extended by a factor which is proportional to the spread of the input data.

Typically, researchers either set � to zero and choose the basis centres from the input

data (Holmes and Mallick, 1998; Kadirkamanathan and Niranjan, 1993) or compute

the basis centres using clustering algorithms (Moody and Darken, 1988). The premise

here is that it is better to place the basis functions where the data is dense; not in

regions of extrapolation. In this case, the basis centres are sampled from the space

� $ , whose hyper-volume is �
$ � ��� �& 
�� 	 M B ��� ��
 & " $ . Figure 5.1 shows this space for a

two-dimensional input.

The maximum number of basis functions is defined as � ����� � 	�I ~ 	�T B M ��� 2.

The following definition is also needed � � � $ �����$ 
 � � � � 1�� $ with � � ��� . There is a

natural hierarchical structure to this setup (Richardson and Green, 1997), which can

2The constraint ��� ��� ���! #" ' is added because otherwise the columns of $ �&% 9�� '  � ' are linearly

dependent and the parameters ( may not be uniquely estimated from the data (see equation (5.2)).
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Figure 5.1 RBF centres space
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for a two-dimensional input. The circles represent the input data.

be formalised by modelling the joint distribution of all variables as:

0 	 � � � � � ��@r? ��� � 0 	)@r? � � � � � � ��� 0 	 � ? � � � � ��� 0 	 � � � ? ��� (5.3)

where 0 	 � � � ? ��� is the joint model order and hyper-parameters probability, 0 	 � ? � � � � ���
is the parameters’ prior and 0 	)@ ? � � � � � � ��� is the likelihood. Under the assumption of

independent outputs given 	 � � � � , the likelihood for the approximation model described

in the previous section is:

0 	)@ ? � � � � � � ��� �
��
& 
�� 0 	)@ ��� �

( & ? � � � ��� � ( & � � ��� $ ��� �& � ���
�

��
& 
�� 	���� � �& � ��� @�� [:\E] < ~ M� � �& � @A��� � ( & ~ � 	 � ��� $ � ��� � ��� � ( & " � � @A��� � ( & ~ � 	 � ��� $ � ��� � ��� � ( & " >

(5.4)

The following structure is assumed for the prior distribution:

0 	 � � � � � � � 0 	 � ��� � ? � � � ��� $ ��� � � � ��� � � 0 	 � ��� $ ? � ��� � � �"��� � � 0 	 � ? � � � � ��� � � 0 	 � � ? � ��� � � 0 	 � ��� � �
� 0 	 � ��� � ? � ��� � ��� � � 0 	 � ��� $ ? � � 0 	 � ? �r� 0 	 � � � 0 	 � � 0 	 � � � (5.5)

where the scale parameters � �& , * � M �������u� � , are assumed to be independent of the

hyper-parameters (that is, 0 	 � � ? �"��� � � � 0 	 � � � ), independent of each other (0 	 � � � �
� �& 
�� 0 	 � �& � ) and distributed according to conjugate inverse-Gamma prior distributions:

� �& C # � ��� �� � � �� �
When �

� � O and �
� � O , we obtain Jeffreys’ uninformative prior 0 � � �& " � M $ � �&
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(Bernardo and Smith, 1994). Given � � , the following prior distribution is introduced:

0 	 � � � ��� � � � ��� $ ? � � � � ��� � � � 0 	 � ��� � ? � � � ��� $ ��� � � � ��� � � 0 	 � ��� $ ? � ��� � � 0 	 � ? � � � � ��� � �
�

� ��
& 
�� ? ��� � �&�� & ? ����@�� [:\�] � ~ M� � �& � � ��� � ( &������� � ��� � ( & �
	 � J�� 	 � � � ��� $ �

�
$ 	 � � $ $ ��

	 $ ������ 
 � � � $  � 	
(5.6)

where
� ���& � � � �& � � 	 � ��� $ � ��� � 	 � ��� $ � ��� and

J � 	 � � � ��� $ � is the indicator function of the

set � ( M if 	 � � � ��� $ � N � , O otherwise).

The prior model order distribution 0 	 � ? �r� is a truncated Poisson distribution. Con-

ditional upon � , the RBF centres are uniformly distributed. Finally, conditional upon

( � � � ��� $ ), the coefficients � ��� � ( & are assumed to be zero-mean Gaussian with variance� �& � & . The terms �
� N
	 = � � � and � N = �

can be respectively interpreted as the ex-

pected signal to noise ratios and the expected number of radial bases. The prior for

the coefficients has been previously advocated by various authors (George and Foster,

1997; Smith and Kohn, 1996). It corresponds to the popular g-prior distribution (Zell-

ner, 1986) and can be derived using a maximum entropy approach (Andrieu, 1998).

An important property of this prior is that it penalises basis functions being too close

as, in this situation, the determinant of
� ���&

tends to zero.

The hyper-parameters allow us to accomplish the goal of designing robust model

selection schemes. They are assumed to be independent of each other, hence 0 	 �"��� � � �
0 	 � � 0 	 � � � . Moreover, 0 	 � � � � � �& 
�� 0 	 � �& � . As �

�
is a scale parameter, vague conjugate

prior density is ascribed to it: � �& C # � 	���� : ����� : � for * � M �������u� � � with ��� : � � and��� : � O . The variance of this hyper-prior with ��� : � � is infinite. The same method is

applied to � by setting an uninformative conjugate prior (Bernardo and Smith, 1994):
� C � Z 	 M�� � B � ��� � ��� ( �

&�� M * � M �8� ). The hierarchical prior (equation (5.5)) can be

visualised with a directed acyclic graphical model (DAG) as shown in Figure 5.2.

5.2.2 Estimation and inference aims

The Bayesian inference of � , � and � is based on the joint posterior distribution

0 	 � � � � � ? � ��@ � obtained from Bayes’ theorem. Our aim is to estimate this joint distri-

bution from which, by standard probability marginalisation and transformation tech-

niques, one can “theoretically” obtain all posterior features of interest. For instance,

one might wish to perform inference with the predictive density:

0 	)@ � ��� ? � ��� � ��� ��@ ��� � � � � y���� 0 	)@ � ��� ? � � � � � � � � ��� � 0 	 � � � � � ? � ��� � ��@ ��� � � d � d � d �

(5.7)
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Figure 5.2 Directed acyclic graphical model for our prior.

and consequently make predictions, such as:

W 	X@	� ���E? �A��� � ������@A��� � � � � y ��� � 	 � ��� $ � �	� ����� � ��� � 0 	 � � � � � ? �A��� � ��@A��� � � d � d � d � (5.8)

One might also be interested in evaluating the posterior model probabilities 0 	 � ? � ��@ � ,
which can be used to perform model selection by selecting the model order according

to the criterion jon c gij \$ t � � (
	
	
	 ( $������ � 0 	 � ? � ��@ � . In addition, we can perform parameter estimation

by computing, for example, the conditional expectation
W 	 � ? � � � ��@ � .

It is not possible to obtain these quantities analytically, as it requires the evaluation

of high dimensional integrals of nonlinear functions in the parameters, as shown in the

following subsection. Here, an MCMC method is proposed to perform the necessary

Bayesian computations. MCMC techniques were introduced in the mid 1950’s in statis-

tical physics and started appearing in the fields of applied statistics, signal processing

and neural networks in the 1980’s and 1990’s (Besag et al., 1995; Holmes and Mallick,

1998; Müller and Rios Insua, 1998; Neal, 1996; Rios Insua and Müller, 1998; Tier-

ney, 1994). The key idea is to build an ergodic Markov chain 	 � x
& { � � x

& { � � x
& { � & t 1 whose

equilibrium distribution is the desired posterior distribution. Under weak additional

assumptions, the � � M samples generated by the Markov chain are asymptotically
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distributed according to the posterior distribution and thus allow easy evaluation of all

posterior features of interest. For example:

�0 	 � �  ? � ��@ � � M
�

�� & 
�� J � � � 	 � x
& { � and

�W 	 � ? � �  � � ��@ � �
	 �& 
�� � x

& { J � � � 	 � x
& { �

	 �& 
�� J � � � 	 � x & { � (5.9)

In addition, we can obtain predictions, such as:

�W 	)@	� ��� ? �A��� � ������@A��� � � � M
�

�� & 
�� � 	 � x & {��� $ � �	� ����� � x & {��� � (5.10)

As shown in the next subsection, � ��� � can be integrated analytically. Consequently,

the variance of the predictions can be reduced by employing the following Rao Black-

wellised estimate (Liu et al., 1994):

�W 	)@ � ��� ? � ��� � ��� ��@ ��� � � � M
�

�� & 
�� � 	 � x & {��� $ � � � ��� � W 	 � ��� � ? � x & { � � x & {��� $ � �
� x & {$ ��� � x & { � � ��@ �

5.2.3 Integration of the nuisance parameters

The proposed Bayesian model allows for the integration of the so-called nuisance pa-

rameters, � ��� � and � � , leading to an expression for the distribution 0 	 � � � ��� $ � �"��� � ? � ��@ �
up to a normalising constant. According to Bayes theorem:

0 	 � � � ��� � � � ��� $ ��� � � �"��� � ? � ��@ � � 0 	)@ ? � � � ��� � � � ��� $ ��� � � �"��� � � ��� 0 	 � � � ��� � � � ��� $ ��� � � �"��� � �
�
� ��
& 
�� 	���� � �& � � � : [:\�]�� ~ M� � �& ��@ ��� � ( & ~ � 	 � ��� $ � ��� � ��� � ( & " � � @ ��� � ( & ~ � 	 � ��� $ � ��� � ��� � ( & " �
	

1
� ��
& 
�� ? ��� � �& � & ? ����@�� [:\�] ��~ M� � �& � � ��� � ( & � ���& � ��� � ( & � 	 � J�� 	 � � � ��� $ �

�
$ 	 � � $ $ ��

	 $ �������
 � � � $   	
1
� ��
& 
�� 	 � �& � � x � � @������ { [:\E] ��~ �

�� � �& � 	 � ��
& 
�� 	 �

�& � � x;��� : ��� { [:\E] ��~ ��� :� �& � 	
1
� 	 � � x�� 9 ����@�� { [:\�] ��~ � � � � 	 (5.11)
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We can then proceed to multiply the exponential terms of the likelihood and coefficients

prior, and complete squares to obtain:

0 	 � � � ��� � � � ��� $ ��� � � � ��� � ? � ��@ � � � ��
& 
�� 	���� � �& � ��� @�� [:\E] ��~ M� � �& @ � ��� � ( & � &)( $�@A��� � ( & � 	

1
� ��
& 
�� ? ��� � �& � & ? ����@�� [:\�] � ~ M� � �& � � ��� � ( & ~ � &)( $ " ��� ���& ( $ � � ��� � ( & ~ � &)( $ " � 	

1
� J � 	 � � � ��� $ �

�
$ 	 � � $ $ ��

	 $������� 
 � � � $   	
� ��
& 
�� 	 � �& � � x � � @������ { [:\E] ��~ �

�� � �& � 	
1
� ��
& 
�� 	 �

�& � � x;��� : ��� { [:\�] � ~ ��� :� �& �
	 � 	 � � x�� 9 ����@�� { [:\E] � ~ � � � � 	
where:

� ���&)( $ � � � 	 � ��� $ � ��� � 	 � ��� $ � ��� B � ���&� & ( $ � � &)( $ � � 	 � ��� $ � ����@A��� � ( &
� &)( $ � 8 � ~ � 	 � ��� $ � ��� � &)( $ � � 	 � ��� $ � ���

We can now integrate with respect to � ��� � (Gaussian distribution) and with respect to� �& (inverse Gamma distribution) to obtain the following expression for the posterior:

0 	 � � � ��� $ � �"��� � ? � ��@ � � � ��
& 
�� � MCB � �& " � � @�� � � � B @ � ��� � ( & � & ( $w@A��� � ( &� � x � � ��� �: { 	

1
� J�� 	 � � � $ �

�
$ 	 � � $ $ ��

	 $ �������
 � � � $   	 �
��
& 
�� 	 �

�& � � x � � : ��� { [:\E] � ~ ��� :� �& � 	
1
� 	 � � x�� 9 ����@�� { [:\E] �:~ � � � � 	 (5.12)

It is worth noticing that the posterior distribution is highly non-linear in the RBF centres
� $ and that an expression of 0 	 � ? � ��@ � cannot be obtained in closed-form.

5.3 Bayesian Computation

For the sake of clarity, � is initially assumed to be given. After dealing with this fixed

dimension scenario, an algorithm where � is treated as an unknown random variable

is presented.
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5.3.1 MCMC sampler for fixed dimension

The following hybrid MCMC sampler, which combines Gibbs steps and Metropolis-

Hastings (MH) steps (Besag et al., 1995; Gilks et al., 1996; Tierney, 1994), is proposed:

Fixed dimension MCMC algorithm

1.
����� ��� �	� � 
������ �������� �����������	��������! "�	�$#%
��&�('*),+.-0/0132%+.-0/546�	�$#87 �:9 �
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The simulation parameter � is a real number satisfying O � � � M . Its value indicates

our belief about which proposal distribution leads to faster convergence. If we have

no preference for a particular proposal, we can set it to O �
	 . The various steps of the

algorithm are detailed in the following subsections. In order to simplify the notation,

the superscript ^ x
& {

is dropped from all variables at iteration * .
5.3.1.1 Updating the RBF centres

Sampling the RBF centres is difficult because the distribution is nonlinear in these

parameters. Here, they are sampled one-at-a-time using a mixture of MH steps. An MH

step of invariant distribution �i	X�E� and proposal distribution 3 	:� � ?���� involves sampling

a candidate value � � given the current value � according to 3 	:� � ? ��� . The Markov

chain then moves towards � � with probability � 	������ � � � gih e � M ��	 � 	���� 3 	�� � ? �E��� ��� � 	�� � �
3 	��!? � � � � , otherwise it remains equal to � . This algorithm is very general, but for good

performance in practice, it is necessary to use “clever” proposal distributions to avoid

rejecting too many candidates.
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According to equation (5.12), the target distribution is the full conditional distribu-

tion of a basis centre:

0 	 � � ( ��� � ? � ��@ � � ��� ( ��� � � �
� ��
& 
�� � �

� B @ � ��� � ( & � &)( $w@A��� � ( &� � x � � � � �: { 	 J�� 	 � � � ��� $ � (5.13)

where � ��� ( ��� � denotes � � � ( ��� � � � � ( ��� � ��������� � ����� ( ��� � � � ����� ( ��� � �������u� � $ ( ��� � � .
With probability O � � � M , the proposal 3 ��	 � �� ( ��� � ? � � ( ��� � � corresponds to randomly

sampling a basis centre from the interval
� g h e 	�� ��� � ( & �A~ ��
 & ��g j \ 	��A��� � ( & � B ��
 & � $ for * �

M �������u��T . The motivation for using such a proposal distribution is that the regions where

the data is dense are reached quickly. Subsequently, with probability M ~ � , we can

perform an MH step with proposal distribution 3 �	 � �� ( ��� � ? � � ( ��� � � :
� �� ( ��� � ? � � ( ��� � C � 	 � � ( ��� � � �

���� 8 � � (5.14)

This proposal distribution yields a candidate � �� ( ��� � which is a perturbation of the cur-

rent centre. The perturbation is a zero-mean Gaussian random variable with variance
� ���� 8 � . This random walk is introduced to perform a local exploration of the posterior

distribution. In both cases, the acceptance probability is given by:

� 	 � � ( ��� � � � �� ( ��� � � � g h e � M � � ��
& 
��
<
�
� B @ � ��� � ( & � &)( $�@A��� � ( &
�
� B @ � ��� � ( & � � &)( $ @A��� � ( & > x � ��� �: { 	 J�� 	 � � � � ��� $ ��� (5.15)

where
� � & ( $ and

� � &)( $ are similar to
� & ( $ and

� &)( $ with � ��� $ ( ��� � replaced by � � � ( ��� � � � � ( ��� � ������ � � ����� ( ��� � � � �� ( ��� � � � ����� ( ��� � �������u� � $ ( ��� � � . The combination of these proposal distribu-

tions has been found to work well in practice.

5.3.1.2 Sampling the nuisance parameters

Section 5.2.3 derived an expression for 0 	 � � � ��� $ � �"��� � ? � ��@ � from the full posterior dis-

tribution 0 	 � � � ��� � � � ��� $ ��� � � �"��� � ? � ��@ � by performing some algebraic manipulations

and integrating with respect to � ��� � (Gaussian distribution) and � � (inverse Gamma

distribution). As a result, if we take into consideration that:

0 	 � � � ��� � � � ��� $ ��� � � �"��� � ? � ��@ � � 0 	 � ��� � ? � � � ��� $ ��� � � � ��� � � � ��@ � 0 	 � � � ��� $ ��� � � �"��� � ? � ��@ �
� 0 	 � ��� � ? � � � ��� $ ��� � � �"��� � � � ��@ � 0 	 � � ? � � � ��� $ � �"��� � � � ��@ � 0 	 � � � ��� $ � �"��� � ? � ��@ �

it follows that, for * � M ��������� � , � ��� � ( & and � �& ( $ are distributed according to:

� �& ?z	 � � � ��� $ ��� � � � ��@A� C # � � � � B I� � � � B @ � ��� � ( & � &)( $w@A��� � ( &� � (5.16)� ��� � ( & ?z	 � � � ��� $ ��� � ��� � � � ��@A� C � 	 � &)( $���� �& � &)( $ � (5.17)
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5.3.1.3 Sampling the hyper-parameters

By considering 0 	 � � � ��� � � � ��� $ ��� � � �"��� � ? � ��@ � , we can clearly see that the hyper-parameters
� & (for * � M ��������� � ) can be simulated from the full conditional distribution:

� �& ?z	 � � � ��� � � � ��� $ ��� �& � � ��@ � C # � �7� � : B 6 � ��� � : B M� � �& � � ��� � ( & � � 	 � ��� $ � ��� � 	 � ��� $ � ��� � ��� � ( & �
(5.18)

On the other hand, an expression for the posterior distribution of � is not so straight-

forward, because the prior for � is a truncated Poisson distribution. � can be simulated

using the MH algorithm with a proposal corresponding to the full conditional that

would be obtained if the prior for � was an infinite Poisson distribution. That is, we

can use the following Gamma proposal for � :

3 	 � � � � � � x ��@���� � 9 � $ { [:\�]C� ~ 	 MCB � � ��� � " (5.19)

and subsequently perform a Metropolis-Hastings step with the full conditional distribu-

tion 0 	 �}? � � � ��� $ ��� � � � ��@ � as invariant distribution.

5.3.2 MCMC sampler for unknown dimension

Now let us consider the case where � is unknown. Here, the Bayesian computation

for the estimation of the joint posterior distribution 0 	 � � � � � ? � ��@ � is even more com-

plex. One obvious solution would consist of upper bounding � by say � ����� and running

� ����� B M independent MCMC samplers, each being associated with a fixed number

� � O ��������� � ����� . However, this approach suffers from severe drawbacks. Firstly, it is

computationally very expensive since � ����� can be large. Secondly, the same compu-

tational effort is attributed to each value of � . In fact, some of these values are of no

interest in practice because they have a very weak posterior model probability 0 	 � ? � ��@ � .
Another solution would be to construct an MCMC sampler that would be able to

sample directly from the joint distribution on G 1 � �
<
� $ �����$ 
 � � � � 1 G $ > 1 � . Standard

MCMC methods are not able to “jump” between subspaces G $ of different dimensions.

However, recently, Green has introduced a new flexible class of MCMC samplers, the

so-called reversible jump MCMC, that are capable of jumping between subspaces of

different dimensions (Green, 1995). This is a general state-space MH algorithm (see

(Andrieu et al., 1999f) for an introduction). One proposes candidates according to a

set of proposal distributions. These candidates are randomly accepted according to an

acceptance ratio which ensures reversibility and thus invariance of the Markov chain

with respect to the posterior distribution. Here, the chain must move across subspaces

of different dimensions, and therefore the proposal distributions are more complex: see
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(Green, 1995; Richardson and Green, 1997) for details. For our problem, the following

moves have been selected:

1. Birth of a new basis by proposing its location in the interval
� gih e 	�� ��� � ( & � ~ ��
 & �

g j \ 	��A��� � ( & � B ��
 & � $ for * � M �������u��T .

2. Death of an existing basis by removing it at random.

3. Merge a randomly chosen basis function and its closest neighbour into a single

basis function.

4. Split a randomly chosen basis function into two neighbour basis functions, such

that the distance between them is shorter than the distance between the proposed

basis function and any other existing basis function. This distance constraint

ensures reversibility.

5. Update the RBF centres.

These moves are defined by heuristic considerations, the only condition to be ful-

filled being to maintain the correct invariant distribution. A particular choice will only

have influence on the convergence rate of the algorithm. The birth and death moves

allow the network to grow from � to � B M and decrease from � to � ~ M respectively.

The split and merge moves also perform dimension changes from � to � B M and � to

� ~ M . The merge move serves to avoid the problem of placing too many basis func-

tions in the same neighbourhood. That is, when amplitudes of many basis functions,

in a close neighbourhood, add to the amplitude that would be obtained by using fewer

basis functions, the merge move combines some of these basis functions. On the other

hand, the split move is useful in regions of the data where there are close components.

Other moves may be proposed, but the ones suggested here have been found to lead to

satisfactory results.

The resulting transition kernel of the simulated Markov chain is then a mixture of

the different transition kernels associated with the moves described above. This means

that at each iteration one of the candidate moves, birth, death, merge, split or update,

is randomly chosen. The probabilities for choosing these moves are � $ , T�$ , 6 $ , ��$ and
�!$ respectively, such that � $ B T�$ B 6 $ B ��$ B �!$�� M for all O � � � ������� . A move is

performed if the algorithm accepts it. For � � O the death, split and merge moves are

impossible, so that T � � O , �
� � O and 6 � � O . The merge move is also not permitted

for � � M , that is 6<� � O . For � � ������� , the birth and split moves are not allowed and

therefore � $ ����� � O and �w$ ����� � O . Except in the cases described above, the following

probabilities are adopted:

� $ � � ��gih e � M � 0 	 � B M �
0 	 � � � , T $ ��� � � ��gih e �

M � 0 	 � �
0 	 � B M � � (5.20)
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where 0 	 � � is the prior probability of model � $ and � � is a parameter which tunes the

proportion of dimension/update moves. As pointed out in (Green, 1995), this choice

ensures that � $ 0 	 � � � T $ ��� 0 	 � B M � � ��� � M , which means that an MH algorithm in a

single dimension, with no observations, would have M as acceptance probability. The

parameter � � is set to O � � 	 and then � $ B T $ B 6 $ B ��$ N � O � � 	E� M � for all � (Green,

1995). In addition, 62$ � T $ and �w$ � � $ . The main steps of the algorithm can now be

described as follows:

Reversible Jump MCMC algorithm
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> E �.F=�H� ���5�{�����8�Q�	G���;Db�G���;`�	F(�&�5��;`
Jik� +�sD/ 1�� � +�sD/ u ��
0�.��e������$����� ���
{'}�a���Q�	4z�	��#~'[�a���Q�H4{�

3.
7���7 ��9 �	��#^e�_�5%�a� �

These different moves are explained in the following subsections. Once again, in

order to simplify the notation, superscript ^ x
& {

is dropped from all variables at iteration

* .
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5.3.2.1 Birth and death moves

Suppose that the current state of the Markov chain is in � � � 1 G2$ 1 � , then:

Birth move

> �,;`�G��
��%�~����� #&%����C������;D�%����;<�	�$#�aF �g;`�F �����"�.���5��;D���	��� ���	� i q R�n 
6P s u����� s 1������ i q R�n 
6P s u �
�� s�� �Z�; 7 � 9 1QBCBQB@1 � �

> | �$�	���$���5����� s	����� X�
3�C�������$����� ���'}�Y� �! 	4&X��	�$#8
��	F=G	� ��I K MvO -CP RgS �
> � ��I��"�#� s$����� �������8������
5�3���5����������~]���;&%���%�$�$���.� w����&aF��C
('* ��9 1�j R�n 
*) R,+ X ��� 
3�^� ��;`��F(���.��
�����$�	���5 i[ 1�j R�n 
 u . �

Now, assume that the current state of the Markov chain is in � � � 1 G $ 1 � , then:

Death move

>.- ��	H
3�{�����_w$��
0� 
v�C������;D�	X��5 w��=#���� �&�5�Q# X����{;`�	�$#�aF �	F(���e������� ^�&��� 
3���.��e w$��
3�Q
Q�
> | �$�	���$���5��� o*/102��� X�
3�Q�J�Q�a������� a�8'[�a� �3 �4&X��	�$#8
��	F=G	� ��I KWMvO -QP RgS �
> � �(I��4� o*/102��� �������������_
5�3���5�_�������� ]���;&%���8�$�$���.�"w��Q�C�F��Q
5'* � 9 1�j R�n 
 t R6+ X ��� 
3�%� �=;`��F(���.��
�����$�	���5 i[ 1�j R�n 
 u � �

The acceptance ratio for the proposed birth move is deduced from the following

expression (Green, 1995):

6!7 & / �,+ �
	 098 � 4 d�6o*�8 6 T * � 4�6o* � � 4�*�8 ; � 6 Z 4�*�8 � 1 	 0 6:8�098 ��Z � 6 Z 4�*�8 � 1 	 � Z �;8
�S* Z ; � (5.21)

That is:

6!7 & / �,+ � 0 	 � B M � � ��� $ ��� � �"��� � ? � ��@ �
0 	 � � � ��� $ � � ��� � ? � ��@A� 1 T $ ��� $�	 � B M �� $�$ � 1

����

� 	 � ��� $ ��� �
� 	 � ��� $ � � � �

����

Clearly, the Jacobian is equal to M and after simplification we obtain:

6!7 & / �,+ �
� ��
& 
��

M	 MCB � �& � ��@�� < �
� B @ � ��� � ( & � &)( $�@A��� � ( &

�
� B @ � ��� � ( & � &)( $ ��� @A��� � ( & > x � ��� �: { 	 M	 � B M � (5.22)
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Similarly, for the death move:

6 � � � �,+ � 0 	 � ~ M � � ��� $ ��� � �"��� � ? � ��@ �
0 	 � � � ��� $ � �"��� � ? � ��@A� 1 � $ ��� $ �T $ $ � 1

����

� 	 � ��� $ ��� � � � �
� 	 � ��� $ �

����

and consequently:

6 � � � �,+ � � ��
& 
�� 	 MCB � �& � ��@�� < �

� B @ � ��� � ( & � &)( $w@A��� � ( &
�
� B @ � ��� � ( & � &)( $ ��� @A��� � ( & > x � � � �: { 	 � (5.23)

The acceptance probabilities corresponding to the described moves are:

�(7 & / �,+ � gih e � M � 6!7 & /��,+ � , � � � � �,+ � gih e � M � 6 � � � �,+ � (5.24)

5.3.2.2 Split and merge moves

The merge move involves randomly selecting a basis function 	 � � � and then combining

it with its closest neighbour 	 � � � into a single basis function � , whose new location is:

� � � � B � �� (5.25)

The corresponding split move that guarantees reversibility is:

� � � � ~ � � 	 � �
� � � � B � � 	 � � (5.26)

where � � is a simulation parameter and � � 	 C G � � ( � � . Note that to ensure reversibility,

the merge move is only performed if
p � � ~ � � p � ��� � . Suppose now that the current

state of the Markov chain is in � � � 1 G4$ 1 � , then:

Split move

> # �	�$#�aF=� ���$����
��{�	���&��� 
3���.��e # %��%�&���Q��;`�H�
> E �Hw�
5��� �����5�L� �(�Z�;����! ����� ea�Hw�a�H;�w$��
0� 
{�g�	���&��� ���
QX �����
��8�C������;D�Q
=��;`�^awQ�3���.���Q# ��
0�.��e~�Q�a������� a�'[�a� ���	4&�������L���6�A�&������;`�C
�F=��
5�=w�� w���	�$# �5U� � �^�.�%�����8
CG��$�C� � 
 �	�$# �����8#�� 
5�3�	�$�&�L'Z�[�HG�� �C�	��� �
| �$�$� � #H�Q�	��48w��C���!�Q���L������F ����
��5 w��L
&���;��5��;����$�	�L�����L#�� 
5�3�	�$�&� w��&�&�!�C��� ����� G�;`�G�H
3�Q# w���
�� 
�g�	�$����� ����	�$#^�	���=�������; �&��� 
3���.��eLw$��
0� 
z�g�H�$����� a���

> | �$�	���$���5�������	� s � X�
3�Q�{�����$����� ���'}�Y� �H�H4CX	�	�$#8
��	F�GH� ��I KWM6O -CP RgS �
> � �JI � �����	� s � �������8�����%
5�3���5����z������]���;&%���^�$�$���.�~w��Q�&aF��C
 '  � 9 1�j R�n 
*) R + X ��� 
��%� ��;`��F(���.��
�����$�	���5 i[ 1�j R�n 
 u . �
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Now, assume that the current state of the Markov chain is in � � � 1 G $ 1 � , then:

Merge move

>.- ��	H
3�^� w$��
0� 
=�&���Q��;`�"����;`�	�$#H�F �	F�a��e �����L ���H� 
5���.��e w���
��C
�� �v����� � ��#������^��� �
3�Q
5��w���
�� 
�g�	�$����� ��J�5"� �v�	GHG	� ���.��e8
3aF���#�� 
3�3�	���C�_F(�&��;k� ��X���� ��� | �$�$� � #H�Q�	���
> � ���Cj R � j � �{T �
	 y X$
C�Hw�
5��� �����5�!�����m�&�!=w$��
0� 
 �g�H�$����� a��
,�Z�;��v
0�.��e�� ��w���
�� 
 �g�	�$����� ����.���$�C�C�;`#	�	���C�
��� ���=�Q�a������� a�^'}�Y� �H�H4&�

> | �$�	���$���5��� � /1���6/ X�
��C�J�����$����� ��%'}�Y� �H�H4CX��	��#8
��	F=GH� ��I KNM6O -QP R*S �
> � ��I�� � � / ���6/ �������������=
3�3���5�=��d�����"]_��;&%0��_�$�$���.�^w����&�F(�C
 '* � 9 1�j R�n 
 t R + X���� 
3��� ��;`��F(���.��
�����$�	���5 i[ 1�j R�n 
 u � �

The acceptance ratio for the proposed split move is given by:

6 	 -
� & � � 0 	 � B M � � ��� $ ��� � � ��� � ? � ��@A�

0 	 � � � ��� $ � � � � ��� � ? � ��@ � 1 6 $ ��� $�	 � B M �
0 	 � � 	 � �w$ $ � 1

����
� 	 � � � � � �
� 	 � � � � 	 �

����

In this case, the Jacobian is equal to:

� 	 -
� & � � ����

� 	 � � � � � �
� 	 � � � � 	 �

����
�
�����
M M~ � � � �

�����
� ��� �

and, after simplification, we obtain:

6 	 -
� & � � � ��

& 
��
M	 MCB � �& � ��@�� < �

� B @ � ��� � ( & � &)( $�@ ��� � ( &
�
� B @ � ��� � ( & � &)( $ ��� @A��� � ( & > x � ��� �: {

� 	 � � �
� 	 � B M � (5.27)

Similarly, for the merge move:

6 � � /� � � 0 	 � ~ M � � ��� $ ��� � �"��� � ? � ��@ �
0 	 � � � ��� $ � �"��� � ? � ��@A� 1 ��$ ��� $�	 � ~ M �6 $	$ � 1

����

� 	 � � � � 	 �
� 	 � � � � � � ����

and, since
� � � /� � � M $���� � , it follows that:

6 � � /� � � � ��
& 
�� 	 MCB � �& � ��@�� < �

� B @ � ��� � ( & � &)( $�@ ��� � ( &
�
� B @ � ��� � ( & � & ( $ ��� @A��� � ( & > x � ��� �: { 	 � �

� � 	 � ~ M � (5.28)

The acceptance probabilities for the split and merge moves are:

� 	 -
� & � � gih e � M � 6 	 -

� & � � , � � � /� � � gih e � M � 6 � � /� � � (5.29)
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5.3.2.3 Update move

The update move does not involve changing the dimension of the model. It requires an

iteration of the fixed dimension MCMC sampler presented in Section 5.3.1.

The method presented so far can be very accurate, yet it can be computationally

demanding. The following section presents a method that requires optimisation in-

stead of integration to obtain estimates of the parameters and model dimension. This

method, although less accurate, as shown in Section 5.6, is less computationally de-

manding. The choice of one method over the other should ultimately depend on the

modelling constraints and specifications.

5.4 Reversible Jump Simulated Annealing

This section shows that traditional model selection criteria within a penalised likelihood

framework, such as AIC, BIC and MDL (Akaike, 1974; Schwarz, 1985; Rissanen, 1987),

can be shown to correspond to particular hyper-parameter choices in our hierarchical

Bayesian formulation. That is, it is possible to calibrate the prior choices so that the

problem of model selection within the penalised likelihood context can be mapped

exactly to a problem of model selection via posterior probabilities. This technique has

been previously applied in the areas of variable selection (George and Foster, 1997)

and the detection of harmonics in noisy signals (Andrieu and Doucet, 1998b).

After resolving the calibration problem, maximum likelihood estimation, with the

aforementioned model selection criteria, is performed by maximising the calibrated

posterior distribution. To accomplish this goal, an MCMC simulated annealing algo-

rithm, which makes use of the homogeneous reversible jump MCMC kernel as proposal,

is proposed. This approach has the advantage that we can start with an arbitrary model

order and the algorithm will perform dimension jumps until it finds the “true” model

order. That is, one does not have to resort to the more expensive task of running a fixed

dimension algorithm for each possible model order and subsequently selecting the best

model.

5.4.1 Penalised likelihood model selection

Traditionally, penalised likelihood model order selection strategies, based on standard

information criteria, require the evaluation of the maximum likelihood (ML) estimates

for each model order. The number of required evaluations can be prohibitively expen-

sive unless appropriate heuristics are available. Subsequently, a particular model � 	

is selected if it is the one that minimises the sum of the log-likelihood and a penalty

term that depends on the model dimension (Djurić, 1998; Gelfand and Dey, 1997). In
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mathematical terms, this estimate is given by:

� 	 � jon c g h e
� ' � $ t�� � (
	
	
	X( $ �������

� ~ a�bc 	 0 	)@ ? � � � � � ����� B ' � (5.30)

where
�
� � 	 �� ��� � � �� ��� $ � �� �$ � is the ML estimate of � for model � $ . ' is a penalty term

that depends on the model order. Examples of ML penalties include the well known

AIC, BIC and MDL information criteria (Akaike, 1974; Schwarz, 1985; Rissanen, 1987).

The expressions for these in the case of Gaussian observation noise are:

' AIC
��� and ' BIC

� ' MDL
�
� � a�bc 	�I<� (5.31)

where � denotes the number of model parameters ( � 	 �B M � B � 	 M B TE� in the case of

an RBF network). These criteria are motivated by different factors: AIC is based on

expected information, BIC is an asymptotic Bayes factor and MDL involves evaluating

the minimum information required to transmit some data and a model, which describes

the data, over a communications channel.

Using the conventional estimate of the variance for Gaussian distributions:�� �& � MI ��@ ��� � ( & ~ � 	 �� ��� $ � ��� �� ��� � ( & " � �X@ ��� � ( & ~ � 	 �� ��� $ � ��� �� ��� � ( & " � MI @ � ��� � ( & ���&)( $ @ ��� � ( &
where

� �&)( $ is the least squares orthogonal projection matrix:

� �&)( $ � 8 � ~ � 	 �� ��� $ � ��� A � � 	 �� ��� $ � ��� � 	 �� ��� $ � ��� E ��� � � 	 �� ��� $ � ���
we can expand equation (5.30) as follows:

� 	 � jon c gih e
� ' � $ t�� � (
	
	
	X( $ �������

� ~ a�bc � ��
& 
�� 	���� �� �& � ��� @�� [:\E] < ~ M� �� �& � @A��� � ( & ~ � 	 �� ��� $ � ��� �� ��� � ( & " �

��@A��� � ( & ~ � 	 �� ��� $ � ��� �� ��� � ( & " > 	 B ' �
� jon c gih e
� ' � $ t�� � (
	
	
	X( $ �������

� I � �� & 
�� a�bc � ��� �� �& " B �� & 
�� M� �� �& � @ ��� � ( & ~ � 	 �� ��� $ � ��� �� ��� � ( & " �
� @A��� � ( & ~ � 	 �� ��� $ � ��� �� ��� � ( & " B ' �

� jon c gih e
� ' � $ t�� � (
	
	
	X( $ �������

� I � �� & 
�� a�bc � �� �& " B ' �
� jon c gih e
� ' � $ t�� � (
	
	
	X( $ �������

� I � �� & 
�� a�bc � @ � ��� � ( & � �&)( $ @A��� � ( & " B ' �
� jon c gij \
� ' � $ t�� � (
	
	
	X( $ �������

� � ��
& 
�� 	)@ � ��� �

( & � �&)( $ @A��� � ( & � ����@�� 	 [:\�] 	 ~ ' ��� (5.32)

The following subsection shows that calibrating the priors in the hierarchical Bayes

model leads to the expression given by equation (5.32).
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5.4.2 Calibration

It is useful and elucidating to impose some restrictions on the Bayesian hierarchical

prior (equation (5.12)) to obtain the AIC and MDL criteria. We may begin by assuming

that the hyper-parameter � is fixed to a particular value, say � , and that we no longer

have a definite expression for the model prior 0 	 � � , so that:

0 	 � � � ��� $ ? � ��@A� �
� ��
& 
�� 	 MCB � �& � � � @�� � � � B @ � ��� � ( & � &)( $w@A��� � ( &� � x � � � � �: { 	 � J�� 	 � � � $ �

�
$ 	 0 	 � �

Furthermore, setting �
� � O and �

� � O to obtain Jeffreys’ uninformative prior 0 	 � �& � �
M $ � �& results in the following expression:

0 	 � � � ��� $ ? � ��@A� �
� ��
& 
�� � MCB � �& " � $ @�� �f@ � ��� � ( & � & ( $�@A��� � ( & � � � : 	 � J�� 	 � � � $ ��

$ 	 0 	 � �
where:

� ���&)( $ � � M5B � � �& " � � 	 � ��� $ � ��� � 	 � ��� $ � ���� & ( $ � � &)( $ � � 	 � ��� $ � ����@A��� � ( &
� &)( $ � 8 � ~ � 	 � ��� $ � ��� � &)( $ � � 	 � ��� $ � ���

Finally, we can select �
�&

and 0 	 � � such that:� ��
& 
�� � MCB � �& " � $ @�� 	 � J�� 	 � � � $ ��

$ 	 0 	 � � � [:\�] 	 ~ ' � � [:\�] 	 ~ � � � (5.33)

thereby ensuring that the expression for the calibrated posterior 0 	 � � � ��� $ ? � ��@ � corre-

sponds to the term that needs to be maximised in the penalised likelihood framework

(equation (5.32)). Note that for the purposes of optimisation, we only need the propor-

tionality condition with
� � ��B M for the AIC criterion and

� �
	 ��B M � a,bc 	�I<��$�� for the

MDL and BIC criteria. We could, for example, satisfy the proportionality by remaining

in the compact set � and choosing the prior:

0 	 � � � � $
	 $������� 
 � � �

with the following fixed value for � :

� �
� ��
& 
�� � M5B � �& " 9: 	 � [:\�] ��~ � " (5.34)

In addition, we have to let �
� � so that

� &)( $ � � �& ( $ .
It has thus been shown that by calibrating the priors in the hierarchical Bayesian

formulation, in particular by treating � and �
�

as fixed quantities instead of as random
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variables, letting �
� � , choosing an uninformative Jeffreys’ prior for � � and setting �

as in equation (5.34), one can obtain the expression that needs to be maximised in the

classical penalised likelihood formulation with AIC, MDL and BIC model selection crite-

ria. Consequently, the penalised likelihood framework can be interpreted as a problem

of maximising the joint posterior posterior distribution 0 	 � � � ��� $ ? � ��@A� . Effectively, this

MAP estimate can be obtained as follows:

	 � � � ��� $ � MAP
� jon c g j \$ ( � 9�� ' t � 0 	 � � � ��� $ ? � ��@ �

� jon c g j \$ ( � 9�� ' t � � � ��
& 
�� 	)@ � ��� �

( & ���&)( $ @A��� � ( & � ��� @�� 	 [:\�] 	 ~ ' ��� (5.35)

The sufficient conditions that need to be satisfied so that the distribution 0 	 � � � ��� $ ? � ��@A�
is proper are not overly restrictive. Firstly, � has to be a compact set, which is not a

problem in our setting. Secondly, @ � ��� � ( & � �&)( $ @ ��� � ( & has to be larger than zero for * �
M �������u� � . In Appendix E, Lemma 1, it is shown that this is the case unless @r��� � ( & spans

the space of the columns of
� 	 � ��� $ � ��� , in which case @ � ��� � ( & � �&)( $ @A��� � ( & � O . This event is

rather unlikely to occur in our approximation framework, yet we can safeguard against

it happening by choosing a very large value for � in the simulations. This is a standard

least squares trick known as ridge regression (Marquardt and Snee, 1975; Wetherill,

1986).

5.4.3 Reversible jump simulated annealing

From an MCMC perspective, we can solve the stochastic optimisation problem posed

in the previous subsection by adopting a simulated annealing strategy (Geman and Ge-

man, 1984; Van Laarhoven and Arts, 1987). The simulated annealing method involves

simulating a non-homogeneous Markov chain whose invariant distribution at iteration

* is no longer equal to � 	���� , but to: � & 	���� � � ��@�� R 	��E�
where

� &
is a decreasing cooling schedule with

a hfg &�� ��� � & � O . The reason for doing

this is that, under weak regularity assumptions on � 	���� , � � 	���� is a probability density

that concentrates itself on the set of global maxima of � 	��E� .
As with the MH method, the simulated annealing method with distribution �i	����

and proposal distribution 3 	:� � ?���� involves sampling a candidate value � � given the

current value � according to 3 	:� � ? ��� . The Markov chain moves towards � � with prob-

ability � SA
	��B��� � � � gih e�� M ����� ��@�� R 	X��� 3 	:� � ?���� " ��� � ��@�� R 	�� � � 3 	��!? � � �	� , otherwise it re-

mains equal to � . If we choose the homogeneous transition kernel 
 	��B��� � � of the
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reversible jump algorithm as the proposal distribution and use the reversibility prop-

erty: � 	�� � � 
 	�� � ����� � � 	���� 
 	��B��� � �
it follows that:

� RJSA
� gih e � M � � x ��@�� R ��� { 	�� � �� x ��@�� R ��� { 	���� � (5.36)

Consequently, the following algorithm, with � $ � T�$ � 6 $ � ��$ � � $ � O � � , can find

the joint MAP estimate of � ��� $ and � :

Reversible Jump Simulated Annealing

1.
����� ��� �	� � 
������ �� � 
3�&� '  +.-0/ 1 � +.-0/ + � � �

2.
� �5��;<����� ��=7

.

> E �	F=GH� �JILKNM6O -QP R*S �	�$#%
��&�m�������5��F�G���;<�����H;`���v� �����_�&��� �.��e_
��$���Q#a�H� �	�
> � �=iZI��	��
 ����� u

–
����������w��.;������^F(����%' E �Q� E �Q����� a���a�  Y� �H4C�

–
��� 
3��� �=iZI��	� 
 ����� ��� 
 ����� u ���������g#H�Q�������LF�����8' E �Q� E �Q�&��� ����a�  Y� �H4C�

–
��� 
3��� �=iZI��	��
 ����� ��� 
 ����� ��� 
 ����� u ���������*
CGH� � ���"F�����8' E �C� E ������� ����Y�  � �	4&�

–
��� 
3�=� ��ikI��	��
����� ��� 
����� ��� 
����� � � 
����� u ���������0F���;`e�� �%F������' E �Q� E �Q�&��� ��=�a�  Y� �H4C�

–
��� 
3���	G�#H���5�������$#&%��^�C������;D�Q
J' E �Q� E �Q�&��� ��=�a�  Y�  	4C�

| �$#~� �3�> �a��;D�Z�;}F:�	�"] c 
5�5��G �v� ���J�����J�	�H���Q�	� ��#%�$�C�&��GQ�3�	�$�&��;<����� ~'k�Q�a�$����� ��^'}�Y� �H�H4�4
.

3.
7���7 ��9 �	��#^e�_�5%�a�

4. - �F�GH���5�{�����=�C	���8��� �����5
d� R�n � w&�^� �Q��
3��
����$��;`�C
�'}�G����.F(�	���.�J����� 
v�C��
3��4 �
�� R�n �(P s � � ���*ikj R�n 
 1 q u � ikj R�n 
 1 q u � t R ���}i}j R�n 
 1 q u r R�n 
vP s �

The simulated annealing moves are explained in the following subsections.
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5.4.4 Update move

The radial basis centres are sampled in the same way as explained in Section 5.3.1.1.

However, the target distribution is given by:

0 	 � � ( ��� � ? � ��@ � � ��� ( ��� � � �
� ��
& 
�� 	)@ � ��� �

( & � �&)( $ @A��� � ( & � x � � : { 	 [:\E] 	 ~ ' � (5.37)

and, consequently, the acceptance probability is:

� RJSA
	 � � ( ��� � � � �� ( ��� � � � gih e � M � � ��

& 
�� �
@ � ��� � ( & � �& ( $ @A��� � ( &
@ � ��� � ( & � � & ( $ @A��� � ( & � x � : { 	 � (5.38)

where
� � & ( $ is similar to

� �& ( $ with � ��� $ ( ��� � replaced by � � � ( ��� � � � � ( ��� � �������u� � ����� ( ��� � � � �� ( ��� � �
� ����� ( ��� � ��������� � $ ( ��� � � .

5.4.5 Birth and death moves

The birth and death moves are similar to the ones proposed in Section 5.3.2.1, except

that the expressions for 6 7 & /��,+ and 6 � � � �,+ (with � $ � T $ � O � � ) become:

6!7 & / �,+ �
� ��
& 
�� �

@u� ��� � ( & � �&)( $ @A��� � ( &
@ � ��� � ( & � �&)( $ ��� @A��� � ( & � x � : { 	 � [:\�] 	 ~ � �

� B M (5.39)

Similarly,

6 � � � �,+ � � ��
& 
�� �

@ � ��� � ( & � �&)( $ @ ��� � ( &
@ � ��� � ( & � �&)( $ ��� @A��� � ( & � x � : { 	 � [:\E] 	 � �

� (5.40)

Hence, the acceptance probabilities corresponding to the described moves are:

�(7 & / �,+ � gih e � M � 6!7 & /��,+ � , � � � � �,+ � gih e � M � 6 � � � �,+ � (5.41)

5.4.6 Split and merge moves

Again the split and merge moves are analogous to the ones proposed in Section 5.3.2.2,

except that the expressions for 6 	 -
� & � and 6 � � /� � (with 6 $ � �w$ � O � � ) become:

6 	 -
� & � � � ��

& 
�� �
@ � ��� � ( & � �&)( $ @A��� � ( &
@ � ��� � ( & � �&)( $ ��� @ ��� � ( & � x � : { 	 � � � [:\�] 	 ~ � �

� B M (5.42)

and

6 � � /� � � � ��
& 
�� �

@ � ��� � ( & � �&)( $ @ ��� � ( &
@ � ��� � ( & � �&)( $ ��� @A��� � ( & � x � : { 	 � [:\�] 	 � �

� � 	 � ~ M � (5.43)

The acceptance probabilities for these moves are:

� 	 -
� & � � gih e � M � 6 	 -

� & � � , � � � /� � � gih e � M � 6 � � /� � � (5.44)
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5.5 Convergence Results

It is easy to prove that the reversible jump MCMC algorithm applied to the full Bayesian

model converges: in other words, that the Markov chain � � x & { � � x & {��� $ � � x & { ��� � x & { � & t 1 is

ergodic. Here, a stronger result is proved by showing that � � x & { � � x & {��� $ � � x & { ��� � x & { � & t 1
converges to the required posterior distribution at a geometric rate.

For the homogeneous kernel, the following result holds:

Theorem 1 Let � � x & { � � x & {��� $ � � x & { ��� � x & { � & t 1 be the Markov chain whose transition kernel

has been described in Section 5.3. This Markov chain converges to the probability distribu-

tion 0 � � � � ��� $ � � ��� � �� � ��@ " . Furthermore this convergence occurs at a geometric rate, that

is, for almost every initial point � � x � { � � x � {��� $ � � x � { ��� � x � { � N �
1 � there exists a function of

the initial states
� � � x � { � � x � {��� $ � � x � { ��� � x � { � � O and a constant � N � O � M � such that:

��� 0 x
& { � � � � ��� $ � �"��� � " ~ 0 � � � � ��� $ � � ��� � �� � ��@ " ��� � � � � � � x � { � � x � {��� $ � � x � { ��� � x � { � �

� & @ $��������
(5.45)

where 0 x
& { � � � � ��� $ � �"��� � " is the distribution of � � x & { � � x & {��� $ � � x & { ��� � x & { � and

p ^ p � � is the

total variation norm (Tierney, 1994).

Proof. See Appendix B �

Corollary 1 Since at each iteration * one simulates the nuisance parameters 	 � ��� � ��� �$ � ,
then the distribution of the series 	 � x

& { � � x & {��� � � � x & {��� $ ��� � x & {$ � � x & { ��� � x & { � & t 1 converges geomet-

rically towards 0 	 � � � ��� � � � ��� $ ��� �$ � � ��� � ? � ��@ � at the same rate � .

In other words, the distribution of the Markov chain converges at least at a ge-

ometric rate, dependent on the initial state, to the required equilibrium distribution

0 	 � � � ���}? � ��@ � .
Remark 1 In practice, one cannot evaluate � but Theorem 1 proves its existence. This type

of convergence ensures that a central limit theorem for ergodic averages is valid (Meyn and

Tweedie, 1993; Tierney, 1994). Moreover, in practice there is empirical evidence that the

Markov chain converges quickly.

The following convergence theorem for the reversible jump MCMC simulated an-

nealing algorithm applies:

Theorem 2 Under certain assumptions found in (Andrieu et al., 1999b), the series of	 � x
& { � � x

& { � converges in probability to the set of global maxima 	 � ����� � � ����� � , that is for

any � � O , it follows that:

a h,g&�� � P

< 0 	 � x
& { � � x

& { �
0 	 � ����� � � �����o� � M ~ � > � M
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Proof. If we follow the same steps as in Proposition 1 of Appendix E, with �
�

and �
fixed, it is easy to show that the transition kernels for each temperature are uniformly

geometrically ergodic. Hence, as a corollary of (Andrieu et al., 1999b, Theorem 1), the

convergence result for the simulated annealing MCMC algorithm follows �

5.6 Experiments

When implementing the reversible jump MCMC algorithm, discussed in Section 5.4,

one might encounter problems of ill-conditioning, in particular for high dimensional

parameter spaces. There are two satisfactory ways of overcoming this problem. Firstly,

we can introduce a ridge regression component so that the expression for
� ���& ( $ in

Section 5.2.3 becomes:

� ���&)( $ � � � 	 � ��� $ � ��� � 	 � ��� $ � ��� B � ���& B � 8 �
where

�
is a small number. Alternatively, we can introduce a slight modification of the

prior for � ��� � :

0 	 � ��� � ? � � � ��� $ ��� � � �"��� � � � � ��
& 
�� ? ��� � �& � �& 8 � ? ����@�� [:\�] � ~ M� � �& � �& � � ��� � ( & � ��� � ( & �
	 (5.46)

In doing so, the marginal posterior distribution becomes:

0 	 � � � ��� $ � �"��� � ? � ��@ � � � ��
& 
�� 	 �

�& � � � @�� ? � &)( $E? ��@�� � � � B @ � ��� � ( & � &)( $�@A��� � ( &� � x � � ��� �: { 	
1
� J�� 	 � � � $ �

�
$ 	 � � $ $ ��

	 $ �������
 � � � $   	 �
��
& 
�� 	 �

�& � � x ��� : ��� { [:\E] ��~ � � :� �& � 	
1
� 	 � � x�� 9 ����@�� { [:\E] �:~ � � � � 	 (5.47)

where:

� ���&)( $ � � � 	 � ��� $ � ��� � 	 � ��� $ � ��� B � � �& 8 �� & ( $ � � &)( $ � � 	 � ��� $ � ����@A��� � ( &
� &)( $ � 8 � ~ � 	 � ��� $ � ��� � &)( $ � � 	 � ��� $ � ���

It has been found that although both strategies can deal with the problem of limited

numerical precision, the second approach seems to be more stable. In addition, the

second approach does not oblige us to select a value for the simulation parameter
�
.

The results presented henceforth were obtained using this approach.
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5.6.1 Signal detection example

The problem of detecting signal components in noisy signals has occupied the minds of

many researchers for a long time (Djurić, 1996; Fisher, 1929; Hannan, 1961). Here, the

rather simple toy problem of detecting Gaussian components in a noisy signal is con-

sidered. The aim is to compare the performance of the hierarchical Bayesian model se-

lection scheme and the penalised likelihood model selection criteria (AIC, MDL) when

the amount of noise in the signal varies.
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Figure 5.3 Performance of the reversible jump MCMC algorithm on the signal detection problem.

Despite the large noise variance, the estimates of the true function and noise process are very

accurate, thereby leading to good generalisation (no over-fitting).

The data was generated from the following univariate function using 50 covariate

points uniformly on
� ~ �E�8��� :
��� � B � [:\�] 	 ~ M � � � � B � [:\�] 	 ~ M � 	 �7~ O � � � � B ;

where ; C � 	 O � � � � . The data was then rescaled to make the input data lie in the

interval
� O � M � . The full Bayesian and simulated annealing algorithms were used to

estimate the number of components in the signal for different levels of noise. The ex-

periment was repeated 100 times for each noise level. Gaussian radial basis functions

with the same variance as the Gaussian signal components were chosen. For the sim-

ulated annealing method, a linear cooling schedule was adopted:
� & � Z ~ �S* , where
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Figure 5.4 Histograms of the main mode
�h,i[ p q 1�r u for 100 trials of each noise level. The Bayes

solution provides a better estimate of the true number of bases (
�
) than the MDL/BIC and AIC

criteria.

Z!� � N = �
and

� &
� O for * � M �8�E� � ������� . In particular, the initial and final temperatures

were set to M and Mi1 M�O � � . For the Bayesian model, diffuse priors ( ��� : � �E����� : �
M�O (see experiments in Chapter 7) � � � � O � � � � O � � � � O � OOBM and � � � O � OOOBM ) were

selected. Finally, the simulation parameters � ����� , � , � �� � and � � were set to � O , O � M ,
O � OOBM and O � M .

Figure 5.3 shows the typical fits that were obtained for training and validation data

sets. By varying the variance of the noise � � , the main mode and fractions of unex-

plained variance were estimated. For the AIC and BIC/MDL criteria, the main mode

corresponds to the one for which the posterior is maximised, while for the Bayesian

approach, the main mode corresponds to the MAP of the model order probabilities�0 	 � ? � ��@ � , computed as suggested in Section 5.2.2.

The fractions of unexplained variance (fv) were computed as follows:

fv �
M
M�OO

� ���� & 
�� 	 � �� 
�� 	 �� ( & ~ ��� ( & � �
	 � �� 
�� 	 � � ( & ~ � & � �

where
��#� ( & denotes the 4 -th prediction for the * -th trial and �

&
is the estimated mean

of �
&
. The normalisation in the fv error measure makes it independent of the size of

the data set. If the estimated mean was to be used as the predictor of the data, the fv
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would be equal to M . The results obtained are shown in Figure 5.4 and Table 5.1. The

� � AIC BIC/MDL Bayes

0.01 0.0070 0.0076 0.0069

0.1 0.0690 0.0732 0.0657

1 0.6083 0.4846 0.5105

Table 5.1 Fraction of unexplained variance for different values of the noise variance, averaged over9 ��� test sets.

fv’s for each model selection approach are very similar. This result is expected since the

problem under consideration is rather simple and the error variations could possibly

be attributed to the fact that only 100 realisations of the noise process for each � � are

used. What is important is that, even in this scenario, it is clear that the full Bayesian

model provides more accurate estimates of the model order.

5.7 Summary

This chapter presented a general methodology for estimating, jointly, the noise vari-

ance, parameters and number of parameters of an RBF model. In adopting a Bayesian

model and a reversible jump MCMC algorithm to perform the necessary integrations, it

was demonstrated that the method is very accurate and generalises well. Chapter 8 will

show the robustness of the algorithm to the specification of the prior’s parameters. The

chapter also considered the problem of stochastic optimisation for model order selec-

tion and proposed a solution that makes use of a reversible jump simulated annealing

algorithm and classical information criteria. Moreover, it presented theorems of geo-

metric convergence for the reversible jump algorithm with the full Bayesian model and

convergence for the simulated annealing algorithm.



6

Sequential Monte Carlo Methods

The Taylor series approximations in the EKF algorithm can lead to poor representations

of the probability distributions of interest. With nonlinear models these distributions

tend to be multi-modal. Gaussian approximation in such cases could miss the rich

structure brought in by the nonlinear model. In addition, if the noise model is not

Gaussian the EKF can lead to erroneous results.

Sequential Monte Carlo (SMC) methods provide a route for overcoming these prob-

lems. Moreover, they allow for a complete representation of the posterior distribution,

so any statistical estimates, such as the mean, modes, kurtosis and variance, can be eas-

ily computed. Tracking in computer vision (Isard and Blake, 1996) is a good example of

an application area where the Kalman filter approximation is shown to fail to capture

the multi modalities, while SMC methods perform well. SMC algorithms, under the

names of particle filters, sequential sampling-importance resampling (SIR), bootstrap

filters and condensation trackers have also been applied to a wide range of problems,

including target tracking (Gordon et al., 1993), financial analysis (Liu and West, 2000;

Müller, 1992; Pitt and Shephard, 1999), diagnostic measures of fit (Pitt and Shep-

hard, 1999), sequential imputation in missing data problems (Kong et al., 1994), blind

deconvolution (Liu and Chen, 1995), non-stationary independent component analysis

(Everson and Roberts, 1999), aircraft navigation (Bergman, 1999), communications

and audio engineering (Clapp and Godsill, 1999), change point detection (Fearnhead,

1998), population biology (Bolviken and Storvic, 2000), in-situ ellipsometry (Marrs,

2000), electricity load forecasting (Djurić, 2000), control (Stavropoulos, 1998) and

medical prognosis (Berzuini et al., 1997).

This chapter applies SMC techniques in a state space setting to show how a multi-

layer perceptron may be trained in environments where data arrives one at a time.

It places a degree of emphasis on reviewing the existing state-of-the-art SMC tools as

the field is new to the neural networks and machine learning communities. It consid-

96
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ers sequential importance sampling and resampling algorithms and points out some

of their limitations. Subsequently, it presents more sophisticated algorithms and illus-

trates their performance on some simple regression and classification problems. The

problem of model selection with SMC methods will be covered in the next chapter.

Section 6.1 formulates the problem of training neural networks in terms of a state

space representation. A Monte Carlo solution is subsequently proposed in Section 6.2.

In Sections 6.3 and 6.4, a generic sequential importance sampling methodology is de-

rived and some of its limitations are mentioned. To circumvent these, selection methods

are introduced in Section 6.5. This leads to the presentation of the SIR algorithm and

some improvements in Sections 6.6 and 6.7. Section 6.8 discusses an advanced SMC

algorithm for neural networks. Section 6.9 introduces the HySIR algorithm. Sections

6.10 and 6.11 delve briefly into the topics of smoothing and convergence. Finally, Some

experiments are described in Section 6.12.

6.1 State Space Neural Network Model

As before, it is convenient to start from a state space representation to model the neural

network’s evolution in time:

� �f��� � � 	 � ��� � ���
@�� � �

� ��	������ � � � � ���

where
�
� � 	�� � � � � � � � � denotes an MLP with weights � � . In the SMC framework, the prob-

ability distributions of the noise terms are specified by the user. The process noise

is modelled as an additive Gaussian process � �5C � 	 � � � � , so that � �f��� � � � B � � .
For regression tasks, the measurement noise may be modelled as an additive Gaus-

sian process � � C � 	 � � � � and @�� � �
� �S	������ � ��� B � � . Note that this framework also

allows us to model the noise in the input � � . When concerned with binary classifica-

tion, the measurement’s distribution is modelled as a Bernoulli process with likelihood

0 	)@ � ? � � � � � � � �
� � 	�� � � � � ��� , � M ~ �

� � 	�� � � � � ��" ��� � , , where
�
� � 	�� � � � � � is the probability of class

membership obtained with a logistic output neuron. The SMC framework is very flex-

ible in that it allows for any other noise distributions. For instance, one could adopt

heavy-tailed measurement noise distributions to deal with outliers and impulsive noise.

This is done in Chapter 8.

The noise terms are assumed to be uncorrelated with the network weights and

the initial conditions. The evolution of the states (network weights) corresponds to

a Markov process with initial distribution 0 	 � � � and transition prior 0 	 � ��? � ������� . The

observations are assumed to be conditionally independent given the states. These are
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standard assumptions in a large class of tracking and time series problems (Harvey,

1989).

Our goal will be to approximate the posterior distribution 0 	 � � � ��? � ��� � � and one of

its marginals, the filtering density 0 	 � ��? � ��� ��� , where
� ��� � � � �A��� ����@A��� �$� . By computing

the filtering density recursively, we do not need to keep track of the complete history

of the parameters. Towards the end, this chapter considers ways of approximating

0 	 � � � ��� � � � ? � ��� ��� . Since the distribution of the input data is not being modelled, �r��� �
will be dropped from the arguments of the probability distributions to simplify the

notation.

6.2 Monte Carlo Simulation

Many signal processing problems, such as equalisation of communication signals, fi-

nancial time series prediction, medical prognosis, target tracking and geophysical data

analysis, involve elements of non-Gaussianity, nonlinearity and non-stationarity. It is,

therefore, not often possible to derive exact closed form estimators based upon the stan-

dard criteria of maximum likelihood, maximum a posteriori or minimum mean-squared

error. Analytical approximations to the true distribution of the data do not take into

account all the salient statistical features of the processes under consideration. Monte

Carlo simulation methods, on the other hand, provide a complete description of the

probability distribution of the data, thus leading to improvements in the accuracy of

the analysis.

In Monte Carlo simulation, a set of weighted particles (samples), drawn from the

posterior distribution of the model parameters, is used to map integrals to discrete

sums. More precisely, the posterior can be approximated by the following empirical

estimate:

�0 	 � � � � ? @ � � � � � MI
�� & 
�� P ��� R��� � , 	 d � � � � �

where the random samples � �
x & {� � � � * � M �������u��I � , are drawn from the posterior distribu-

tion and
P 	 d ^_� denotes the Dirac delta function. Consequently, any expectations of the

form:

W � � � 	 � � � � ��" � ��� � 	 � � � � � 0 	 � � � � ? @ ��� � � d � � � �
may be approximated by the following estimate:

W � � �S	 � � � ��� " � MI
�� & 
�� �o�S	 � x

& {� � � �
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where the particles �
x & {� � � are assumed to be independent and identically distributed

(i.i.d.) for the approximation to hold. Indeed, according to the law of large numbers,

we have
W � � � 	 � � � � ��" � 	 	 	~�~B~�~ �� � � W � � � 	 � � � � ��" , where

� 	 	 	~�~B~ ~ �� � � denotes almost sure convergence.

Moreover, if the posterior variance of � � 	 � � � � � is bounded, that is YEZ 6 - x
	 	 � 9�� , { � � � 	 � � � � ��" �� , then the following central limit theorem holds:

� I < W � � �S	 � � � ��� " ~ W � �o�S	 � � � � � " > ���� � � � < O ��YEZ 6 - x
	 	 � 9�� , { � � �S	 � � � � � " >
where ���� � � denotes convergence in distribution.

In recent years, many researchers in the statistical and signal processing commu-

nities have, almost simultaneously, proposed several variations of sequential Monte

Carlo algorithms. These algorithms have been applied to a wide range of problems, as

mentioned in the introduction to this chapter. However, basic sequential Monte Carlo

t

t

t

θ

update

prediction

Time (t)

Time (t+1)

p(y |      )θ

Figure 6.1 Update and prediction stages in a generic sequential Monte Carlo algorithm with the

transition prior as proposal. In the update stage, the likelihood of each particle is evaluated. The

size of the circles indicates the likelihood of a particular particle. The particles are then selected

according to their respective likelihoods. In this process, the particles with higher likelihood are

allowed to have more “children”. Subsequently, the algorithm computes the predicted values of

the particles by evaluating the transition equations. The end result is that the surviving particles

provide a better weighted description of the likelihood function.

methods had already been introduced in the automatic control field in the late sixties.

For instance, Handschin and Mayne (Handschin and Mayne, 1969) tackled the problem
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of nonlinear filtering with a sequential importance sampling approach. They combined

analytical and numerical techniques, using the Control Variate Method (Hammersley

and Handscomb, 1968), to reduce the variance of the estimates. In the seventies,

various researchers continued working on these ideas (Akashi and Kumamoto, 1977;

Handschin, 1970; Zaritskii et al., 1975). The paper of Zaritskii, Svetnik and Shimele-

vich (Zaritskii et al., 1975) is particularly interesting. They treated the problems of

continuous and discrete time filtering and introduced several novel ideas. With the

exception of Doucet (Doucet, 1997), most authors have overlooked the Monte Carlo

sampling ideas proposed in the seventies. Figure 6.1 illustrates the operation of a

generic SMC method. Only the fittest particles, that is the ones with the highest likeli-

hood, are selected in the update stage. These then proceed to be multiplied, according

to their likelihood, in the prediction stage.

It is instructive to approach the problem from an optimisation perspective. Figures

6.2 and 6.3 show the windowed global descent in the error function that is typically

observed. The diagrams shed light on the roles played by the noise covariances
�

and
�

.
�

dictates by how much the cloud of samples is expanded in the prediction stage.

By increasing
�

, the density of the cloud of samples is reduced. Consequently, the

algorithm will take longer to converge. A very small
�

, on the other hand, will not

allow the algorithm to explore new regions of the parameter space. Ideally, one needs

to implement an algorithm that adapts
�

automatically. This is explored in Sections

6.7 to 6.9.
�

controls the resolution of the update stage, as shown in Figure 6.4.

A small value of
�

will cause the likelihood to be too narrow. Consequently, only a

few trajectories will be able to propagate to the next time step. If
�

is too small, the

optimisation scheme might fail to detect some of the important modes of the likelihood

function. By increasing
�

, we broaden the likelihood function, thereby increasing the

number of surviving trajectories. If we choose
�

to be too large, all the trajectories

become equally likely and the algorithm might not converge. As shown in Figures 6.2

and 6.3,
�

gives rise to a threshold
� 	 � � in the error function, which determines the

width of the updated clouds of samples.

The following sections will introduce SMC methods, more formally, from a Bayesian

sampling-importance resampling perspective.

6.3 Bayesian Importance Sampling

As mentioned in the previous section, one can approximate the posterior distribution

with a function on a finite discrete support. Consequently, it follows from the strong

law of large numbers that as the number or samples I increases, expectations can

be mapped into sums. Unfortunately, it is often impossible to sample directly from
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Figure 6.2 First and second steps of a one-dimensional sequential Monte Carlo optimisation prob-

lem. The size of the initial cloud of samples determines the search region in parameter space. The

goal is to find the best possible minimum of the error function. It is clear that as the number of

samples increases, our chances of reaching lower minima increase. In the second step, the updated

clouds of samples are generated. The width of these clouds is obtained from the intersection be-

tween the width of the prior cloud of samples, the error function and a threshold determined by the

measurements noise covariance
�

. The updated clouds of samples are denser than the prior cloud

of samples. Next, the samples are grouped in regions of higher likelihood in a resampling step.

Finally, the clouds of samples are expanded by a factor determined by the process noise covariance

� . This expansion allows the clouds to reach regions of the parameter function where the error

function is lower.
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Figure 6.3 Third and fourth step of a one-dimensional sequential Monte Carlo optimisation prob-

lem. To reach the global minimum on the right, the number of samples has to be increased.

the posterior density function. However, we can circumvent this difficulty by sampling

from a known, easy-to-sample, proposal distribution 3 	 � � � � ? @ ��� � � and making use of the

following substitution:

W � � �S	 � � � ��� " � � �o�S	 � � � ��� 0 	 � � � �S? @A��� ���3 	 � � � � ? @ ��� � � 3 	 � � � �S? @A��� ��� d � � � �
� � � � 	 � � � � � 0 	)@A��� ��? � � � � � 0 	 � � � � �0 	)@A��� ��� 3 	 � � � ��? @A��� ��� 3 	 � � � � ? @ ��� � � d � � � �
� � �o�S	 � � � ��� � �S	 � � � � �

0 	)@ ��� � � 3 	 �
� � �S? @A��� ��� d � � � �
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θ
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Time (t-1)

Time (t)

p(y    )θ

Figure 6.4 Role played by the measurements variance
�

. Small values of
�

result in a narrow

likelihood, with only a few trajectories being able to propagate to the next time step. If
�

is too

small, we might miss some of the important modes. On the other hand, if
�

is too large, we are

not giving preference to any of the trajectories and the algorithm might not converge.

where the variables � � 	 � � � � � are known as the unnormalised importance weights:

� � � 0 	)@ ��� � ? � � � � � 0 	 � � � � �
3 	 � � � �S? @A��� ��� (6.1)

We can get rid of the unknown normalising density 0 	)@ ��� � � as follows:

W � � �S	 � � � ����" � M
0 	)@A��� ��� � �o�S	 � � � ��� � �S	 � � � � � 3 	 � � � ��? @A��� � � d � � � �

�

H
�o�S	 � � � ��� � �S	 � � � ��� 3 	 � � � ��? @A��� ��� d � � � �H
0 	)@ ��� � ? � � � � � 0 	 � � � � � . x � � � , 	 � 9�� , {. x � � � , 	 � 9�� , { d � � � �

�

H
� �S	 � � � ��� � �S	 � � � ��� 3 	 � � � ��? @A��� ��� d � � � �H

� �S	 � � � ��� 3 	 � � � ��? @A��� ��� d � � � �
�

W . � � � 	 � � � � � � � 	 � � � � � "W .�� � � 	 � � � � ��"
where the notation

W . has been used to emphasise that the expectations are taken

over the proposal distribution 3 	�^ ? @ ��� ��� . Hence, by drawing samples from the proposal

function 3 	�^ ? @A��� ��� , we can approximate the expectations of interest by the following
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estimate:

W � � �S	 � � � ����" � M $�I 	 �& 
�� � �S	 � x
& {� � � � � �S	 � x

& {� � � �
M $�I 	 �& 
�� � �S	 � x

& {� � � �
�

�� & 
�� �o�S	 � x
& {� � � � 	� �S	 � x

& {� � � � (6.2)

where the normalised importance weights
	

�

x & {� are given by:

	
�

x & {� �
�

x & {�
	 ���
�� �

x � {�
The estimate of equation (6.2) is biased as it involves a ratio of estimates. How-

ever, it is possible to obtain asymptotic convergence and a central limit theorem forW � �o�S	 � � � � ��" under the following assumptions (Doucet, 1998; Geweke, 1989):

1. �
x & {� � � corresponds to a set of i.i.d. samples drawn from the proposal distribution,

the support of the proposal distribution includes the support of the posterior dis-

tribution and
W � �o�S	 � � � ��� " exists and is finite.

2. The expectations of � � and � � � �� 	 � � � � � over the posterior distribution exist and are

finite.

A sufficient condition to verify the second assumption is to have bounds on the variance

of � � 	 � � � � � and on the importance weights. Thus, as I tends to infinity, the posterior

density function can be approximated arbitrarily well by the point-mass estimate:

�0 	 � � � ��? @A��� ��� � �� & 
�� 	
�

x & {� P ��� R �
� � ,
	 d � � � ���

6.4 Sequential Importance Sampling

The proposal distribution can be expanded as follows:

3 	 � � � ��? @A��� ��� � 3 	 � � ? @A��� ��� �
�
��
�� 3 	 � ��? � ��� �����:��@A��� ���

However, in order to compute a sequential estimate of the posterior distribution at

time 4 without modifying the previously simulated states � � � ����� , the following proposal

distribution may be adopted:

3 	 � � � ��? @A��� ��� � 3 	 � � � �
�
��
�� 3 	 � � ? � ��� ��������@A��� � �

� 3 	 � � � ����� ? @A��� ������� 3 	 � ��? � � � ��������@A��� ��� (6.3)
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At this stage, we need to recall that we assumed that the states correspond to a Markov

process and that the observations are conditionally independent given the states. That

is:

0 	 � � � ��� � 0 	 � � � �
�
� 
�� 0 	 � �E? � ������� and 0 	)@ ��� ��? � � � ��� � �

�
� 
�� 0 	)@ �E? � ��� (6.4)

By substituting equations (6.3) and (6.4) into equation (6.1), a recursive estimate

for the importance weights can be derived as follows:

� � � 0 	)@A��� ��? � � � ��� 0 	 � � � � �
3 	 � � � ����� ? @A��� ������� 3 	 � �S? � � � �����:��@A��� ���

� � ����� 0 	)@A��� ��? � � � ��� 0 	 � � � ���
0 	)@A��� ����� ? � � � ������� 0 	 � � � ������� M

3 	 � �S? � � � ��������@A��� ���
� � ����� 0 	)@ � ? � � � 0 	 � � ? � ����� �3 	 � �S? � � � �����:��@A��� ��� (6.5)

Equation (6.5) provides a mechanism to sequentially update the importance weights.

Since we can sample from the proposal function and evaluate the likelihood and tran-

sition probabilities, all we need to do is generate a prior set of samples and iteratively

compute the importance weights. This procedure, known as sequential importance

sampling (SIS), allows us to obtain the type of estimates described by equation (6.2).

6.4.1 Choice of proposal distribution

The choice of proposal function is one of the most critical design issues in importance

sampling algorithms. The preference for proposal functions that minimise the variance

of the importance weights is advocated by (Doucet, 1997). The following result has

been proved:

Proposition 1 [Proposition 3 of (Doucet et al., 1999)] The importance distribution

3 	 � � ? � � � ����� ��@ ��� � � � 0 	 � � ? � � � ����� ��@ ��� � � minimises the variance of the importance ratios con-

ditional on � � � ����� and @A��� � .
This choice of proposal function has also been advocated by other researchers (Kong

et al., 1994; Liu and Chen, 1995; Zaritskii et al., 1975). Nonetheless, the distribution:

3 	 � � ? � � � ����� ��@ ��� � � � 0 	 � � ? � ����� � (6.6)

is the most popular choice of proposal function (Avitzour, 1995; Beadle and Djurić,

1997; Gordon et al., 1993; Isard and Blake, 1996; Kitagawa, 1996). Although it results

in higher Monte Carlo variation than the optimal proposal 0 	 � ��? � � � ��������@A��� ��� , as a result

of it not incorporating the most recent observations, it is usually easier to implement
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.

LikelihoodPrior

Figure 6.5 The optimal importance distribution allows us to move the samples in the prior to

regions of high likelihood. This is of paramount importance if the likelihood happens to lie in one

of the tails of the prior distribution.

(Berzuini et al., 1997; Doucet, 1998; Liu and Chen, 1998). As illustrated in Figure 6.5,

if we fail to use the latest available information to propose new values for the states,

only a few particles survive. It is therefore of paramount importance to move the parti-

cles towards the regions of high likelihood. Section 6.7 describes several algorithms to

implement the optimal importance function.

6.4.2 Degeneracy of the SIS algorithm

The SIS algorithm discussed so far has a serious limitation: the variance of the impor-

tance ratios ( � ��� 0 	 � � � ��? @A��� ����$ 3 	 � � � �S? @A��� ��� ) increases stochastically over time.

Proposition 2 [Page 285 of (Kong et al., 1994), proposition 4 of (Doucet et al., 1999)]

The unconditional variance (that is, when the observations are regarded as random) of the

importance ratios increases over time.

To understand why the variance increase poses a problem, suppose that we want to

sample from the posterior. In that case, we want the proposal density to be very close

to the posterior density. When this happens, we obtain the following results for the

mean and variance:

W . < 0 	 � � � �S? @A��� ���3 	 � � � � ? @ ��� � � > � M
and

Y�Z 6 .
< 0 	 � � � � ? @ ��� � �
3 	 � � � ��? @A��� � � > � W . < < 0 	 � � � � ? @ ��� � �3 	 � � � ��? @A��� ��� ~ M > � > � O

In other words, we expect the variance to be close to zero in order to obtain reasonable

estimates. Therefore, a variance increase has a harmful effect on the accuracy of the

simulations. In practice, the degeneracy caused by the variance increase can be ob-

served by monitoring the importance ratios. Typically, what we observe is that, after a
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few iterations, one of the normalised importance ratios tends to 1, while the remaining

ratios tend to zero. The next section presents a strategy to reduce this depletion of

samples.

6.5 Selection

To avoid the degeneracy of the SIS simulation method, a selection (resampling) stage

may be used to eliminate samples with low importance ratios and multiply samples

with high importance ratios. It is possible to see an analogy to the steps in genetic

algorithms (Higuchi, 1997).

A selection scheme associates to each particle �
x & {� � � a number of “children”, say I & N

>
, such that 	

�& 
�� I & � I . Several selection schemes have been proposed in the

literature. These schemes satisfy
W � I & " � I 	

�

x & {� but their performance varies in terms

of the variance of the particles Y�Z 6 � I & " . Recent theoretical results in (Crisan et al.,

1999) indicate that the restriction
W ��I & " � I 	

�

x & {� is unnecessary to obtain convergence

results (Doucet et al., 1999). So it is possible to design biased but very quick selection

schemes.

6.5.1 Sampling-importance resampling and multinomial sampling

Many of the ideas on resampling have stemmed from the work of Efron (Efron, 1982),

Rubin (Rubin, 1988) and Smith and Gelfand (Smith and Gelfand, 1992). Resampling

involves mapping the Dirac random measure � �
x & {� � � � 	�

x & {� � into an equally weighted ran-

dom measure � �
x � {� � � ��I ��� � . This can be accomplished by sampling uniformly from the

discrete set � �
x & {� � � � * � M �������u��I � with probabilities � 	�

x & {� � * � M ����������I � as proposed in

the seminal paper of Gordon, Salmond and Smith (1993). A mathematical proof of this

can be found on pages 111–112 of (Gordon, 1994). Figure 6.6 shows a way of sampling

from this discrete set. After constructing the cumulative distribution of the discrete set,

a uniformly drawn sampling index * is projected onto the distribution range and then

onto the distribution domain. The intersection with the domain constitutes the new

sample index  . That is, the vector �
x � {� � � is accepted as the new sample. Clearly, the vec-

tors with the larger sampling ratios will end up with more copies after the resampling

process.

Sampling I times from the cumulative discrete distribution 	 �& 
�� 	
�

x & {� P�� � R �
� � ,
	 d � � � ��� is

equivalent to drawing 	XI & � * � M �������u��I<� from a multinomial distribution with param-

eters I and
	

�

x & {� . This procedure can be implemented in
H 	�I � operations (Doucet,

1998; Pitt and Shephard, 1999) following the work of (Ripley, 1987, pp. 96). As we are

sampling from a multinomial distribution, the variance is YEZ 6 	�I & � � I 	
�

x & {� � M ~ 	
�

x & {� " .
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Figure 6.6 Resampling process, whereby a random measure
� ) +�sD/R�n � 1��� +�s�/��� is mapped into an equally

weighted random measure
� ) + l /R�n � 1 � t R � . The index

7
is drawn from a uniform distribution.

As pointed out in (Carpenter et al., 1999) and (Liu and Chen, 1998), it is possible to

design selection schemes with lower variance.

6.5.2 Residual resampling

This procedure was introduced by (Liu and Chen, 1998). It involves the following

steps. Firstly, set
	I & � � I 	

�

x & {��� . Secondly, perform an SIR procedure to select the

remaining I � � I ~ 	 �& 
�� 	I & samples with new weights � � x & {� � I ���� � 	�

x & {� I ~ 	I & � .

Finally, add the results to the current
	I & . For this scheme, the variance �XY�Z 6 	�I & ���I2� � � x & {� � M ~ � � x & {� " " is smaller than the one given by the SIR scheme. Moreover, this

procedure is computationally cheaper.

6.5.3 Systematic sampling

This method, proposed in (Carpenter et al., 1999), is explained in great detail in (Fearn-

head, 1998, Chapter 5). It introduces a variance on I &
even smaller than the residual

resampling scheme, namely Y�Z 6 	�I & � � I � � � x & {� � M ~ I � � � x & {� " . Its computational com-

plexity is
H 	XI<� .

6.5.4 When to resample

It has been argued in (Liu and Chen, 1995; Liu and Chen, 1998) that when all the

importance weights are nearly equal, resampling only reduces the number of distinc-

tive streams and introduces extra variation in the simulations. Although resampling

increases the variance of the estimate of
W � �o�S	 � � � ����" at time 4 , it usually leads to a de-

crease in the variance of future estimates (Doucet et al., 1999; Liu and Chen, 1995).
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Using a result from (Kong et al., 1994), Liu and Chen suggest that one should resample

only when the effective sample size I � ��� is below a fixed heuristic threshold, where

the effective sample size is defined as:

I � ��� � M
	 �& 
�� � 	�

x & {� � �
This result is intuitively reasonable. One should resample only when the empirical

variance of the normalised importance weights increases excessively. However, it is not

entirely satisfactory as it depends on a fixed threshold.

6.6 The SIR Algorithm

It has been explained, so far, how to compute the importance weights sequentially and

how to improve the sample set by resampling. A complete and detailed SIR algorithm

for MLPs can now be presented:

SIR Algorithm for MLPs

1. ���C4 � O
�����
	 * � M �������u��I2���	���� ����� � ��� ������� �

x & {��� 	�� � �����"! 	 �#�%$ �'& � 	)(�	 � �*	 0 ��	 � � �+�
,��
���-�.�/�10 � ,-� $ ��& � 	2(�	 � �*	 0 � 	 � � ��3

2. ���
	 4 � M �8�E�������
(a) 4 ��& �'�'� �
, � �5(*�*	 � �6, 01�7� �6�%( $8� , �9�#�:� (

�����
	 * � M �������u��I<; � �6�%( $ �>=�
�
x & {� C 3 	 � ��? � x

& {� � ����� ��@A��� ��� (6.7)

�6,�� �/�'�'= �
�
x & {� � � � � � x & {� � ����� � � � x & {� "

�����
	 * � M �������u��I<; ��? � $A@ � �:�B�����C� �5(*�*	 � �6, 01� � ��� �������D@ ( � �E�<,��*	F�+� $A� �'� , �
0 � , �#� �6, ��=

�

x & {� � �

x & {����� 0 	)@ � ?
�
�
x & {� � 0 	 � � x & {� ? � x

& {����� �
3 	 � � x & {� ? � x

& {� � ����� ��@A��� ��� (6.8)
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�����
	 * � M �������u��I<; ,��*	F�+� $A� �/�7���-� � �%(*�
	 � �6, 01� � ��� ��������=

	
�

x & {� � �

x & {� � ����
�� �

x � {� 	 ���

(b) If I � ��� � Threshold:

�����
	 * � M �������u��I<; �/�'� �
x & {� � � � �

�
x & {� � �

Else

�
� ��$ �10'��� � , �#��� (

– � @6$ ��� ( $ &�� � @ (
(�	 �'�#� � �6�5( $ �'�
�
�
x & {� � � � � ��� �
� ��� � $ �1� � �%(*�
	 � �6, 01� � ��� ���-� � 	

�

x & {� ;
	 �'� ( �10'� � ?���$ &1; � � ��� � � � ,rI 	 �
,��
� � � �6�%( $ �'� �

x & {� � � �6(
(�	���� � �+� ����$ & � � �#� 	 � � @��:� �
� 010 �
	�� � , � � � 0 	 � x

& {� � � ? @ ��� � ��3
– ���*	 * � M �������u��I<; �/�'� �

x & {� � 	
�

x & {� � ��
�

The generic SIR algorithm is rather straightforward to implement. If we choose to

sample from the transition prior 0 	 � �S? � � � ������� , then:�
�
x & {�f��� � �

x & {� B � x & {�
where �

x & {� C � 	 � � � � in our case. For this choice of proposal, the importance weights

become:

�

x & {� � �

x & {����� 0 	)@���? � � x & {� �
For simple regression tasks, we can choose a Gaussian likelihood:

0 	)@���? � � � � [:\�] < ~ M� �X@�� ~ � � �S	������ � ��� " � � ��� �X@�� ~ � � �S	������ � ��� " >
If it is suspected that the data set may contain several outliers, likelihood functions with

heavy tails should be employed. For binary classification tasks, with output logistic

functions, we should choose Bernoulli likelihoods:

0 	)@���? � ��� � �
� �S	������ � ��� � , � M ~ � � �S	������ � � ��" ��� � ,

Note that in this case there is no observation noise term because the targets corre-

spond to a discrete set of noiseless class labels. For multiple classes, one can adopt

multinomial distributions.

A different initial prior is used for each layer because the functional form of the

neurons varies with layer (Müller and Rios Insua, 1998). In addition, we can select the

prior’s hyper-parameters for each layer in accordance with the magnitude of the input

and output signals.
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Section 6.8 will propose a more complex algorithm that uses an approximation of

the optimal importance distribution and allows us to estimate the noise covariance
�

.

It also incorporates an MCMC step to reduce the variance introduced by the selection

step.

6.7 Improvements on SIR Simulation

The success of the SIR algorithm depends on the validity of the following underlying

assumptions:

� The Dirac point-mass approximation provides an adequate representation of the

posterior distribution.

� It is possible to obtain samples from the posterior by sampling from a suitable

proposal distribution and applying importance sampling corrections.

If any of these conditions are not met, the SIR algorithm will inexorably fail. The

discreteness of the approximation poses a resolution problem. In the resampling stage,

any particular sample with a high importance weight will be duplicated many times. As

a result, the cloud of samples may eventually collapse to a single sample. This degener-

acy will limit the ability of the algorithm to search for lower minima in other regions of

the error surface. In other words, the number of samples used to describe the posterior

density function will become too small and inadequate. A brute force strategy to over-

come this problem is to increase the number of particles. More refined approaches to

surmount this problem include roughening, kernel smoothing and MCMC move steps.

These are discussed subsequently.

The importance sampling approximation depends on how close the proposal distri-

bution is to the posterior distribution. As illustrated in Figure 6.5, if the likelihood is too

peaked or if there is little overlap between the prior and the likelihood, one needs to

move the samples to regions of high likelihood. This is the basis for local Monte Carlo

methods discussed in Section 6.7.2. Recently, Neal (1998) proposed a powerful an-

nealing strategy to design importance distributions. However, it is too computationally

demanding for it to be of practical use in the sequential context.

6.7.1 Roughening and prior boosting

In (Gordon et al., 1993), Gordon, Salmond and Smith propose a roughening procedure,

whereby an independent jitter, with zero mean and standard deviation � , is added to

each sample drawn in the resampling stage. The standard deviation of the jitter is given
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by:

� � 
 	 # I ����@ �
(6.9)

where # denotes the length of the interval between the maximum and minimum sam-

ples of each specific component, 
 	 is a tuning parameter and, as before, 6 represents

the number of weights. Large values of 
 	 blur the distribution, while very small values

produce tight clusters of points around the original samples. The simulations in this

study indicate that this technique can work very well and that tuning 
 	 requires little

effort. Note that this strategy, is nothing but a simple Kernel smoothing technique.

Another strategy proposed by Gordon to solve the discreteness problem, is to in-

crease the number of particles in the prediction stage by sampling
�

times from the

proposal distribution, with
�
� I (Gordon, 1994). Subsequently, in the resampling

stage, only I particles are drawn. A drawback of this approach is that the variance

of the boosted filter is greater than the variance of a simple SIR filter with
�

particles

(Fearnhead, 1998). Nonetheless, boosting can lead to a small computational gain.

6.7.2 Local Monte Carlo methods

Local Monte Carlo methods allow us to mitigate the importance sampling problem.

They allow us to move samples from the prior to regions of high likelihood. Of course, if

we do this, we need to take cautious steps to deal with outliers. For example, one could

introduce heavy tailed data models or use some form of smoothing. The following

subsections, summarily, run through some techniques proposed in the literature to deal

with the importance sampling problem.

6.7.2.1 Prior editing

Prior editing (Gordon et al., 1993) is an ad-hoc acceptance test for proposing particles

in regions of high likelihood. After the prediction step, the residual error � � � @ � ~�
� �S	������ � � x & {� � is computed. If ? � ��? � 
 � � 6 , where 6 is the scale of the measurement error

model and 
 � is a constant chosen to indicate the region of non-negligible likelihood,

then the sample
�
�
x & {� is rejected. The procedure is repeated until a specified number of

particles is accepted. The problem with this approach is that it is too heuristic and can

be computationally intensive unless the rejection rate is small. In addition, it introduces

a bias on the distribution of the particles.

6.7.2.2 Local linearisation

This is a popular method for devising proposal distributions that approximate the opti-

mal importance distribution: see (Doucet, 1998; Pitt and Shephard, 1999) for example.

It relies on Taylor series expansions of the likelihood and transition prior. For example,
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for a first order expansion of the measurements equation, one could use the EKF to

propose from the importance distribution 3 	 � �S? � x
& {� � ����� ��@A��� ��� ; * � M �������u��I . That is, at

time 4 ~ M one uses the EKF equations, with the new data, to compute the mean
�
�
x & {�

and covariance
�
�
x & {

of the importance distribution for each particle. Next, we sample

the * -th particle from this distribution. The method requires that we propagate the

covariance
�
�
x & {

and specify the EKF noise covariances.

Since the EKF is a minimum variance estimator, this local linearisation method leads

to an improved annealed sampling algorithm, whereby the variance of each sampling

trajectory changes with time. Ideally, we start searching over a large region of the

error surface and as time progresses, we concentrate on the regions of lower error.

Section 6.8 presents a more detailed description of the algorithm.

6.7.2.3 Rejection methods

If the likelihood is bounded, say 0 	)@ � ? � � � � � � , it is possible to sample from the op-

timal importance distribution 0 	 � ��? � ��������@���� using an accept/reject procedure. Firstly,

we obtain a sample from the prior
�
� C 0 	 � ��? � ������� and a uniform variable � C G � � ( � � .

Subsequently, the sample from the prior is accepted if � � 0 	)@A��? � � ����$ � � . Otherwise, we

reject the proposed sample and repeat the process until I samples are accepted. Un-

fortunately, the rejection sampler requires a random number of iterations at each time

step. This proves to be computationally expensive in high-dimensional spaces (Doucet,

1998; Müller, 1991; Pitt and Shephard, 1999).

6.7.2.4 MCMC methods

The fundamental idea behind MCMC methods is to construct a Markov chain that al-

lows us to sample from the proposal 0 	 � ��? � � � ��������@A��� ��� and eventually from the required

posterior distribution 0 	 � � � � ? @ ��� � � (Berzuini et al., 1997; Gordon and Whitby, 1995;

Müller, 1992). Generally, it can take a large number of iterations before this happens.

Moreover, it is difficult to even assess when the chain has converged. For most real-time

sequential processing applications, this MCMC strategy can be too computationally de-

manding.

6.7.2.5 Auxiliary particle filters

The auxiliary particle filter allows us to obtain approximate samples from the optimal

importance distribution by introducing an auxiliary variable � . Specifically, the aim of

the algorithm is to draw samples from the joint distribution:

3 	 � � � � ? � � � ����� ��@ ��� � � � 0 	)@ � ? q x $ {� � 0 	 � � ? � x $ {����� � 0 	 � x $ {��� ����� ? @ ��� ����� �
where

q x $ {� � � � M ������� ��I is the mean, mode, draw, or some other value associated with

the transition prior. One way to accomplish this objective is to evaluate the marginal
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Figure 6.7 Auxiliary particle filter. The sizes of the weights are proportional to the likelihood of

the related particle.

auxiliary variable weights � 	 � ? � � � ����� ��@ ��� � � � 0 	)@ � ? q x $ {� � 0 	 � x $ {��� ����� ? @ ��� ����� � and use them to

select
�

particles from the transition prior. Typically, one boosts the sample set so that
�
� I . This resampling stage is illustrated in Figure 6.7. The particle filter then

proceeds to evaluate the correction weights:

� � � 0 	)@���? � x � {� �
0 	)@���? q x

$ � {� �
where  � M �������u� �

and � � denotes the � -th “parent” of particle  . Finally, the correc-

tion weights are used to perform a second selection step to obtain I particles approxi-

mately distributed according to the posterior distribution.

In comparison to the SIR filter, the auxiliary particle filter can generate better es-

timates of the posterior whenever the likelihood is situated in one of the prior’s tails.

On the other hand, if the likelihood and prior coincide, the SIR filter can produce more

accurate estimates. The latter behaviour is a consequence of the extra variance intro-

duced by the additional selection step.

One alternative way of viewing the auxiliary particle filter is to interpret the dis-

tribution 3 	 � ��� � ? � � � ��������@A��� ��� as the importance proposal. In doing so, the following
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importance weights are obtained:

� � � 0 	 � x $ {� � � ? @A��� ���
0 	)@ � ? q x $ {� � 0 	 � � ? � x $ {����� � 0 	 � x $ {��� ����� ? @ ��� ����� �

� 0 	)@���? � x $ {� � 0 	 � ��? � x $ {����� � 0 	 � x $ {��� ����� ? @A��� �������
0 	)@ � ? q x $ {� � 0 	 � � ? � x $ {����� � 0 	 � x $ {��� ����� ? @ ��� ����� �

� 0 	)@���? � x $ {� �
0 	)@���? q x $ {� �

That is, aside from boosting, auxiliary particle filters are very similar to the local Monte

Carlo methods discussed so far.

6.7.3 Kernel density estimation

The idea of using kernel methods to produce smooth estimates of the posterior den-

sity has been espoused by many researchers in the field (Gordon, 1994; Hürzeler and

Künsch, 1998; Liu and West, 2000; Musso et al., 2000). Kernel methods allow us to

replace the Dirac point-mass approximation:

�0 	 � � � � ? @ ��� � � � �� & 
�� 	
�

x & {� P ��� R �
� � ,
	 d � � � � �

by the following estimate:

�0 	 � � � � ? @ ��� � � � �� & 
�� 	
�

x & {� MP 
 < � � � � ~ �
�
x & {� � �P >

where 
 	�^_� is usually assumed to be a unimodal symmetric density function, centred

at
�
�
x & {� � � , with smoothing parameter

P
. Figure 6.8 illustrates the type of approximations

obtained using Dirac and kernel approximations.

Kernel methods can mitigate the problem of sample depletion in the resampling

step. This is accomplished by sampling with replacement from the discrete set �
�
�
x & {� � � � 	�

x & {� �
to obtain � � � x � {� � � ��I ��� � and, thereafter, adding a smoothing term. That is:

�
x � {� � � � �

�
x � {� � � B � �

where 0 	 � ��� � �o�������u� � � � � � �� 
�� P ��� 
 	 P ��� � �w� The critical issue in the kernel smoothing

approach is to estimate the smoothing parameter
P
. This estimation is typically carried

out by minimising the mean integrated square error (Silverman, 1986). Unfortunately,

in high dimensions ( 6 � �
), it is virtually impossible to perform kernel density estima-

tion. Nevertheless, heuristic methods, such as discount factors, can be used to obtain

rough estimates of
P

(Liu and West, 2000).
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Figure 6.8 Dirac and kernel smoothing approximations to the posterior distribution.

Kernel methods, in conjunction with accept/reject procedures, have also been ap-

plied to draw approximate samples from the optimal importance distribution: see Al-

gorithm 4.3 in (Hürzeler, 1998). This idea has been extended in (Musso et al., 2000),

where particular emphasis is placed on reducing the computational cost of the algo-

rithm.

Kernel methods, although in a new guise, have clear affinities with the alternative

methods described in this section. For instance, choosing the variance of the linear ap-

proximations to the importance distribution is to a certain extent equivalent to choosing

the smoothing parameter
P
.

6.7.4 MCMC move step

After the selection scheme at time 4 , we obtain I particles distributed marginally ap-

proximately according to 0 	 � � � ��? @A��� ��� . As discussed earlier, the discrete nature of the

approximation can lead to a skewed importance weights distribution. That is, many

particles have no children ( I & � O ), whereas others have a large number of children,

the extreme case being I & � I for a particular value * . In this case, there is a severe

depletion of samples. A strategy for improving the results involves introducing MCMC

steps of invariant distribution 0 	 � � � �S? @A��� ��� on each particle (Andrieu et al., 1999e; Car-
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penter et al., 1999; Doucet and Gordon, 1999; Gilks and Berzuini, 1998; MacEachern

et al., 1999). The basic idea is that, by applying a Markov transition kernel, the total

variation of the current distribution with respect to the invariant distribution can only

decrease. Note, however, that we do not require this kernel to be ergodic. Convergence

results for this type of algorithm are presented in (Gilks and Berzuini, 1998).

It is possible to generalise this idea and to introduce MCMC steps on the product

space with invariant distribution

�
�& 
�� 0 	 �

x & {� � � ? @A��� ��� , that is to apply MCMC steps on the

entire population of particles. It should be noted that independent MCMC steps spread

out the particles in a particular mode more evenly, but do not explore modes devoid of

particles, unless “clever” proposal distributions are available. By adopting MCMC steps

on the whole population, we can draw upon many of the ideas developed in parallel

MCMC computation. In this work, however, we limit ourselves to the simpler case of

using independent MCMC transitions steps on each particle. In particular, we propose

to use mixtures of Metropolis-Hastings steps to ensure an efficient exploration of the

sample space. Later, in Chapter 7, we adopt reversible jump MCMC steps (Green, 1995)

so as to allow the particles to move from one subspace to other subspaces of, possibly,

different dimension.

6.8 SMC Algorithm for MLPs

We are now in a position to present an SMC algorithm for MLPs that samples approxi-

mately from the optimal importance distribution and applies a mixture of Metropolis-

Hastings steps to improve the exploration of the parameter space. The approximate

samples from the optimal importance distribution are obtained by performing a local

linearisation with the EKF.

If we choose the prior 0 	 � ��? � ������� as proposal, we rely solely on probing the error

surface at several points as shown in Figures 6.2 and 6.3. This strategy fails to make

use of all the information implicit in the error surface. For instance, the method could

be enhanced by evaluating the gradient and other higher derivatives of the error sur-

face. This is evident in Figure 6.9, where it is shown that by incorporating gradient

information in the proposal distribution, the algorithm can reach lower minima.

In the neural networks context, the success of sub-optimal gradient descent meth-

ods motivates the inclusion of a gradient descent step in the proposal distribution. For

instance, one could propose from a Gaussian proposal with mean:�
� � � � ����� ~ � � �

� � ����� 	)@��u~
�
� � 	�� � � � � � � ��� �

� � ����� B � 	)@ � ~ � � � 	�� � � � � � � ��� � � � � 	�� � � � � � � �� � � � � (6.10)
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Figure 6.9 By following the gradient of the error function, it is possible to reach lower minima.

The term
� � � � 	�� � � � � � � ��$ � ��� � � is the Jacobian. It can be easily computed by back-

propagating derivatives through the network as explained in Appendix B. The gradient

descent learning rate � is a tuning parameter that controls how fast we should descend.

Too large a parameter would cause the trajectory in the error surface to over-fluctuate,

thereby never converging. A very small value, on the other hand, would not contribute

towards speeding the algorithm’s convergence.

The plain gradient descent algorithm can get trapped at shallow local minima. One

way of overcoming this problem is to define the error surface in terms of a Hamilto-

nian that accounts for the approximation errors and the momentum of each trajectory.

This is the basis of the Hybrid Monte Carlo algorithm (Brass et al., 1993; Duane et al.,

1987). In this algorithm, each trajectory is updated by approximating the Hamiltonian

differential equations by a leapfrog discretisation scheme. The discretisation may, how-

ever, introduce biases. In our work, we favour a stochastic gradient descent approach

based on the extended Kalman filter. This technique avoids shallow local minima by

adaptively adding noise to the network weights, as discussed in Chapter 3.

Another advantage of this method is that the covariance of the weights changes

over time, and since the extended Kalman filter is a minimum variance estimator, it

should decrease with time. Consequently, as the tracking improves, the variation of

the network weights is reduced. This annealing process improves the efficiency of the
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Figure 6.10 Using the EKF to propose particles. By adding noise to the network weights and

adapting the weights covariance, it is possible to reach better minima with the EKF than with plain

gradient descent techniques.

search for global minima in parameter space and reduces the variance of the estimates.

By adopting an EKF proposal, we can present an SMC algorithm to estimate the

network weights and measurement noise covariance
� � jointly.

� � is assumed to obey

the following diffusion process:

a,bc 	 � ��� � a�bc 	 � ������� B � �
where � � C � 	 � � P �� 8 � � and

P � is a tuning hyper-parameter. We are assuming that the

measurement noise is Gaussian. If this were not the case, we could still use a similar

method to update the minimum statistics of the noise process. For instance, if the

noise can be described by two Gaussian components, then the algorithm can be easily

extended by replacing
� � with � � � ( � � � � ( � � and the weights of the mixture. At time 4 ,

the algorithm proceeds as follows:

SMC algorithm for Regression with MLPs

1. 4 �'& �'�'� �6, � �5(*�*	 � �6, 01�7� �6�5( $8� , �9�#�:� (

�����
	 * � M �������u��I :
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–
� � �%( @��:�.���-��� � 0 ��� � �6, � �/3

–
� �6�5( $ �

�� x & {� C 0 	 � ��? � x & {����� �
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This algorithm is similar to the SIR algorithm, with the exception that it introduces

an MCMC mixture of two steps. The first step allows the Markov chain to explore local
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neighbourhoods. Therefore, the samples in each mode are spread out more evenly. The

same result could be obtained with kernel smoothing methods. However, the second

step allows for larger stochastic jumps in the direction of the gradient. This is one of the

great advantages of MCMC methods over other techniques. MCMC mixtures allow us

to incorporate many proposals and heuristics within a rigorous stochastic framework.

Note that we included the word regression in the title of the previous algorithm. We

did this because, when dealing with classification, the EKF does not constitute a suitable

proposal. Since the class labels are noiseless, and the normalising factor of the EKF’s

posterior is proportional to the measurement noise covariance, the EKF algorithm de-

generates. This problem can be circumvented by adding artificial measurement noise.

Yet, a better strategy is to simply propose from the transition prior and use a Bernoulli

likelihood. In this case, we shall also adopt a random walk MCMC move.

6.9 HySIR: an Optimisation Strategy

It is possible to design suboptimal SMC algorithms to perform maximisation. The main

purpose of such methods is to find the peaks of the posterior instead of attempting to

provide a complete description of it. Here, great emphasis is placed on reducing the

computational cost. One possible strategy is to modify the algorithm presented in the

previous section as follows:

HySIR algorithm for Regression with MLPs
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The HySIR (hybrid EKF-SIR) may be interpreted as a dynamical mixture of EKFs.

That is, the estimates depend on a few modes of the posterior density function. Note

that before the EKF step, we sample the weights from the transition prior. The purpose

of this is to introduce random variations in the cloud of particles. This issue will be

further explained by means of an experiment in Section 6.12.3.

In addition to having to compute the normalised importance ratios (
H 	�I 	 �

� �� BT � � �S��� ) operations, where
� � is the number of hidden neurons, I the number of sam-

ples, T the input dimension and � the number of outputs) and resampling (
H 	�I<� op-

erations), the HySIR has to perform the extended Kalman filter updates (
H 	�I � 6 � )

operations, where 6 is the number of network weights). That is, the computational

complexity of the HySIR increases approximately linearly with the number of EKFs in

the mixture. For problems with dominant modes, we only need to use a few trajec-

tories and, consequently, the HySIR provides accurate and computationally efficient

solutions.

The HySIR approach makes use of the likelihood function twice per time step. It

therefore concentrates the particles in regions of high likelihood. Consequently, if we

make the noise distributions too peaked, the algorithm will only give a representa-

tion of a narrow region of the posterior density function. Typically, the algorithm will

converge to a few modes of the posterior density function. This is illustrated later in

Section 6.12.3.

6.10 Interval and Fixed Lag Smoothing

According to the theory and algorithms presented thus far, we can marginalise the

distribution:

�0 	 � � � ��? @A��� ��� � �� & 
�� 	
�

x & {� P���� R �
� � ,
	 d � � � ���
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to obtain fixed interval smoothed estimates 0 	 � � ? @A��� ��� , where
� � 4 . To accomplish this,

at each time step one needs to resample the previous state trajectories using the current

importance weights. In doing this, we encounter two difficulties. Firstly, resampling the

past trajectories at each time step leads to a significant depletion of samples. Secondly,

one has to store in memory all the past trajectories. The first problem can be solved to

a certain degree by applying MCMC moves to the past trajectories. This approach also

allows us to introduce Gibbs sampling steps to estimate the noise statistics (Andrieu

et al., 1999e; Gilks and Berzuini, 1998). It is also possible to solve the second problem

if we can find a way of expressing the past history of the particles in terms of a set of

sufficient statistics (Andrieu et al., 1999e; Fearnhead, 1998). If we are interested in

filtering instead of smoothing, there is no need to store the past trajectories.

An alternative smoothing strategy, known as fixed-lag smoothing, involves estimat-

ing the distribution 0 	 � ��? @A��� �f��- � where 0 � O is the length of the lag. Approaches to

solve this problem, using forward sampling/backward filtering algorithms over the lag

of data, are proposed in (Doucet et al., 1999; Kitagawa, 1996).

6.11 A Brief Note on the Convergence of SMC Algorithms

The theoretical convergence of SMC algorithms is an area of active research. Here

we present some results derived from (Crisan et al., 1999; Del Moral and Guionnet,

1999)1. To make the material accessible to a wide audience, we have simplified the

presentation. Readers are encouraged to consult the original references should any

confusion or ambiguities arise. In (Crisan et al., 1999), the following result is proved:

Proposition 3 [Theorem 3.2 of (Crisan et al., 1999)] If the function ���S	�^_� and the un-

normalised importance weights �"� are bounded, then, under a few regularity conditions,

for all 4�� O we have the following convergence result:

a hfg� � � � W � < MI
�� & 
�� �o�S	 � � � P�� � R��, 	 d � ��� ~ � �o�S	 � � � 0 	 � �S? @A��� ��� d � � > � 	 � O

That is, it is possible to obtain convergence in time if we have an infinite number

of particles at the beginning. A more interesting goal is to prove that the error is

bounded uniformly in time. In this regard, the following stronger result has been

proved recently:

Proposition 4 [Theorem 3.7 of (Del Moral and Guionnet, 1999)] Assume that the

measurements mapping
�
� ��	�^_� is upper bounded and that the distribution of the measure-

ment noise is lower and upper bounded, then for any bounded function ���S	�^_� , such that

1I would like to acknowledge Arnaud Doucet for having helped me to understand these results.
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p �o�S	�^_� p � M , we have:

l�m ]� � � a,bc W � MI �� & 
�� � �S	 � ��� P ��� R �, 	 d � � � ~ � �o�S	 � ��� 0 	 � ��? @A��� ��� d � � 	 � 	 [:\�] 	��
�
�

I � @��
where � is positive and � is a positive bound. Note that, at this point in time, the

assumptions are still very restrictive. Yet the results are very powerful and should soon

lead to stronger theorems.

There are also empirical methods that enable us to assess the convergence of SMC

algorithms using Cramér-Rao and posterior Cramér-Rao bounds: see (Bergman, 1999)

for a very lucid presentation. For example, for our state space model we have the

following posterior Cramér-Rao bound:

Proposition 5 [Theorem 4.2 of (Bergman, 1999)] If the estimator’s bias is bounded,

then the mean square error of the estimator is bounded from below:

W A 	 � � � ~ � ���:	 � � � ~ � ��� � E � � � 	 � � � " ���
where

� 	 � ��� � W A ������� - x � , 	 � , {� � ������� - x
� , 	 � , {� � � E

is the Fisher information matrix (FIM).

For example, if we assume that the initial, process noise and measurement noise dis-

tributions are � 	 � � � � � , � 	 � � � � and � 	 O � � � respectively, then for
�

random walk

realisations of the states, we have the following empirical bound:���� M
�

�� & 
�� p � �
&
� ~ �

&� p ���
	
tr � �

where tr denotes the trace of a matrix and

�
����f��� � � ��� ~ � ��� � � ���� B � � B � ���� " ��� � ���

with

� � � � ��� W � < � � � �S	������ � � �� � � > < � � � �S	������ � ���� � � > � 	
� � can be approximated by the Monte Carlo sample average over the

�
independent

realisations of the states. For a fixed value of the states, the Cramér-Rao bound is

simply given by the Riccati equation (equation (3.6)) with the Jacobian evaluated at

the true states (Bergman, 1999).

6.12 Experiments

This section presents three experiments using synthetic data. The first experiment

provides a comparison between the various algorithms discussed in the chapter. It
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addresses the trade-off between accuracy and computational efficiency. The second

experiment illustrates how SMC methods can be used for time-varying probabilistic

classification. In this scenario, the EKF performs poorly as the target distribution is

Bernoulli. The third experiment shows how the HySIR algorithm can be used to esti-

mate time-varying latent variables. It also serves the purpose of illustrating the effect

of the process noise covariance
�

on the simulations.

6.12.1 Experiment 1: time-varying function approximation

Input-output data was generated using the following time-varying function:

� 	 �u�w	 � ��� � �#	 � ��� � � l h e 	 � �w	 � � ~��#� B � � �#	 � � � B 	 � b l 	 O � O � � � B 	 B �

where the inputs � � 	 � � and � � 	 � � were simulated from a Gaussian distribution with

zero mean and unit variance. The noise � was drawn from a Gaussian distribution

with zero mean and variance equal to O � M . Subsequently, the data was approximated

using an MLP with 5 hidden sigmoidal neurons and a linear output neuron. The MLP

was trained sequentially using the HySIR, SIR, SIS, EKF and SMC algorithms. The

difference between the SIR and SMC algorithms and the SIS algorithm is that SIR and

SMC resample every time, while SIS only resamples if the effective sample set is below

a threshold. The threshold was set to I $ �
.

The number of samples ( I ) was set to M�OO for the SIS, SIR and SMC methods and

to M�O for the HySIR method. The values M�OO and M were assigned to the initial variance

of the weights and the diagonal entries of the weights covariance matrix. The diagonal

entries of
�

and
�

were given the values O �
	 and � respectively. Finally, the extended

Kalman filter noise hyper-parameters
� �

and
� �

were set to O � M and O � OBM .
Table 6.1 shows the average one-step-ahead prediction errors obtained for 100 runs,

of 200 time steps each, on a Silicon Graphics R10000 workstation. On average, there

was a 	 O % occurrence of resampling steps using the SIS algorithm. It is clear from the

results that avoiding the resampling stage does not yield a great reduction in compu-

tational time. This is because one needs to evaluate neural network mappings for each

trajectory in the sampling stage. As a result, the sampling stage tends to be much more

computationally expensive than the resampling stage. The results also show that the

HySIR performs better than the conventional SIR and EKF algorithms. It is, however,

computationally more expensive, and fails to provide a complete description of the pos-

terior distribution. Neglecting computing time constraints, the results for the SIR and

SMC algorithm can be improved by increasing the number of particles.

It is interesting to note that the HySIR, despite requiring more floating point op-

erations, is faster than the SIR algorithm. This shows the effect of memory access on

the execution time: efficient memory access through cache systems requires temporal
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EKF SIS SIR HySIR SMC

RMS Error 6.51 3.87 3.27 1.17 2.89

Mega flops 4.8 5.6 5.8 48.6 2670.5

Time (seconds) 1.2 27.4 28.9 24.9 269.2

Table 6.1 RMS errors and floating point operations for the algorithms used in the function ap-

proximation problem. It should be noted that the RMS errors include the convergence period. This

explains why they are higher than the variance of the additive noise.

and spatial locality of reference. The design of efficient software and hardware plat-

forms is an important avenue for further research in the field of sequential Monte Carlo

simulation.

Figure 6.11 shows two plots of the prediction errors for the EKF and HySIR. The

left plot shows the best and worst results obtained with the EKF out of 100 trials, each

trial involving a different initial weights vector. The 100 initial weights vectors were

then used to initialise the HySIR algorithm with 100 sampling trajectories. As shown

in the right plot, the global search nature of the HySIR algorithm allows it to converge

much faster than the EKF algorithm. This is a clear example of how dynamic mixtures

of models, with model selection at each time step, perform better than static mixtures

(choosing the best EKF out of the 100 trials).

6.12.2 Experiment 2: sequential classification

Sequential classification problems arise in a few areas of technology (Melvin, 1996;

Penny et al., 1999). Often, it is necessary to monitor a set of signals and decide, on-

line, to which of two classes they belong. For example, when monitoring patients,

we might wish to decide whether they require an increase in drug intake at several

intervals in time.

Here, it is shown that particle filters provide an efficient and elegant probabilistic

solution to this problem. A synthetic problem, where the target classes change with

time, was considered. Specifically, the data was generated from two two-dimensional

overlapping classes (� 	 � O � O � � O � M 	 8 � � and � 	 � M � M � � O � M 	 8 � � ) between 4 � M and 4 � M�OO .
The variances and means of the two classes were changed to � 	 � O �
	� O � � O � M 8 �#� and� 	 � O �
	� M �
	�� � O � M 	 8 � � , between 4 � M�OBM and 4 � � OO . The data is depicted in Figure 6.12.

An MLP with 3 hidden logistic functions and an output logistic function was applied

to classify the data. The network was trained, sequentially, with an SMC algorithm by

proposing from the transition prior. An MCMC step was used to reduce the resampling

variance. The number of particles was set to 200, the prior network weights were
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Figure 6.11 Convergence of the EKF and HySIR algorithms for Experiment 1. The left plot shows

the best and worst EKF convergence results out of 100 runs using different initial conditions. The

initial conditions for each EKF were used to initialise the EKF filters within the HySIR algorithm.

At each time step, the HySIR evaluates a weighted combination of several EKFs. By performing

this type of dynamic model selection, it is able to search over large regions of parameter space and,

hence, converge much faster than the standard EKF algorithm.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

x 2

x
1

Figure 6.12 Data generated for the classification problem. The arrows indicate the shift in the

means at
� �A9 ��� .
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sampled from � 	 � � M�O 8 �w� , while their diffusion parameter was set to 0.2. Figure 6.13

shows the one-step-ahead predicted class probabilities, the output labels obtained by

thresholding the output at 0.5 and the cumulative mis-classification errors. Figure 6.14

depicts the evolution of the probabilities of class membership. Despite the change in
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Figure 6.13 The top plot shows the true labels [ �� ] and one-step-ahead predicted probabilities of

class membership [—]. The middle plot shows the predicted labels using a threshold of 0.5. The

bottom plot shows the cumulative number of mis-classification errors.

the target distributions at 4 � M�OO , the algorithm recovers very quickly.

6.12.3 Experiment 3: latent states tracking

To assess the ability of the hybrid algorithm to estimate time-varying hidden param-

eters, input-output data was generated from a logistic function followed by a linear

scaling and a displacement as shown in Figure 6.15. Two Gaussian input sequences

were applied to the model. This simple model is equivalent to an MLP with one hidden

neuron and an output linear neuron. A Second model was then trained with the same

structure using the input-output data generated by the first model.

In the training phase, of 200 time steps, the model weights were allowed to vary

with time. During this phase, the HySIR algorithm was used to track the input-output

training data and estimate the latent model weights. After the 200-th time step, the

values of the weights were fixed and another 200 input-output data test sets were

generated from the original model. The input test data was then fed to the trained

model, using the weights values estimated at the 200-th time step. Subsequently, the
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Figure 6.14 Probabilities of class membership for the classification problem.
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Figure 6.15 Logistic function with linear scaling and displacement used in Experiment 3. The

weights were chosen as follows:
) R0P � � 9 � � � 9 � � ,

) � P � ��� �$� i � B ��� � u � �
,
)
� P � � � B 9 , )�� P � ��9 ,)�� P � � � � B 	 .

output prediction of the trained model was compared to the output data from the

original model so as to assess the generalisation performance of the training process.

The experiment was repeated using two different values of
� � 3 8 � , as shown

in Figures 6.16 and 6.17. With a very small value of 3 (0.0001), the algorithm was

able to estimate the time-varying latent weights. After 100 time steps, the algorithm

became very confident, as indicated by the narrow error bars. By increasing 3 to 0.01,

it was found that the algorithm became less confident. Yet, it was able to explore wider

regions of parameter space, as shown in the histogram of Figure 6.17.

The variance (
�

) of the noise added in the prediction stage implies a trade-off be-

tween the algorithm’s confidence and the size of the search region in parameter space.

Too large a value of 3 will allow the algorithm to explore a large region of the space, but

will never allow the algorithm to converge to a specific error minimum. A very small
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Figure 6.16 Weights tracking with
x � � B ��� � 9 . The top left plot shows the one-step-ahead pre-

diction errors in the training set. The top right plots shows the prediction errors with validation

data, assuming that after the 200-th time step the weights stop varying with time. The middle

plot shows the histogram of
) �

. Finally, the bottom plot shows the tracking of the weights with

the posterior mean estimate computed by the HySIR. The bottom plot also shows the one standard

deviation error bars of the estimator. For this particular value of
x
, the estimator becomes very con-

fident after 100 iterations and, consequently, the histogram for
) �

converges to a narrow Gaussian

distribution.
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Figure 6.17 Weights tracking with
x � � B � 9 . The top left plot shows the one-step-ahead prediction

errors in the training set. The top right plots shows the prediction errors with validation data,

assuming that after the 200-th time step the weights stop varying with time. The middle plot

shows the histogram of
) �

. Finally, the bottom plot shows the tracking of the weights with the

posterior mean estimate computed by the HySIR. The bottom plot also shows the one standard

deviation error bars of the estimator. For this value of
x
, the search region is particularly large

(wide histograms), but the algorithm lacks confidence (wide error bars).

value, on the other hand, will cause all the sampling trajectories to converge to a very

narrow region. The problem with the latter is that if the process generating the data
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Figure 6.18 Weights tracking with
x � � B � ��� 9 and two random mutations per time step withx � � B 9 . The top left plot shows the one-step-ahead prediction errors in the training set. The top

right plots shows the prediction errors with validation data, assuming that after the 200-th time

step the weights stop varying with time. The middle plot shows the histogram of
) �

. Finally, the

bottom plot shows the tracking of the weights with the posterior mean estimate computed by the

HySIR. The bottom plot also shows the one standard deviation error bars of the estimator. The

histogram shows that the mutations expand the search region considerably.

changes with time, we want to keep the search region large enough so as to find the

new minimum quickly and efficiently. To address this problem, a very simple heuristic
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has been employed. Specifically, when Gaussian noise is added in the prediction stage,

a small set of the trajectories is selected randomly. Subsequently, Gaussian noise with

a covariance parameter much larger than 3 is added to the selected trajectories. In

theory, this should allow the algorithm to converge and yet allow it to keep exploring

other regions of parameter space. From an evolutionary computing perspective, we can

think of these few randomly selected trajectories as mutations. The results of applying

this idea are shown in Figure 6.18. They suggest that this heuristic reduces the trade-

off between the algorithm’s confidence and the size of the search region. Yet, further

research on algorithms for adapting
�

is necessary.

6.13 Summary

This chapter presented a sequential Monte Carlo approach for training neural networks

in a Bayesian setting. This approach enables accurate characterisation of the probability

distributions. Propagating a number of samples in a state space dynamical systems

formulation of the problem is the key idea in this framework. As the framework is new

to the neural networks community, emphasis has been placed on describing the latest

available SMC tools.

Experimental illustrations presented here suggest that it is possible to effectively

apply sampling methods to tackle difficult problems involving nonlinear, non-Gaussian

and time varying processes, typical of many sequential signal processing problems. For

instance, it was shown that SMC methods provide an elegant solution to the logistic

classification problem, where the target distributions cannot be characterised appropri-

ately using Gaussian approximation.

The chapter also proposed an efficient optimisation algorithm, which combines gra-

dient information of the error function with probabilistic sampling information. If the

goal is to find the modes of the posterior, the simulations seem to indicate that the

HySIR performs better than EKF and conventional SIR approaches. HySIR can be inter-

preted as a Gaussian mixture filter, in that only a few sampling trajectories need to be

employed. Yet, as the number of trajectories increases, the computational requirements

increase only linearly. Therefore, the method is also suitable as a sampling strategy for

approximating multi-modal distributions.

The importance of the MCMC step was emphasised, not only because it reduces the

resampling variance, but also because it allows one to explore the state space efficiently.

The following chapter will show how this step can be used to design variable dimension

SMC algorithms.



7

Sequential Bayesian Model Selection

This chapter1 develops a sequential Monte Carlo method to perform Bayesian model

selection. This on-line simulation-based estimation scheme combines sequential im-

portance sampling, a selection scheme and reversible jump MCMC moves. It makes

it possible to run a single algorithm which concentrates itself on the model orders of

interest. This method is applied to the problem of estimating, on-line, the parameters,

noise variance, and number of neurons of a hybrid model comprising a linear model

and a radial basis function (RBF) network. A full Bayesian prior that allows one to in-

tegrate the basis coefficients and linear regression parameters is proposed. As a result

of this, an efficient Rao-Blackewellised algorithm, that computes the coefficients and

linear regression parameters using a stochastic bank of Kalman filters, is obtained.

The chapter is organised as follows. Section 7.1 introduces the model selection

problem and describes the approximation and probabilistic models. It also presents

the estimation objectives. Section 7.2 proposes a generic simulation-based method

to perform sequential Bayesian estimation and model order selection simultaneously

and discusses the related implementation issues. Section 7.3 applies the proposed

algorithm to sequential Bayesian model order selection of hybrid linear-RBF models

observed in Gaussian noise. The experimental results are presented in Section 7.4.

Finally, some conclusions are drawn in Section 7.5.

7.1 Problem Statement

A sequential data processing scenario, where the model can change at each time step,

is considered. In particular, the model active at time 4 will be denoted � � ( $ , , where

� � corresponds to its current dimension. Examples include neural network models

1This chapter would not have been possible without the help of Christophe Andrieu and Arnaud

Doucet. I am very thankful to them.

135
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where the number of neurons changes over time and autoregressive (AR) processes

where the number of lags also varies with time (Andrieu et al., 1999e). However,

the framework is more general than the one of model order selection in embedded

models (see Appendix D). As the subscript 4 indicates, one can have different varieties

of models in this formulation. For instance, one could easily treat the problem of neural

networks where the type of basis functions changes over time.

For each model, at time 4 , there is a corresponding set of unknown parameters
� $ , ( � N � $ , ( � . For example, these parameters could correspond to the weights of a

neural network or a set of AR coefficients. The subscript in � � is used to emphasise that

the dimension of the parameter vector ( � � ) changes with time.

If the dimension � � takes an integer value between O and � ����� at each time step,

then there are 	 � � � � B M � �f��� possible model trajectories between time O and time 4 .
The finite set of candidate models for this period can be described with � � � � ( $ � � , , � � � � N
� O ������� � � � � �

� �f��� , where � � � ����� � � � � ����������� � �$� . The corresponding set of parameters is

given by � $ � � , ( � � � N � $ � � , ( � � � .
It is assumed that these parameters and their number are random quantities with

given prior distributions. It is possible as a result to define the following joint distribu-

tion for these quantities given the data
� ��� � :

0 	 � � � ��� � $ � � , ( � � � � � ��� ��� � 0 	 � ��� �S? � � � ��� � $ � � , ( � � � � 0 	 � $ � � , ( � � � ? � � � ��� 0 	 � � � ���
where 0 	 � ��� ��? � � � ��� � $ � � , ( � � � � is the likelihood function, 0 	 � $ � � , ( � � � ? � � � ��� is the prior param-

eters distribution and 0 	 � � � � � is the prior model distribution. This general framework

encompasses many types of signal models. For demonstration purposes, the problem

of RBF models is considered.

7.1.1 Example: radial basis function networks

The approximation scheme consisting of a mixture of � radial basis functions and a

linear regression term is adopted again in this chapter. The approximation model �
for the observations at time 4 is:

� � ( � � @�� ���#� B�� �� ��� B�� � � � � O
� � ( $ , � @�� � 	 $ ,� 
�� � � ( � � 	 p ���u~�� � ( � p � B �� B�� �� ��� B�� � � � � M (7.1)

where
p ^ p denotes a distance metric (usually Euclidean or Mahalanobis), � � ( � N = �

denotes the  -th RBF centre for a model with � RBFs, � � ( � N = �
denotes the  -th RBF

amplitude and � � N = �
and � � N = � � �

denote the linear regression parameters. The

noise sequence � � N = �
is assumed to be zero-mean Gaussian; its variance changes over

time. Note that the parameters �E� , � � and � � on � � are affected by the value of � � .
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For convenience, the approximation model is expressed in vector-matrix form2:

@ � � � 	 � ��� $ , ( � � � � � � ��� ��� � � $ , ( � B�� �
where:

@ � � � @ � ( � ^�^�^S@ � ( � �� 	 � ��� $ , ( � � ����� � � M �A� ( �B^�^�^ � � ( � � 	�� ��� � ( � � � ��� � ( � ( � �!^�^�^ � 	�� ��� � ( � � � ��� � ( $ , ( � ���
� ��� � ( ��� ��� � � $ , ( � �

�����
�
�B� ( � � � ( � ( � ^�^�^ � � ( � ( � � � ( � ( �B^�^�^ � � ( $ , ( �
� � ( � � � ( � ( � ^�^�^ � � ( � ( � � � ( � ( � ^�^�^ � � ( $ , ( �

...
� � ( � � � ( � ( � ^�^�^ � � ( � ( � � � ( � ( ��^�^�^ � � ( $ , ( �

������
	
�

and, finally, the noise process is assumed to be normally distributed as follows:

� � C � � � � � � ��T * Z � � � � � ( � �������u��� �� ( � " "
The number � � of RBFs and their parameters � $ , ( � � � � ��� � ( ��� � , ( � � � ��� � ( ��� $ , ( � ��� � ��� � ( � � , with6 � � M5B T B � � , are assumed to be unknown and need to be estimated sequentially.

7.1.2 Bayesian model

A state space representation is adopted to describe the network’s evolution over time:

@�� � � 	 � ��� $ , ( � � ����� � ��� � , ( � B � � (7.2)

� �f��� � � � B � $ (7.3)

� ��� $ , � 9 ( �f��� � � ��� $ , � 9 ( � B � � (7.4)� ��� � , � 9 ( �f��� � � ��� � , � 9 ( � B ��� (7.5)a�bc 	 � ��f��� � � a�bc 	 � �� � B ��� (7.6)

where the diffusion process � $ is sampled from a discrete distribution:

� $}C 0 	 � �f��� ? � ���

The other processes are sampled from normal distributions:

� � C � 	 O � P �� 8 � �
��� C � 	 O � P �� 8 � , �
��� C � 	 O � P �� 8 � �

2The notation � 9�� � � , � � � 9�� ,  � : � ,  %#$#$#  � � � , ' ) is once again used to denote all the output observations

at time � . To simplify this notation, � , is equivalent to � 9�� � � , . That is, if one index does not appear, it is

implied that we are referring to all of its possible values.
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where 6 � � � � B T B M and
8 � denotes the identity matrix of size 6 1 6 . Note that if � �

changes, the dimensions of � ��� � , ( � and � ��� $ , ( � also change accordingly. In the example

of RBFs, if � � increases, new basis centres � � are sampled from a Gaussian distribution

centred at the data �u� . That is, one stochastically places basis functions where there is

more information. On the other hand, if � � decreases, one samples uniformly from the

existing set of basis functions to decide which bases should be deleted.

The joint distribution of the proposed model, with � $ � � , ( � � � ��� � ��� � � � , ( � � ��� � ��� $ � � , ( � � � ��� �� � � � ,
is:

0 	 � � � ��� � $ � � , ( � � � � �A��� ����@A��� ��� � 0 	)@A��� �S? � � � ��� � $ � � , ( � � � � �A��� ��� 0 	 � ��� $ � � , ( � � � � 0 	 � ��� � � � , ( � � � � 0 	 � �� � � � 0 	 � � � ���
�

� �� �

�� 0 	)@

� ? � � � � $ � ( � � � � � 0 	 � ��� $ � ( � ? � ��� $ � � 9 ( � ��� � 0 	 � ��� � � ( � ? � ��� � � � 9 ( � ��� � 0 	 � �� ? � �� ��� � 0 	 � � ? � � ��� � 	
1 0 	 � $ � ( � � 0 	 � � � ( � � 0 	 � �� � 0 	 � � � (7.7)

Multivariate normal distributions are adopted to represent the priors 0 	 � $ � ( � � and 0 	 � $ � ( � � ,
a uniform distribution for 0 	 � �$ � ( � � and a discrete uniform distribution for 0 	 � � � . The

parameters of these priors should reflect our degree of belief in the initial values of the

various quantities of interest (Bernardo and Smith, 1994).

In our model, it is clear that � $ � � , ( � � � � � $ � � , ( � � � and:

� $ � � , ( � � � �
	 = � ��� � � ' , � � 1 	 = � ' , � � 1 = � x � ��� {

where � ��� � ( ��� � � � , ( � � � N 	 = � ����� � ' , � � , � ��� � ( ��� $ � � , ( � � � N 	 = � ' , � � , � � ��� � ( � � � N = � x �f��� {
and

� $ , �
	 � � 
 � � � . Figure 7.1 shows the directed acyclic graphical model representation of the

joint distribution for the first four time steps.

7.1.3 Estimation objectives

Our aim is to estimate the joint posterior distribution 0 	 � � � � � � $ � � , ( � � � ? � ��� � � , defined on the

space � � � � ��� x $ ����� ��� { , � 9�

�� � $�� � 	� � , ( � � � 1 � � �

�
�� � � � , recursively in time. Note that �

� � �� � � represents

the � -th possible model trajectory for an arbitrary ordering. According to Bayes’ rule,

the posterior distribution 0 	 � � � ��� � $ � � , ( � � � ? � ��� ��� is given by:

0 	 � ��? � ��� ������� � $ � � , ( � � � � � � � ��� 0 	 � � � ��� � $ � � , ( � � � ? � ��� �������
	 x $ ����� ��� { , � 9�

��

H �
' � � 	� � , � � � ,

0 	 � ��? � ��� ������� � $ � � 	� � , ( � � � � � �
�

�� � � � 0 	 � � � �� � � � � $ � � 	� � , ( � � � ? � ��� ������� d � $ � � 	� � , ( � � �
It is, in most occasions, impossible to derive closed-form analytical expressions for

this distribution and its features of interest, such as the posterior model probabilities

0 	 � � � ��? � ��� ��� . As a result, one has to resort to computational methods in most situations.
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Figure 7.1 Dynamical directed acyclic graphical model. The circles represent unknowns, while the

double circles correspond to the data. The hyper-parameters
�
�

� ,
�
�

� ,
�
�

� and
� 


have been omitted

for clarity.

7.2 Sequential Monte Carlo

With a few exceptions (Andrieu et al., 1999e; Djurić, 1999), most existing SMC meth-

ods belong to a framework where the model order is assumed to be known. Here, a

Bayesian importance sampling method is presented to deal with the more general case

of unknown model dimension. To accomplish this goal in an efficient way, reversible

jump MCMC steps are introduced into the algorithm. The next subsection presents a

generic version of the algorithm.

7.2.1 Generic SMC algorithm

Given I particles � � � x & {$ � � ,�� 9 ( � � ����� � � x & {� � ����� " � * N � M �������u��I � � at time 4 ~ M , approximately

distributed according to 0 	 � $ � � ,�� 9 ( � � ����� � � � � ����� ? � ��� ������� , the algorithm allows us to com-

pute I particles � � x & {$ � � , ( � � � � � x & {� � � " , approximately distributed according to the posterior

0 	 � $ � � , ( � � � � � � � ��? � ��� ��� , at time 4 . Before presenting the algorithm, let us first introduce

the quantities 	 � $ , ( ��� � � ��� to denote the set of variables in 	 � $ � � , ( � � � � � ��� , but not in	 � $ � � , � 9 ( � � ����� � � ������� (note that this set can be empty for some problems). The impor-

tance function for this set will be denoted 3 	 � $ , ( ��� � � ��? � $ � � ,�� 9 ( � � ����� � � � � ������� � ��� ��� . This

function is such that the support of the distribution 0 	 � $ � � , ( � � � � � � � ��? � ��� � � is included in the

support of the product 0 	 � $ � � ,�� 9 ( � � ����� � � � � ����� ? � ��� ������� 3 	 � $ , ( ��� � � ��? � $ � � ,�� 9 ( � � ����� � � � � ������� � ��� ��� .
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The algorithm proceeds as follows at time 4 :
SMC Algorithm for Bayesian Model Selection

1. 4 �'& �'�'� �6, � �5(*�*	 � �6, 01�7� �6�5( $8� , �9�#�:� (

�����
	 * � M �������u��I<; � �6�%( $ �>=
	 �� x & {� $ , ( ��� � � � x & {� � C 3 	 � $ , ( ��� � � ��? � x

& {$ � � , � 9 ( � � ����� � � x & {� � ����� � � ��� ���
�6,�� �/�'�'= � �� x & {� $ � � , ( � � � � � � x & {� � � " � ��	 � x & {$ � � ,�� 9 ( � � ����� � � x & {� � ����� ����	 �� x & {� $ , ( ��� � � � x & {� � "

�����
	 * � M ����������IE; ��? � $ @ � �:� ����� � �%(*�*	 � �6, 01� � ��� ���-� � @ ( � � �+,-�
	F� � $A� �'� , � 0 � , �#� �6, �'=

�

x & {� �
0 	 �� x & {� $ � � , ( � � � � � � x & {� � � ? � ��� ���

0 	 �� x & {� $ � � ,�� 9 ( � � ����� � � � x & {� � ����� ? � ��� ������� 3 	 �� x & {� $ , ( ��� � � � x & {� ? � x & {$ � � ,�� 9 ( � � ����� � � x & {� � ����� � � ��� ���
(7.8)

�����
	 * � M �������u��I<; ,��*	F�+� $A� �/�7���-� � �%(*�
	 � �6, 01� � ��� ��������=

	
�

x & {� � �

x & {� � ����
�� �

x � {� 	 ��� (7.9)

2.
� ��$ �10'� � � , �#�:� (

� � @6$ ��� ( $ &�� � @ (
(�	 �'�#� � �
�5( $ �'� 	 �� x & {� $ � � , ( � � � � � � x & {� � � � � � ��� �
� ��� � $ �1� � �5(*�*	 � �6, 01� � ��� �������
	

�

x & {� ; 	 �'� ( �10'� � ?���$ &1; � ����� � � � , I 	 �
,��
� � � �6�%( $ �'� 	 	� x & {� $ � � , ( � � � � 	 � x & {� � � � �6(
(�	���� � �+� ����$ &
� � �#� 	 � � @��:� � � 010 �*	�� � , � � � 0 	 	� x

& {
� $ � � , ( � � � � 	 � x & {� � � ? � ��� ����3

3. �
�
�
� �#�:� (

� � (
( $ & � � ��	 � � ? � 	��6, �'� � � � , � � 	F, ��$ � � ���+� , ? �>	 � �6, � � � �#� 	 � � @���� � , � � ?�� , ��& ���-� (�	�� � @-0'�
� �& 
�� 0 	 � x

& {$ � � , ( � � � � � x & {� � � ? � ��� ��� � �9��� � � � , 	 � x & {$ � � , ( � � � � � x & {� � � ��3
�
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7.2.2 Implementation issues

7.2.2.1 Bayesian importance sampling step

As mentioned earlier, Bayesian importance sampling has been formulated mainly in

scenarios where the distribution from which one wishes to sample is defined on a sim-

ple set with a unique dominating measure (Geweke, 1989). For the sake of clarity,

this section describes the more general case that arises when the target distribution is

defined on a union of distinct subspaces, that is:

� 	 � $ � � , ( � � � � � � � ��� � x $ ����� ��� { , � 9� �

�� � $ � � 	� � , 	 � $ � � 	� � , ( � � � � � �

�
�� � � � J �

' � � 	� � , � � � ,
��� $ � � 	� � , � 	 � $ � � , ( � � � � � � � ���

Let us introduce the following importance distribution:

3 	 � $ � � , ( � � � � � � � ��� � x $ ����� ��� { , � 9� �

�� 3 $ � � 	� � , 	 � $ � � 	� � , ( � � � � � �

�
�� � � � J �

' � � 	� � , � � � ,
��� $ � � 	� � , � 	 � $ � � , ( � � � � � � � ���

where the support of 3 $ � � 	� � , 	 � $ � � 	� � , ( � � � � � �
�

�� � � � includes the support of � $ � � 	� � , 	 � $ � � 	� � , ( � � � � � �
�

�� � � � for
� � M �������u��	 � � � � B M � �f��� . Hence, � 	 � $ � � , ( � � � � � � � ��� can be rewritten as:

	 x $ ����� ��� { , � 9�
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�
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�

�� � � � 3 $ � � 	� � , 	 � $ � � 	� � , ( � � � � � �
�

�� � � � d � $ � � 	� � , ( � � �
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� $ � � 	� � , 	 � $ � � 	� � , ( � � � � � �
�

�� � � � � � $�� � 	� � , 	 � $�� � 	� � , ( � � � � � �
�

�� � � �
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�
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represents the unnormalised importance ratios. Let us assume that we have I samples	 � x & {$ � � , ( � � � � � x & {� � � � distributed according to 3 	 � $ � � , ( � � � � � � � ��� , then the Bayesian importance

sampling method gives us the following point mass approximation of � 	 � $ � � , ( � � � � � � � ��� :
� � 	�T � $ � � , ( � � � � � � � ��� �

	 x $ ����� ��� { , � 9�

�� 	 � �

' � � 	� � ,
� $ � � 	 � � R��� � ,

	 � x & {$ � � 	 � � R��� � , ( � � � � � � � � ( x & {� � � � P
�

� R��
'
� R��
� � , � � � ,

( $ � R �� � , 	 d � $ � � , ( � � � � � � � ���
	 x $ ����� ��� { , � 9�

�� 	 � �

' � � 	� � ,
� $�� � 	 � � R �� � ,

	 � x & {$ � � 	 � � R �� � , ( � � � � � � � � ( x & {� � � �
(7.10)

with
� �$ � � 	� � , � � * N�� M ������� ��I �	$�	 � x & {$ � � , ( � � � � � x & {� � � � N � $ � � 	� � , ( � � � 1 � �

�
�� � � � . Equations (7.8) and (7.9)

follow.
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7.2.2.2 Selection step

As discussed in the previous chapter, a selection scheme associates to each particle	 �� x & {� $ � � , ( � � � � � � x & {� � � � a number of “children”, say I & N >
, such that 	

�& 
�� I & � I . One can use

multinomial, residual or systematic sampling to obtain the set of resampled particles:	�	 	� x & {� $ � � , ( � � � � 	 � x & {� � � ��� * � M ������� ��I<� .
7.2.2.3 MCMC steps

After the selection scheme at time 4 , we obtain I particles distributed marginally ap-

proximately according to 0 	 � � � � � � $ � � , ( � � � ? � ��� � � . In practice, a skewed importance weights

distribution implies that many particles have had no children, i.e. I & � O , whereas oth-

ers have had a large number of children, the extreme case being I & � I for a particular

value * . In this case, there is a severe depletion of samples. A strategy for improving the

results consists of introducing MCMC steps of invariant distribution 0 	 � � � ��� � $ � � , ( � � � ? � ��� ���
on each particle (Andrieu et al., 1999e; Carpenter et al., 1999; Doucet and Gordon,

1999; Gilks and Berzuini, 1998; MacEachern et al., 1999). The basic idea is that, by

applying a Markov transition kernel, the total variation of the current distribution with

respect to the invariant distribution can only decrease. Note, however, that we do not

require this kernel to be ergodic. Convergence results for this type of algorithm are

presented in (Gilks and Berzuini, 1998).

It is possible to generalise this idea and to introduce MCMC steps on the product

space with an invariant distribution

�
�& 
�� 0 	 �

x & {$ � � , ( � � � � � x & {� � � ? @ ��� � � , that is apply MCMC steps on

the whole population of particles. In doing so, it allows us to introduce the algorithms

developed in parallel MCMC computation. This chapter is limited to the use of simple

MCMC transitions steps on each particle. In particular, reversible jump MCMC steps

(Green, 1995) are proposed to allow the particles to move from one subspace to the

others.

7.3 SMC Applied to RBF Networks

This section shows that it is possible to integrate the nuisance parameters � ��� � , ( � , lead-

ing to a more efficient algorithm. Subsequently, it introduces the reversible jump

MCMC algorithm in the context of sequential sampling and describes the SMC algo-

rithm for RBFs. Finally, it presents the implementation details for the sampling, selec-

tion and MCMC steps.

In the RBF signal model, 	 � $ , ( ��� � � ��� � 	 � $ , ( � � � ��� � 	 � � ��� � , ( � � � ��� $ , ( � ��� �� �#� � � � . It is

important to note that for the parameters � ��� � , ( � , conditionally upon 	 � ��� $ , ( � ��� �� �#� � ��� ,
we have a linear Gaussian state space model. Consequently, it is possible to integrate

out � ��� � , ( � , thereby reducing the variance of the estimates (Doucet et al., 1999, Proposi-



Sequential Bayesian Model Selection 143

tions 1 and 2). The end result corresponds to a bank of Kalman filters for each network

output3 (Jazwinski, 1970; Kalman and Bucy, 1961):


 x & {� � 	 � x
& {$ , ( ����� B P �� 8 � , � � � 	 � ��� $ , ( � � �����

� � �� B � 	 � ��� $ , ( � � �����:	 � x
& {$ , ( ����� B P �� 8 � , � � � 	 � ��� $ , ( � � ����� 	 ���

(7.11)�� x & {��� � , ( � � �� x & {��� � , ( ����� B�
 x & {� � @�� ~ � 	 � ��� $ , ( � � ����� �� x & {��� � , ( ����� " (7.12)

�
x & {$ , ( � � �

x & {$ , ( ����� B P �
�
8 � , ~ 
 x & {� � 	 � ��� $ , ( � � �����:	 � x

& {$ , ( ����� B P �
�
8 � , � (7.13)

where 
 � denotes the Kalman gain and
�� ��� � , ( � and � $ , ( � correspond to the conditional

mean and covariance matrix of � ��� � , ( � . Note that the sizes of
�� ��� � , ( � and � $ , ( � vary

over time. If � � decreases, then we should delete, at random, � �����r~ � � basis function

coefficients and the corresponding row and column entries in the matrix � $ , � 9 ( ����� . If

� � increases, say for example � � � � ����� B M , we can extend
�� ��� � ,�� 9 ( ����� and � $ ,�� 9 ( ����� as

follows: �� ��� � , ( ����� � � �� ��� � ,�� 9 ( ����� �� ��� � � ( � 	 �

� $ , ( ����� �
�
� $ , � 9 ( ����� O

O � $ � ( ���
where

�� ��� � � ( � and � $ � ( � depend on our prior knowledge about the data set being mod-

elled. By integrating out � ��� � , ( � , we may select the following importance distribution:

3 	 � ��� $ , ( � ��� �� � � �:? � $ � � ,�� 9 ( � � ����� � � � � ������� � ��� ��� � 0 	 � ��� $ , ( � ? � ��� $ , ( ����� � � ��� 0 	 � �� ? � ������ � 0 	 � ��? � �������
As pointed out in Chapter 5, standard MCMC methods are not able to “jump” be-

tween subspaces � $ � � , ( � � � of different dimension. However, recently, Green has intro-

duced a flexible class of MCMC samplers, the so-called reversible jump MCMC, that are

capable of jumping between subspaces of different dimensions (Green, 1995). Here,

the chain must move across subspaces of different dimensions, and therefore the pro-

posal distributions are more complex: see (Green, 1995; Richardson and Green, 1997)

for details. For our problem, the following moves have been selected:

1. Birth of a new basis, i.e. proposing a new basis function.

2. Death of an existing basis, i.e. removing a basis function chosen randomly.

3. Update the RBF centres.

3Note that to simplify the notation, the Kalman filter equations are described for a single output. Thus� :, is a scalar. In general, we would need to introduce a subindex +�� "  %#$#$#  � (that is, write explicitly� :� � , , �� � � 9�� �
	 � , and � � � '�	�� , ) to indicate the + -th output of the neural network.
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These moves are defined by heuristic considerations, the only condition to be ful-

filled being to maintain the correct invariant distribution. A particular choice will only

have influence on the convergence rate of the algorithm. The birth and death moves

allow the network to grow from � � to � � B M and decrease from � � to � � ~ M respectively.

By applying the bank of Kalman filters and incorporating reversible jump MCMC steps,

the sequential model selection algorithm for RBF networks is as follows:

SMC Algorithm for RBFs Bayesian Model Selection

1.
� � � @-� , � � � $ � �5(*�*	 � �6, 01�7� �6�%( $8� , �9�#�:� (
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�

7.3.1 Sampling and selection steps

In the prediction stage, samples from the importance function are obtained as follows:�
� ��?z	 � ��� $ ,�� 9 ( ����� ��� ������ � � ������� � ��� ������� C 0 	 � ��? � �����:� (7.14)�� �� ?z	 � � � � � ��� $ ,�� 9 ( ����� ��� ������ � � ����� � � ��� ����� � C 0 	 � �� ? � ������ � (7.15)�� ��� $ , ( � ?z	 � � ��� � ��� � $ , ( ����� ��� ������ � � ������� � ��� ������� C 0 	 � ��� $ , ( � ? � ��� � $ , ( ����� � � � ��� (7.16)

Applying Bayes’ rule, the posterior at time 4 is:

0 	 � ��� $ � � , ( � � � ��� �� � � � � � � ��? � ��� ��� � 0 	)@���? � ��� $ � � , ( � � � ��� �� � � � � � � ��� ����� � ��� ������� 0 	 � ��� $ � � , ( � � � ��� �� � � � � � � ��? � ��� �������
� 0 	)@��S? � ��� $ � � , ( � � � ��� �� � � � � ��� ����� � ��� ������� 0 	 � ��� $ , ( � ��� �� � � ��? � ��� $ � � ,�� 9 ( � � ����� ��� �� � ����� � � � � ������� � ��� �����:�
1 0 	 � ��� $ � � ,�� 9 ( � � ����� ��� �� � ����� � � � � �����? � ��� �������

� 0 	)@ � ? � ��� $ � � , ( � � � ��� �� � � � � � � � � � � � � ��� ����� � 0 	 � ��� $ , ( � ? � ��� $ , ( ����� � � � � 0 	 � �� ? � ������ � 0 	 � � ? � ����� �
1 0 	 � ��� $ � � ,�� 9 ( � � ����� ��� �� � ����� � � � � �����? � ��� �������

Hence, it follows that the unnormalised importance ratios � � are given by:

� � � 0 	 � ��� $ � � , ( � � � ��� �� � � � � � � � ? � ��� � �
3 	 � ��� $ , ( � ��� �� � � ��? � $ � � ,�� 9 ( � � ����� � � � � ������� � ��� ��� 0 	 � ��� $ � � ,�� 9 ( � � ����� ��� �� � ����� � � � � �����o? � ��� �������

� 0 	)@���? � ��� $ � � , ( � � � ��� �� � � � � � � ��� ����� � ��� ������� (7.17)

That is, the importance ratios are the one-step-ahead densities (also known as the

evidence or innovations) in the bank of Kalman filters. More precisely,

0 	)@���? �� x & {��� � $ � � , ( � � � � �� � x & {� � � � � � x & {� � � � ����� � ��� �������
� � < � 	 �� x & {��� � $ , ( � � ����� �� x & {��� �� , ( ����� � �� x & { �� B � 	 �� x & {��� � $ , ( � � �����:	 � x & {� $ , ( ����� B P �

�
8 � , � � � 	 �� x & {��� � $ , ( � � ����� >

(7.18)

The selection step is done according to the residual resampling scheme.
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7.3.2 MCMC steps

For our problem, the target distribution is defined as:

0 � � ��� � ��� $ , ( � �� �A��� ����@A��� ��� � ��� ������� � ��� $ ,�� 9 ( ��� ����� ��� � ��� � ( ��� � � (7.19)

That is, the past trajectories are kept fixed to reduce the computational requirements.

Note, however, that the methodology is more general and that it is possible to sample

from the joint distribution of the trajectories 0 � � ��� � � � ��� $ 9�� , ( ��� � ��� � ��� � ( ��� � �� � ��� � ��@ ��� � " . The

target distribution is defined on a union of disconnected spaces,
� 	 � ����� ~ M � 1 � � $ , � 9 ��� �� 	 � ����� � 1�� � $ ,�� 9 � � 	 � ����� B M � 1#� � $ ,�� 9 ��� , and admits the following expression:

0 � � ��� � ��� $ , ( � �� �A��� � ��@A��� ��� 	 � ��� ������� � ��� � $ ,�� 9 ( ��� ����� ��� � ��� � ( ��� � �
� J � � $ , � 9 ��� � 	 � ��� 0 � � 	 � ����� B M � � ��� $ ,�� 9 ��� ( � ��� �A��� ����@A��� ��� 	 � ��� ������� � ��� � $ ,�� 9 ( ��� ����� ��� � ��� � ( ��� � �B J � � $ , � 9 � 	 � ��� 0 � � 	 � ������� � ��� � $ ,�� 9 ( � ��� �A��� ����@A��� ��� 	 � ��� ������� � ��� � $ ,�� 9 ( ��� ����� ��� � ��� � ( ��� � �B J � � $ , � 9 ��� � 	 � ��� 0 � � 	 � ����� ~ M � � ��� � $ ,�� 9 ��� ( � ��� �A��� ����@A��� ��� 	 � ��� ������� � ��� � $ ,�� 9 ( ��� ����� ��� � ��� � ( ��� � �

(7.20)

To sample from this distribution over different models, we have to resort to reversible

jump MCMC simulation. In particular, each particle is updated independently using

reversible jump MCMC moves. The transition kernel is a mixture of different transition

kernels. At each iteration, one of the candidate moves (birth, death or update) is

randomly chosen4. The probabilities for choosing these moves are � $ , �AT�$ , and � $ ,
respectively, such that � $ , B T $ , B �!$ , � M for all M � � � � � ����� . A move is performed

if the algorithm accepts it. For � � � M the death move is impossible, so that T � � O .
For � � O the death move is impossible, so that T � � O . For � � ������� , the birth is not

allowed and therefore � $ ����� � O . We set the transition model probabilities as follows� $ , � 0 	 � � B M ? � ��� , T�$ , � 0 	 � � ~ M ? � ��� and � $ , � 0 	 � ��? � ��� .
The update move simply updates the value of the parameters, while the birth

and death moves allow the number of RBFs to increase or decrease. To ensure re-

versibility, we have designed a birth � /death � move to communicate between the spaces� 	 � ����� � 1 � � $ ,�� 9 and
� 	 � ����� B M � 1 � � $ ,�� 9 ��� and a birth � /death � move to communicate

between
� 	 � ����� � 1 � � $ ,�� 9 and

� 	 � ����� ~ M � 1 � � $ ,�� 9 ��� . For all particles, the Markov chain

is initialised at
	
� � and it obeys the following transition kernel:


 � � $ 
 �
- � � � � J � � $ , � 9 ��� ( � $ ,�� 9 ( � $ ,�� 9 ��� � 	 � � ( � � B�� $ � 
 7 & /��,+ 9 J � � $ ,�� 9 � 	 � � ( �w� B�
 7 & /��,+ : J � � $ ,�� 9 ��� � 	 � � ( �o� �B T�$ � 
 � � � �,+ : J � � $ , � 9 � 	 � � ( �o� B�
 � � � �,+ 9 J � � $ ,�� 9 ��� � 	 � � ( �w� � (7.21)

4Note that although we are choosing MCMC moves that allow the number of RBFs to change only by

1, it is possible to design more complex and general moves within this sampling framework.
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where the subscript  denotes the  -th iteration of the Markov chain. The expression

tells us that if we are in the state � 	 �
x & {����� � , we can either execute the update, birth � or

death � moves. If, for example, the algorithm selects a birth move in the first iteration,

then it has to be a birth � move. If this move is then accepted, at the next iteration, one

can only accept the update or death � move. That is, the death � move is the reversible

move for the birth � move and the death � move is the reversible move for the birth � .
The possible trajectories of the Markov chain are summarised in Figure 7.2. In practice,

we will only run one iteration of the MCMC sampler. We shall now proceed to describe
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Figure 7.2 Graph showing the possible transitions of the Markov chain.

the various moves in more detail.

7.3.2.1 Update move

In this move, the dimension is kept fixed, i.e. �
x & {� � 	

�
x & {� . One merely samples the RBF

centres; a difficult task because the distribution is nonlinear in these parameters. Here,

they are sampled using the Metropolis-Hastings (MH) algorithm (Besag et al., 1995;

Gilks et al., 1996; Tierney, 1994). The target distribution for each particle, at time 4 , is

the posterior distribution:

0 	 	� x
& {��� � $ � � , ( � � � � 	� � x & {� � � � 	 � x & {� � � ? � ��� � �

while the proposal distribution corresponds to:

� x & { ���� $ , ( � ? 	� x & {��� � $ , ( ����� �
	
�
x & {� � � ����� C 0 	 � ��� $ , ( � ? 	� x

& {��� � $ , ( ����� �
	
�
x & {� �

Hence, the acceptance probability for the update move is given by:

� 	 	� � $ , ( � � � �� $ , ( � � � gih e � M � ��
� 
��

0 	)@ � ( �S? � x
& { ���� � $ , ( � � 	� � x & {� ( � � 	 � x

& {� � ����� � ��� �������
0 	)@ � ( �S? 	� x

& {��� � $ , ( � � 	� � x & {� ( � � 	 � x
& {� � ����� � ��� ������� � (7.22)
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7.3.2.2 Birth � and death � moves

As mentioned earlier5, the birth � and death � moves allow us to jump between the

spaces
� 	 � ����� � 1�� � $ ,�� 9 and

� 	 � ����� B M � 1�� � $ ,�� 9 ��� . Now, suppose that the current state

of the Markov chain is in
� 	 � � � 	

� ����� � 1	� � $ , , the birth � move will then involve the

following steps:

Birth � move

� � 	�� (*� �/� � , � � � 4 � 01� , � 	 � � � 	 �
,��
� � � 	�� � 0 ����� " 3
� �6? � $ @ � �:�8�(7 & / �,+ 9 � gih e � M � 6 7 & / �,+ 9 �*; �/�1�.� � @ � ��� � , � � 3���� ��; �6,�� � �6�%( $ � �7C G � � ( � � 3

�� � � � � 7 & / �,+ 9 ���-� , ����� �#� � �:� � � ���-� � �>	 � � ? 0�� � � , � �10 � � �'� � 	 � ����� B M ����� � � � ��� � $ , � 9 ��� ( � ���
��$ �/�"� � 	 � �+� � , � � � @ � $
� � � 	 � ����� � � ��� � $ , � 9 ( � � 3

�

The reverse move is described as follows. Suppose that the current state of the

Markov chain is in
� 	 � � � 	

� ����� B M � 1 � � $ , the death � move will then involve the follow-

ing steps:

Death � move

�
� � � � ?�� ���-� ��� �'� � ��� � � � � � ���
� � � � @ 	 � , � ���-�2� � �:� , �'� � , � � ����� � 	 � � �10'� �*	 & � , ���-� � �6�5( $8� , �
�#� � �*� 3

� �6? � $ @ � �:�8� � � � �,+ 9 � gih e � M � 6 � � � �,+ 9 �*; �/�1�.� � @ � � � � , � � 3����	��; �6,-� � �6�5( $ � �4C G � � ( � � 3

�� � � � � � � � �,+ 9 ����� , �����.�#� � ��� � � ����� � ��	 � � ? 0�� � � , � �10 � � �'� � 	 � ������� � ��� � $ ,�� 9 ( � � ��$ �/� � �
	 � � � � , � � � @ � $ � � � 	 � ����� B M � � ��� � $ ,�� 9 ��� ( � � 3

�

The acceptance ratios for the proposed moves are deduced from the following ex-

pression (Green, 1995):

6 �
	 0 8 � 4�d�6o*�8 6 T * � 4�6o* � � 4�*�8 ;46 Z 4�*�8 � 1 	 0!6 8�098 �wZ � 6 Z 4�*�8 � 1 	 � Z �;8 ��* Z ; � (7.23)

For the birth � move, we have:

6!7 & / �,+ 9 �
��
��
��

0 � @ � ( � ? � ��� � $ , � 9 ��� ( � � 	 � ����� B M � � � � � ��� ������� 0 � 	 � ����� B M
���
	
� �������

0 � @ � ( �S? � ��� � $ ,�� 9 ( � � 	 � ������� ����� � ��� ����� � 0 � 	 � ����� ��� 	 � ����� �
1 0

� ��� � � ��� � $ ,�� 9 ( � ��� � ��� � $ ,�� 9 ( ����� �
0 � � ��� � $ , � 9 ( � ��� � ��� � $ ,�� 9 ( ����� �

T � $ ,�� 9 ���� � $ ,�� 9 0 	 � � � 1 �

5To alleviate the notation, we shall drop the index #
� R��

when describing the birth and death moves.
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where 0 � � � " is a Gaussian proposal distribution centered at the input data � � . The

Jacobian
�

is clearly equal to M . The above expression simplifies to:

6!7 & / �,+ 9 � ��
� 
��

0 � @ � ( � ? � ��� � $ ,�� 9 ��� ( � � 	 � ����� B M � � � � � ��� ������� 0 � 	 � ����� B M
���
	
� �������

0 �B@ � ( �S? � ��� � $ , � 9 ( � � 	 � ������� ����� � ��� ������� 0 � 	 � ����� ��� 	 � �������
T � $ , � 9 ���� � $ ,�� 9 (7.24)

The corresponding 6 � � � �,+ 9 is simply:

6 � � � �,+ 9 � 6 ���7 & / �,+ 9
That is:

6 � � � �,+ 9 � ��
� 
��

0 �B@ � ( ��? � ��� � $ , � 9 ( � � 	 � ������� ����� � ��� ������� 0 � 	 � ����� ��� 	 � �������
0 ��@ � ( �S? � ��� � $ ,�� 9 ��� ( � � 	 � ����� B M � ����� � ��� ������� 0 � 	 � ����� B M

���
	
� �������

� � $ ,�� 9T � $ ,�� 9 ���
(7.25)

7.3.2.3 Birth � and death � moves

The birth � and death � moves allows us to jump between the model spaces
� 	 � ����� � 1

� � $ , � 9 and
� 	 � ����� ~ M � 1 � � $ ,�� 9 ��� . Suppose that the current state of the Markov chain is

in
� 	 � � � 	

� ����� ~ M � 1#� � $ , the birth � move will then involve the following steps:

Birth � move

� � 	�� (*� �/� �D, � � � 4 � 01� , � 	 � � � 	��6,��
� � � 	�� � 0 � � � �� � � � � � � � � ( ����� " ; � ��� 	 � � � � � � � � � ( �����
0 �
	F	 �'� (*� ,�� �)� � ���-� ��� �'� � ��� � � �2� � � ��$ �'��� � � @ 	 � , �9�����7� � �:� , �'� � ,"� � �����+� 	 � � �10'� �*	 &�3

� �6? � $ @ � �:�8�(7 & / �,+ : � gih e � M � 6 7 & / �,+ : �*; �/�1�.� � @ � ��� � , � � 3�� � ��; �6,�� � �6�%( $ � �7C G � � ( � � 3

�� � � � � 7 & /��,+ : ����� , �����.�#� � �:� � � ���-� � ��	 � � ? 0�� � � , � �10 � � �'� � 	 � ��������� � � � � ��� � $ ,�� 9 ( � � �
��$ �/�"� � 	 � �+� � , � � � @ � $
� ��� 	 � ����� ~ M � q ��� � $ ,�� 9 ��� ( � � 3

�

The reverse move is described as follows. Suppose that the current state of the

Markov chain is in
� 	 � � � 	

� ����� � 1 � � $ , , the death � move will then involve the following

steps:

Death � move

�
� � � � �/�7���-� ��� �'� � 01� , � 	 � ; � � � � � ��$ �'�:� �; � � 	��6,-�
� � �6� � , � �����

	
� ����� � � � �#��� , � ��� �/�'� 3

� �6? � $ @ � �:�8� � � � �,+ : � gih e � M � 6 � � � �,+ : �*; �/�1�.� � @ � � � � , � � 3����	��; �6,-� � �6�5( $ � �4C G � � ( � � 3
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�� � � � � � � � �,+ : ����� , �����%�#� � ��� � � ���-� � ��	 � � ? 0�� � � , � �10 � � �'� � 	 � ����� ~ M � � ��� � $ ,�� 9 ��� ( � �
��$ �/�"� � 	 � �+� � , � � � @ � $
� ��� 	 � ������� � ��� � $ , � 9 ( � � 3

�

Following the same steps as in the previous section, we obtain the following expres-

sion for 6 7 & / �,+ : :
6!7 & / �,+ : �

��
��
��

0 �B@ � ( �S? � ��� � $ ,�� 9 ( � � 	 � ������� ����� � ��� ������� 0 � 	 � ����� ��� 	 � �������
0 � @ � ( � ? � ��� � $ ,�� 9 ��� ( � � 	 � ����� ~ M � � � � � ��� ������� 0 � 	 � ����� ~ M

���
	
� ������� �

� $ ,�� 9
1 0

� ��� � � ��� � $ ,�� 9 ( � ��� � ��� � $ ,�� 9 ( ����� �
0 � � ��� � $ ,�� 9 ��� ( � ��� � ��� � $ ,�� 9 ( ����� �

T � $ ,�� 9 �
� $ ,�� 9� � $ , � 9 ��� 0 � � � ? � � � � � � � � ( ����� " 1 �

which simplifies to:

6!7 & /��,+ : � ��
� 
��

0 ��@ � ( �S? � ��� � $ ,�� 9 ( � � 	 � ������� ����� � ��� ������� 0 � 	 � ����� ��� 	 � �������
0 � @ � ( � ? � ��� � $ ,�� 9 ��� ( � � 	 � ����� ~ M � � � � � ��� ������� 0 � 	 � ����� ~ M

���
	
� �������

T � $ , � 9� � $ ,�� 9 ��� (7.26)

The corresponding death ratio is:

6 � � � �,+ : � 6 ���7 & / �,+ :
That is:

6 � � � �,+ : � ��
��
��

0 �B@ � ( �S? � ��� � $ ,�� 9 ��� ( � � 	 � ����� ~ M � ����� � ��� ������� 0 � 	 � ����� ~ M
���
	
� �������

0 ��@ � ( �S? � ��� � $ ,�� 9 ( � � 	 � ������� ����� � ��� ������� 0 � 	 � ����� ��� 	 � �������
� � $ ,�� 9 ���T � $ ,�� 9 (7.27)

7.4 Synthetic example

Data was generated from the following univariate, nonlinear and time-varying function

using 500 covariate points uniformly distributed on
� O � M � :

� � �
�

� � �~ � B � � B �� � � " [:\E] 	 ~ M 	B	 � �~ O � � � � � B � [:\E] 	 ~ M 	B	 � �#~ O � � � � � B ; � M � 4 � � 	 O
� � �~ � B � [:\�] 	 ~ M 	B	 �!�#~ O �
	#� � � Bi; � � 	 O � 4 � 	 OO

where ; � C � 	 O � � � � with � � � O � OBM . Figure 7.3 shows the generated data. Note that

the drift in the size of the Gaussian component at � � � O � �
is seriously affected by the

noise corruption.

In the experiment, we selected Gaussian radial basis functions with the same vari-

ance as the Gaussian signal components. We chose 0 	 � �f��� ? � ��� to have support � � � ~
M � � �S� � � B M � and range � O � O � 	E� O � � 	E� O � O � 	&� and adopted a uniform prior for � �� between

0 and 0.1. Since the domain of the data is the interval
� O � M � , a multivariate Gaussian
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Figure 7.3 Data generated for the synthetic experiment.

prior for � ��� $ � ( � with mean O �
	 and variance O � M was adopted. The diffusion parametersP �
� ,

P �
� and

P �
� were all set to O � OOBM . The parameter � ����� was set to 20. An informative

multivariate Gaussian prior, with mean 2 and variance 2, was used for � ��� � � ( � . The

extended means � ��� � � ( � of the bank of Kalman filters were drawn from the same prior.

Finally, the Kalman filter covariance terms � $ � ( � were set to 1.

The simulation results, using 1000 samples, are depicted in Figures 7.4 and 7.5. Fig-

ure 7.4 shows that the estimated model orders and noise variances (posterior means)

converge to the right values. As a result, the output one-step-ahead predictions are very

accurate. Figure 7.5 shows the estimates of the linear regression coefficients, basis cen-

tres and basis coefficients. These posterior mean estimates correspond to the centroids

of the distributions computed using the main modes ( � � � from 4 � M to 4 � 	 OO and

� � M afterwards). Note how the integration of the coefficients leads to very fast and

accurate estimates of the linear coefficients.

The algorithm performs extremely well when computing the linear regression pa-

rameters. However, it is clear that to obtain similar results for the other quantities, it

requires more samples. It should also be mentioned that given the amount of noise, it

is very difficult to track the drift in the basis function amplitude. Figures 7.6 and 7.7

show the histograms of the estimated noise variance and model order.
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Figure 7.4 The top plot shows the one-step-ahead output predictions [—] and the true outputs

[ �� ]. The middle and bottom plots show the true values and estimates of the model order and

noise variance respectively.
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Figure 7.5 Estimated and true values of the basis centres, linear regression parameters and basis

coefficients.

7.5 Summary

This chapter proposed a simulation-based approach to perform sequential Bayesian

model selection. This strategy combines sequential Monte Carlo methods and reversible
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Figure 7.7 Probabilities of the estimated model order.

jump MCMC methods. It also makes use of variance reduction techniques. Its only

drawback is that it is computationally expensive, yet it can be straightforwardly imple-

mented on parallel computers. The effectiveness of the method was demonstrated on

a complex joint estimation and model selection problem. There are many possibilities

for future research. These include adopting MCMC schemes with forgetting factors to
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estimate the noise variance, thereby avoiding the need for the diffusion parameter
P �
� ;

allowing for models with different types of basis functions; performing input variable

selection and experimenting with other noise distributions.



8

Applications

This chapter demonstrates the methods developed in Chapters 3 to 7 in a few appli-

cation domains. Some comparative studies are used to evaluate the advantages and

shortcomings of these methods.

Financial time series, by virtue of their nonlinearity, non-stationary and complex

stochastic behaviour, constitute a difficult and challenging problem. It was decided,

therefore, to test the sequential algorithms on two econometric problems, namely op-

tions pricing and foreign exchange forecasting. The batch learning methods are as-

sessed on a robotics problem and a medical diagnosis application. The former is a

standard benchmark for comparing the performance of learning algorithms for neural

networks.

8.1 Experiment 1: Options Pricing

Derivatives are financial instruments whose value depends on some basic underlying

cash product, such as interest rates, equity indices, commodities, foreign exchange,

bonds, etc. An option is a particular type of derivative that gives the holder the right

to do something. For example, a call option allows the holder to buy a cash product,

at a specified date in the future, for a price determined in advance. The price at which

the option is exercised is known as the strike price, while the date at which the option

lapses is referred to as the maturity time. Put options, on the other hand, allow the

holder to sell the underlying cash product.

In recent years, the mathematical modelling of financial derivatives has become

increasingly important (Hull, 1997). Owing to the competitive nature of their environ-

ment, financial institutions have much interest in developing more sophisticated pricing

models for options contracts. So far, the research results seem to provide clear evidence

that there is a nonlinear and non-stationary relation between the options’ price and the

155
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cash products’ price, maturity time, strike price, interest rates and variance of the re-

turns on the cash product (volatility). The standard model used to describe this relation

is the Black-Scholes model (Black and Scholes, 1973). This basic model is, however,

only valid under several conditions, namely no risk-less arbitrage opportunities, an

instantaneous risk-less portfolio, continuous trading, no dividends, constant volatility

and risk-free interest rate. In addition, the stock’s price is assumed to be dictated by a

geometric Brownian motion model.

To circumvent the limitations of the Black-Scholes model, Hutchinson et. al. (1994)

and Niranjan (1996) have focused on the options pricing problem from a neural com-

puting perspective. The former showed that good approximations to the widely used

Black-Scholes formula may be obtained with neural networks, while the latter looked

at the non-stationary aspects of the problem. Here, the work of Niranjan (1996) is

extended, with the aim of showing that more accurate tracking of the options’ prices

can be achieved by employing the sequential methods proposed in this thesis. In par-

ticular, neural networks are employed to map the stock’s price and time to maturity to

the call and put options’ prices. The stock’s price and options’ prices are normalised

by the strike price. This approach, in conjunction with the use of volatility smiles and

other strategic financial information, provides an indication of whether an option in

the market is either overpriced or underpriced.

The experiment used five pairs of call and put option contracts on the FTSE100

index (daily close prices from February 1994 to December 1994) to evaluate the fol-

lowing pricing algorithms:

Trivial : This method simply involves using the current value of the option as the next

prediction.

RBF-EKF : Represents a regularised radial basis function network with 4 hidden neu-

rons, which was originally proposed in (Hutchinson et al., 1994). The output

weights are estimated with a Kalman filter, while the means of the radial func-

tions correspond to random subsets of the data, and their covariance is set to the

identity matrix as in (Niranjan, 1996).

BS : Corresponds to a conventional Black-Scholes model with two outputs (nor-

malised call and put prices) and two parameters (risk-free interest rate and volatil-

ity). The risk-free interest rate was set to 0.06, while the volatility was estimated

over a moving window (of 50 time steps) as described in (Hull, 1997).

MLP-EKF : A multi-layer perceptron, with
�

sigmoidal hidden units and a linear output

neuron, trained with the EKF algorithm (Chapter 3). The noise covariances
�

and
�

and the states covariance � were set to diagonal matrices with entries equal to



Applications 157

M�O � � , M�O ��� and M�O respectively. The weights prior corresponded to a zero mean

Gaussian density with variance equal to 1.

MLP-EKFQ : Represents an MLP, with
�

sigmoidal hidden units and a linear output

neuron, trained with an hierarchical Bayesian model, whereby the weights are

estimated with the EKF algorithm and the noise statistics are computed by max-

imising the evidence density function as suggested in Chapter 3 (Jazwinski’s al-

gorithm). The states covariance � was given by a diagonal matrix with entries

equal to M�O . The weights prior corresponded to a zero mean Gaussian density

with variance equal to 1.

MLP-SIR : Corresponds to an MLP, with
�

sigmoidal hidden units and a linear output

neuron, trained with the SIR algorithm. 1000 samples were employed in each

simulation. The noise covariances
�

and
�

were set to diagonal matrices with

entries equal to M�O ��� and M�O � � respectively. The prior samples for each layer were

drawn from a zero mean Gaussian density with covariance equal to M .
MLP-HySIR : Corresponds to an MLP, with

�
sigmoidal hidden units and a linear out-

put neuron, trained with the HySIR algorithm (Chapter 6). Each simulation made

use of 10 samples. The noise covariances
�

and
�

were set to diagonal matrices

with entries equal to M and M�O � � respectively. The prior samples for each layer

were drawn from a zero mean Gaussian density with variance equal to M . The

Kalman filter parameters
� �

,
� �

and � were set to diagonal matrices with entries

equal to M�O ��� , M�O � � and M�OOO respectively.

MLP-SMC : Refers to an MLP, with
�

sigmoidal hidden units and a linear output neu-

ron, trained with the SMC algorithm with linearised importance proposal and a

mixture of Metropolis-Hastings correction steps, as discussed in Chapter 6. The

simulations employed 500 particles. The noise covariances for the proposals
� �

and
� �

were set to diagonal matrices with entries equal to M�O ��� and M�O ��� respec-

tively. The prior samples for each layer were drawn from a zero mean Gaussian

density with variance equal to M�O . The diffusion parameter for the MLP weights

was set to M�O ��� . The initial measurement noise variance was drawn from a uni-

form prior between 0 and M�O � � . Its diffusion parameter was set to M�O ��� .
SMC-RBF : This is the RBF model proposed in Chapter 7. Thin-plate spline basis func-

tions were used in the approximation model. The number of samples was set to

500. In addition, a uniform prior for � �� , between 0 and 0.35, and a multivariate

Gaussian prior for � ��� $ � ( � , with mean O and variance O � O 	 , were chosen. The dif-

fusion parameters
P �
� ,

P �
� and

P �
� were set to O � OOBM , O � OOOOBM and O � OOBM respectively.

The parameters � ����� and � � were set to 20 and 0.05. A multivariate Gaussian
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prior for � ��� � � ( � , with mean 0 and variance 1, was adopted. The extended means� ��� � � ( � of the bank of Kalman filters were drawn from the same prior. Finally, the

Kalman filter covariance terms � $ � ( � were set to 10.

Strike price 2925 3025 3125 3225 3325

Trivial 0.0783 0.0611 0.0524 0.0339 0.0205

RBF-EKF 0.0538 0.0445 0.0546 0.0360 0.0206

BS 0.0761 0.0598 0.0534 0.0377 0.0262

MLP-EKF 0.0414 0.0384 0.0427 0.0285 0.0145

MLP-EKFQ 0.0404 0.0366 0.0394 0.0283 0.0150

MLP-SIR 0.0419 0.0405 0.0432 0.0314 0.0164

MLP-HySIR 0.0394 0.0362 0.0404 0.0273 0.0151

MLP-SMC 0.0414 0.0420 0.0421 0.0294 0.0143

SMC-RBF 0.0434 0.0369 0.0418 0.0289 0.0159

Table 8.1 One-step-ahead prediction errors on call options.
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Figure 8.1 Tracking call and put option prices with the MLP-HySIR method. Estimated values [—]

and actual values [- -].

Table 8.1 shows the mean squared error between the actual values of the options

contracts and the one-step-ahead predictions for the various algorithms. Though the



Applications 159

−0.02

0

0.02

0.04

0.06

0.08

0

20

40

60

80

100

120

140

160

180

200

0

0.5

1

One−step−ahead predictionsTime

P
ro

ba
bi

lit
y 

de
ns

ity

Figure 8.2 Probability density function of the neural network’s one-step-ahead prediction of the

call price for the FTSE option with a strike price of
��� � 	

.

differences are small, one sees that sequential algorithms produce lower prediction er-

rors. The results for the MLP-EKFQ algorithm suggest that noise adaptation can lead

to more accurate results. The HySIR algorithm seems to perform very well in com-

parison to the other algorithms. The one-step-ahead errors were computed on data

corresponding to the last 100 days, to allow for convergence of the algorithms. Of

course, this biases the results slightly in favour of the gradient descent methods.

Figure 8.1 shows the one-step-ahead predictions of the MLP-HySIR algorithm on the

call and put option prices at the same strike price (3325). The algorithm exhibits fast

convergence and accurate tracking. Figure 8.2 shows the probability density function of

the network’s one-step-ahead prediction, computed with the SIR algorithm. Typically,

the one-step-ahead predictions for a group of options on the same cash product, but

with different strike prices or duration to maturity, can be used to determine whether

one of the options is being mispriced. Knowing the probability distribution of the

network outputs allows us to design more interesting pricing tools.

8.2 Experiment 2: Foreign Exchange Forecasting

This section considers a foreign exchange spot rate forecasting problem, previously

studied by (Nabney et al., 1996). The data set, shown in Figure 8.3, consists of the

Deutsche Mark/French Franc daily closing prices from 30 September 1991 to June



Applications 160

1994. The foreign exchange market for this period was not entirely free as central
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Figure 8.3 The top plot shows the Deutsche Mark/French Franc daily closing prices from 30

September 1991 to June 1994. The bottom plots shows the regions of non-stationarity as detected

by the MLP-EKFQ algorithm.

banks often intervened to control the exchange rates between members of the European

Exchange Rate Mechanism (ERM). Figure 8.3 shows one of these events, which took

place in early August 1993 (time step 480), when the French and German central banks

were forced to admit defeat against market guided speculation.

To compare the algorithms proposed in this thesis with the ones of (Nabney et al.,

1996), several on-line algorithms were implemented. The objective was to use a lag of

five past observations to predict the next observation. With the exception of the trivial

and SMC-Heavy methods, all the algorithms assumed the measurements to be Gaus-

sian. The SMC-Heavy method uses a heavy tailed student-t distribution. A description

of the algorithms follows:

Trivial : This method simply involves using the current value of the exchange rate as

the next prediction.

MLP-EKF : A multi-layer perceptron, with � sigmoidal hidden units and a linear output

neuron, trained with the EKF algorithm (Chapter 3). The noise covariances
�

and
�

and the states covariance � were set to diagonal matrices with entries equal

to � 1 M�O � � , M�O � � and M�O respectively. The weights prior corresponded to a zero

mean Gaussian density with variance equal to 10.
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MLP-EKFQ : Represents an MLP, with � sigmoidal hidden units and a linear output

neuron, trained with an hierarchical Bayesian model, whereby the weights are

estimated with the EKF algorithm and the process noise variance is computed

by maximising the evidence density function as suggested in Section 3.3.3. The

states covariance � was given by a diagonal matrix with entries equal to M�O . The

weights prior corresponded to a zero mean Gaussian density with variance equal

to 10. The process noise covariance was set to a diagonal matrix with entries� 1 M�O ��� .
MLP-SIR : Corresponds to an MLP, with � sigmoidal hidden units and a linear output

neuron, trained with the SIR algorithm. 1000 samples were employed in each

simulation. The noise covariances
�

and
�

were both set to diagonal matrices

with entries equal to M�O � � . The prior samples for each layer were drawn from a

zero mean Gaussian density with variance equal to M�O .
MLP-HySIR : Corresponds to an MLP, with � sigmoidal hidden units and a linear out-

put neuron, trained with the HySIR algorithm (Chapter 6). Each simulation made

use of 20 samples. The noise covariances
�

and
�

were both set to diagonal ma-

trices with entries equal to M�O � � . The prior samples for each layer were drawn

from a zero mean Gaussian density with variance equal to M�O . The Kalman fil-

ter parameters
� �

,
� �

and � were set to diagonal matrices with entries equal to

M�O ��� , M�O ��� and M�OO respectively.

MLP-SMC : Refers to an MLP, with � sigmoidal hidden units and a linear output neu-

ron, trained with the SMC algorithm with linearised importance proposal and a

mixture of Metropolis-Hastings correction steps, as discussed in Chapter 6. The

simulations employed 500 particles. The noise covariances for the proposals
� �

and
� �

were both set to diagonal matrices with entries equal to M�O ��� . The prior

samples for each layer were drawn from a zero mean Gaussian density with vari-

ance equal to M�O . The diffusion parameter for the MLP weights was set to M�O � � .
The initial measurement noise variance was drawn from a uniform prior between

0 and M�O � � . Its diffusion parameter was set to M�O ���
�
.

SMC-RBF : This is an RBF with thin plate spline basis functions trained with the model

selection algorithm discussed in Chapter 7. The number of samples was set

to 500. A uniform prior for � �� , between 0 and 0.5, and a multivariate Gaus-

sian prior for � ��� $ � ( � , with mean
� � �

and variance O � M , were chosen. The same

prior was used for � � . The diffusion parameters
P �
� ,

P �
� and

P �
� were set to M�O � � ,

M�O � � and M�O � � respectively. The parameters � ����� and � � were set to 20 and 0.005.

A multivariate Gaussian prior with mean 0 and variance 2 was used for � ��� � � ( � .
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The extended means � ��� � � ( � of the bank of Kalman filters were drawn from the

same prior. Finally, the Kalman filter covariance terms � $ � ( � were set to 100.

SMC-Heavy : Corresponds to an MLP, with � sigmoidal hidden units and a linear out-

put neuron, trained with the SIR algorithm using a student-t likelihood with pa-

rameters � � M�O � � and ( � M . 1000 samples were employed in each simulation.

The noise covariance of the transition prior
�

was set to a diagonal matrix with

entries equal to M�O � � . The prior samples for each layer were drawn from a zero

mean Gaussian density with variance equal to M�O .

Method Normalised RMSE

Trivial 0.2438

EKF with fixed size RBF (Nabney et al., 1996) 0.2351

RAN (Nabney et al., 1996) 0.2336

MLP-EKF 0.2349

MLP-EKFQ 0.2375

MLP-SIR 0.2373

MLP-HySIR 0.2346

MLP-SMC 0.2383

SMC-RBF 0.2371

SMC-Heavy 0.2335

Table 8.2 Averaged normalised root mean square errors (fraction of unexplained variance) for the

foreign exchange forecasting problem.

Table 8.2 shows the errors incurred by each method. Once again they appear to be

very similar, yet we need to keep in mind that small improvements in financial time

series prediction often lead to large profits. Perhaps the most important conclusion

one can draw is that when modelling financial time series one should use heavy tailed

distributions instead of Gaussian approximations. The student-t distribution provides

a better description of the high kurtosis typical of financial time series.

The SMC-RBF method did not perform very well in comparison to the other meth-

ods, yet it allowed us to obtain an estimate of the required number of basis functions.

The one-step-ahead predictions, posterior mean model order estimates and prediction

errors obtained with the SMC-RBF method are shown in Figure 8.4. The MLP-EKFQ

was outperformed by the simple MLP-EKF algorithm. Nonetheless, it allowed us to

determine the regions of non-stationarity as indicated in Figure 8.3.



Applications 163

400 450 500 550 600 650
3.3

3.4

3.5

3.6

P
re

di
ct

io
n Actual rate

Prediction 

400 450 500 550 600 650

−0.1

−0.05

0

0.05

0.1
P

re
di

ct
io

n 
er

ro
r

0 100 200 300 400 500 600 700
0

2

4

6

8

k

Time

Figure 8.4 One-step-ahead predictions, prediction errors and posterior mean model order estimate

for the foreign exchange forecasting problem.

8.3 Experiment 3: Robot Arm Mapping

This data set is often used as a benchmark to compare neural network algorithms1. It

involves implementing a model to map the joint angle of a robot arm 	 � � � � � � to the

position of the end of the arm 	 � ��� �&��� . The data were generated from the following

model:

� � � �E� O � b l 	 � � � B M � ��� b l 	 � � B � � � B � �
�&� � �E� O l h e 	 � ��� B M � � l h e 	 �u� B � ��� B � �

where � & C � 	 O � � � � , � � O � O 	 . The first 200 observations of the data set are used to

train the models and the last 200 observations to test them.

Figure 8.5 shows the 3D plots of the training data and the contours of the training

and test data. The contour plots also include the approximations that were obtained

using the EM algorithm (Chapter 4) and an MLP with 2 linear output neurons and 20

sigmoidal hidden neurons. Figure 8.6 shows the convergence of the EM algorithm. In

this particular run the training and test mean square errors were O � OO 	 � �
and O � OO � M�O

(the minimum bound being � � � � O � OO 	 ). Our mean square errors are of the same

magnitude as the ones reported by other researchers, as shown in Table 8.3. Figure 8.6

1The data set can be found at
�����������	��
�	�����������	�������������������������� �����!�"�#�
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Figure 8.5 The top plots show the training data surfaces corresponding to each coordinate of the

robot arm’s position. The middle and bottom plots show the training and validation data [- -] and

the respective MLP mappings obtained with the EM algorithm [—].

Method MS error

Mackay’s Gaussian approximation with highest evidence 0.00573

Mackay’s Gaussian approximation with lowest test error 0.00557

Neal’s hybrid MCMC 0.00554

Neal’s hybrid MCMC with ARD 0.00549

Rios Insua’s MLP with RJ-MCMC 0.00620

Holmes’ RBF with RJ-MCMC 0.00535

EM method 0.00810

RJ-MCMC Bayesian method 0.00502

RJ-MCMC with MDL 0.00512

RJ-MCMC with AIC 0.00520

Table 8.3 Mean square errors and number of basis functions for the robor arm data.

also shows the two diagonal entries of the measurements noise covariance and the

trace of the process noise covariance. They behave as expected. That is, the variance�
converges to the true value, whereas the trace of

�
goes to zero, indicating that the
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Figure 8.6 The top plots show the log-likelihood function and the convergence rate (log-likelihood

slope) for the robot arm problem. The bottom plots show the convergence of the diagonal en-

tries of the measurements noise covariance
�

(almost identical) and the trace of the process noise

covariance � .

model can approximate the stationary data perfectly well.

As indicated in Table 8.3, the performance of the reversible jump algorithm with

the Bayesian model was also assessed in this data set. In all the simulations, cubic basis

functions were adopted. Plots of the probabilities of each model order
�0 	 � ? � ��@A� in the

chain (using equation (5.9)) for 50000 iterations were used to assess convergence, as

shown in Figure 8.7. As the model orders begin to stabilise after 30000 iterations, the

Markov chains were run for 50000 iterations with a burn in of 30000 iterations. It is

possible to design more complex convergence diagnostic tools, however this topic is

beyond the scope of this thesis.

Uninformative priors were chosen for all the parameters and hyper-parameters. In

particular, the values shown in Table 8.4 were used. To demonstrate the robustness

of the reversible jump Bayesian algorithm, different values for ��� : were chosen (the

only critical hyper-parameter as it quantifies the mean of the spread � of � $ ). The

obtained mean square errors (Table 8.4) and probabilities for ��� , � � , � � � ( $ , � �� ( $ and � ,
shown in Figure 8.8, clearly indicate that the algorithm is robust with respect to prior

specification.

The computed mean square errors are of the same magnitude as the ones reported
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Figure 8.7 Convergence of the reversible jump MCMC algorithm for RBF networks. The plot shows

the probability of each model order given the data. The model orders begin to stabilise after 30000

iterations. � � : ��� :
�
�

�
� � � � �

MS Error

2 0.1 0 0 0.0001 0.0001 0.00505

2 10 0 0 0.0001 0.0001 0.00503

2 100 0 0 0.0001 0.0001 0.00502

Table 8.4 Simulation parameters and mean square errors for the robot arm data (test set) using

the reversible jump MCMC algorithm and the Bayesian model.

by other researchers (Holmes and Mallick, 1998; Mackay, 1992b; Neal, 1996; Rios

Insua and Müller, 1998), indeed slightly better (not by more than M�O �
). Yet, the main

point is that the algorithm exhibits the important quality of being robust to the prior

specification. That is, it does not require extensive parameter tuning. Moreover, it leads

to more parsimonious models than the ones previously reported.

The reversible jump simulated annealing algorithms with the AIC and MDL criteria

were also tested on this problem. The results for the MDL criterion are depicted in

Figure 8.9. We notice that the posterior increases stochastically with the number of

iterations and, eventually, converges to a maximum. The figure also illustrates the

convergence of the train and test set errors for each network in the Markov chain. The

final network was the one that maximised the posterior. This network consisted of M �
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Figure 8.8 Probabilities of smoothness constraints for each output (
� R and

� �
), noise variances

(
� � R�P 
 and

� �� P 
 ) and model order (
 
) for the robot arm data simulation using 3 different values for

�����
. The plots confirm that the algorithm is robust to the setting of

�����
.

basis functions and incurred an error of O � OO 	 M � in the test set. Following the same

procedure, the AIC network consisted of � � basis functions and incurred an error of

O � OO 	 � O in the test set. These results indicate that the full Bayesian model provides

more accurate models. Moreover, it seems that the information criteria, in particular

the AIC, can lead to over-fitting of the data.

These results confirm the well known fact that suboptimal techniques, that is the

simulated annealing method with information criteria penalty terms and a rapid cool-

ing schedule, can allow for faster computation at the expense of accuracy.

8.4 Experiment 4: Classification with Tremor Data

This section considers an interesting nonlinear classification data set2 collected as part

of a study to identify patients with muscle tremor (Roberts et al., 1996; Spyers-Ashby

2The data is available at
���	��� ���	�"
	
�
����	����
	������� �����!�"�����"�#�����#��"���������������#� � �
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Figure 8.9 Performance of the reversible jump simulated annealing algorithm for 200 iterations

on the robot arm data, with the MDL criterion.

et al., 1998). The data was gathered from a group of patients (9 with, primarily,

Parkinson’s disease or multiple sclerosis) and from a control group (not exhibiting the

disease). Arm muscle tremor was measured with a 3-D mouse and a movement tracker

in three linear and three angular directions. The time series of the measurements were

parameterised using a set of autoregressive models. The number of features was then

reduced to two (Roberts et al., 1996).

Figure 8.10 shows a plot of these features for patient ( � ) and control groups ( B ).

The figure also shows the decision boundaries (solid lines) and confidence intervals

(dashed lines) obtained with an MLP, consisting of 10 sigmoidal hidden neurons and

an output linear neuron. It needs to be pointed out, however, that having an output

linear neuron leads to a classification framework based on discriminants. An alternative

and more principled approach, which is not pursued in the batch learning case, is to

use a logistic output neuron so that the classification scheme is based on probabilities

of class membership. In the sequential learning case (see Chapter 6), an elegant Monte

Carlo solution to this problem was presented. It is also possible to extend the batch

methods to this probabilistic classification setting by adopting the generalised linear

models framework with logistic, probit or softmax link functions (Gelman et al., 1995;

Holmes, 1999; Nabney, 1999).
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Figure 8.10 Classification boundaries (–) and confidence intervals (- -) for the MLP classifier. The

circles indicate patients, while the crosses represent the control group.
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Figure 8.11 Receiver operating characteristic (ROC) of the classifier for the tremor data.

The size of the confidence intervals in Figure 8.10 is given by the innovations co-
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Figure 8.12 The top plots show the log-likelihood function and the convergence rate (log-likelihood

slope) for the tremor data classification problem. The bottom plots show the convergence of the

measurements noise covariance
�

and the trace of the process noise covariance � .

variance. These intervals are a measure of uncertainty on the threshold that is applied

to the linear output neuron. Our confidence of correctly classifying a sample occurring

within these intervals should be very low. The receiver operating characteristic (ROC)

curve, shown in Figure 8.11, indicates that we can expect to detect patients with a
� O �

confidence without making any mistakes. The percentage of classification errors in the

test set was found to be M 	E� M � . This error is of the same magnitude as previous results

(Roberts and Penny, 1998). The convergence properties of the EM algorithm for this

application are illustrated in Figure 8.12.

Figure 8.13 shows the decision boundaries (solid lines) and confidence intervals

(dashed lines) obtained with the RJ-MCMC algorithm, using thin-plate spline hidden

neurons and an output linear neuron. The size of the confidence intervals for the

decision boundary is given by the noise variance ( � � ). The posterior mean ROC curve,

shown in Figure 8.14, was obtained by averaging all the predictions for each classifier in

the Markov chain. An alternative solution is to use the convex hull of the ROC curves

for each classifier in the chain. This would yield the maximum realisable classifier

according to the Neyman Pearson criterion (Andrieu et al., 1999c; Scott et al., 1998).

The percentage of classification errors in the test set was found to be M � � � O . Finally, the
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Figure 8.13 Classification boundaries (–) and confidence intervals (- -) for the RBF classifier. The

circles indicate patients, while the crosses represent the control group.
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Figure 8.14 Receiver operating characteristic (ROC) of the classifier for the tremor data. The solid

line is the ROC curve for the posterior mean classifier, while the dotted lines correspond to the curves

obtained for various classifiers in the Markov chain. The plot also shows the convex hull classifier.
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Figure 8.15 Estimated probabilities of the signal to noise ratio (
�
�
), noise variance ( �

�
) and model

order (
 
) for the classification example.

estimated probabilities of the signal to noise ratio (
P �

), noise variance ( � � ) and model

order ( � ) for this application are depicted in Figure 8.15.

8.5 Discussion

The experiments with the financial time series showed how to adopt a sequential learn-

ing framework to generate one-step-ahead predictions. Within this formulation, the al-

gorithms seemed to yield similar results. It might, therefore, be argued that the EKF, by

virtue of its simplicity and computational efficiency, provides the best solution. Yet, at a

small increase in computational cost, the HySIR algorithm produces more accurate re-

sults. We begin noticing the power of SMC methods when we introduce non-Gaussian

distributions and model selection schemes. SMC methods are still in their infancy, but

considering the flexibility that they bring into the analysis, they should play a more

significant role in future research.

The topic of on-line noise estimation, despite being the subject of a voluminous

literature, still requires more research. Fixed-lag smoothing with SMC methods might

provide a more satisfactory solution to this problem.

In the robot arm and tremor data sets, it was found that the EM algorithm per-

formed reasonably well in terms of accuracy and computational requirements. From a
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convergence assessment point of view, this method proves to be very convenient. One

simply has to monitor the rate of increase in the log-likelihood. In both data sets, how-

ever, the reversible jump MCMC method consistently yielded more accurate results.

This shows that global search methods can be more precise than stochastic gradient

descent methods.

Contrary to previously reported results, the experiments indicate that the Bayesian

model with the reversible jump MCMC algorithm is robust with respect to the specifi-

cation of the prior. In addition, it resulted in more parsimonious networks and better

approximation errors than the ones previously reported in the literature. The resulting

smaller networks are the result of the fact that the reversible jump MCMC algorithm

only adds new neurons (new parameter dimensions) when they are required. It can

then proceed to eliminate them if they no longer serve a purpose. On the other hand,

fixed dimension methods, such as the EM algorithm proposed in Chapter 4, need to

start with a large number of neurons to avoid getting trapped in local minima.

These experiments also indicate that the reversible jump simulated annealing algo-

rithm with classical information criteria is an efficient and accurate variable-dimension,

stochastic optimisation strategy.

The experiments presented in this chapter are by no means exhaustive. Yet, in con-

junction with the the synthetic examples at the end of Chapters 3 to 7, they provide

significant empirical support for the various proposed methods and algorithms. The

software for most of the algorithms presented in this thesis has been made available

in the internet at
���������	�
�����
���������������������� �!�	���"�$#�%���&('
)���)

, so that they may be fur-

ther tested on real applications. The EKFQ algorithm has already been adopted by

researchers in the area of EEG segmentation (Penny and Roberts, 1998).
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Conclusions

The Bayesian paradigm has extended the horizon of the field of learning for neural net-

works to fully embrace probability. In this new, mathematically rigorous context, it is

possible to manage the uncertainty that arises in regression, prediction and classifica-

tion. This paradigm, therefore, offers a general and coherent way of modelling many of

the statistical aspects of real data sets, including persistence, outliers, variance, kurto-

sis and non-stationarity. It also enables us to perform parameter estimation and model

selection jointly. Accordingly, one can automate the tasks of selecting the number of

neurons, the type of basis functions and the number of inputs.

The Bayesian paradigm provides various mechanisms to incorporate a priori and

domain specific knowledge into the learning process. These are of paramount impor-

tance. Without them, it is not possible to treat the ill-posed nature of the learning

problem in a satisfactory manner.

The application of the Bayesian learning approach requires the evaluation of com-

plex multi-dimensional integrals over the support of a probability distribution. The

solution to this integration problem is far from trivial. Systematic numerical integra-

tion techniques prove to be prohibitively expensive. A more parsimonious strategy is

to approximate the distribution in the integral and, subsequently, perform analytical

integration. This approach may fail to embody all the richness of information available

in the model and the data. A third alternative is to apply Monte Carlo methods to

approximate the integrals by discrete sums over the regions of high probability.

In the past, various approaches based on Gaussian approximation and Monte Carlo

methods have been proposed to solve the learning problem for neural networks (Bun-

tine and Weigend, 1991; Holmes and Mallick, 1998; Mackay, 1992b; Marrs, 1998;

Neal, 1996; Rios Insua and Müller, 1998). Despite these efforts, we are still far from

reaching the summit of the trail. In this study, it is hoped that a significant distance has

been covered.

174
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We started the journey by exploring the potential of the Bayesian paradigm for

sequential learning with neural networks. In doing so, a unifying framework was for-

mulated for regularisation with smoothing priors, adaptive gradient descent methods

and process noise estimation. A link between the evidence maximisation framework

and many ideas developed much earlier in the control field was also established. This

connection provided the basis for the formulation of an efficient EKF algorithm, where

regularisation was achieved using noise estimation techniques.

The thesis went on to advance the field of Bayesian methods for sequential learning

by introducing SMC techniques into the analysis of neural network models. Although

these techniques tend to be more computationally demanding than Gaussian approx-

imation schemes, there are four sound arguments for embracing them. Firstly, some

distributions cannot be well approximated by Gaussian functions. Two examples of this

were presented, namely sequential classification and robust time series analysis. In the

former, the probability of class membership is either binomial or multinomial, while in

the latter, it is advantageous to use heavy-tailed distributions to handle outliers. Sec-

ondly, the global search nature of SMC methods allows them to converge in fewer time

steps than gradient descent methods. This was demonstrated by means of a simple

example in Chapter 6. Thirdly, in many situations, the Taylor series approximations of

the EKF may lead to poor representations of the measurements model. Examples of

this limitation abound in the SMC literature. Finally, SMC methods tend to be more

flexible. They can be easily modified to incorporate heuristic knowledge and perform

noise estimation, model selection, smoothing and prediction.

The main drawback of SMC methods is their computational complexity. It is difficult

to assess, a priori, the number of particles that a specific application will require. Yet it

may be argued that the methods can be implemented in parallel. Moreover, if we have

the right mathematical description of the distribution of the data, the computational

requirements tend to be reasonably low.

In the batch learning scenario, the same trade-off between Gaussian approxima-

tion and Monte Carlo methods was encountered. An EM algorithm was derived using

Gaussian approximations to estimate the weights of an MLP, measurement noise vari-

ance and process noise variance jointly. This method is applicable to non-stationary

data sets. If, on the other hand, the data sets are stationary, the process noise vari-

ance provides an indication of how well the model fits the data. In addition to being

computationally efficient, the method seems to be very stable.

MCMC simulation methods made it possible to devise more complex and powerful

algorithms. A Bayesian model for RBFs, in which the estimation results seem to be

robust with respect to the prior specification, was derived. This model, in conjunction

with a reversible jump MCMC algorithm, was used to compute the number of neurons,
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parameters, regularisation terms and noise statistics to a high degree of accuracy. The

same framework can be easily extended to automate the selection of input variables

and type of basis functions. In the latter case, however, it is not clear what type of prior

will lead to better results. In the same line of work, an efficient stochastic optimisa-

tion method, using the reversible jump and simulated annealing algorithms, was also

proposed. This method can generate accurate results at a reasonable computational

cost.

An important aspect of the work with MCMC methods is that it was possible to

present convergence proofs for the integration and optimisation strategies. These

proofs should play a significant role in the theory of MCMC learning for neural net-

works.

One of the greatest advantages of working with MCMC methods is their flexibility. It

was shown how it is possible to incorporate domain specific knowledge using mixtures

of Metropolis-Hastings steps. That is, instead of abandoning well known heuristics, it

is possible to place these within a rigorous probabilistic setting. This applies to both

batch learning and sequential learning problems.
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Bayesian Derivation of the Kalman Filter

Consider the following linear Gauss-Markov process:

� �f��� � � � B �u� (A.1)

@�� � � � � � B � � (A.2)

where � ��C � 	 O � � ��� denotes the process noise, � ��C � 	 O � � ��� the measurement noise,@ ��� � � ��@ � ��@ � ��@ � ����������@ � � the observations and � � the latent states (the model param-

eters in our case). It is possible to apply Bayes’ rule to estimate the posterior density

function for the model parameters after the new data arrives:

0 	 � �f��� ? �!�f����� � 0 	)@��f��� ? � �f�����
0 	)@��f���? @A��� � � 0 	 � �f��� ? @A��� ��� (A.3)

That is,

Posterior
� Likelihood

Evidence
Prior

Assuming Gaussian approximations to the probability density functions and that the

noise processes are independent of each other and independent of the states, represen-

tations for the likelihood, evidence and prior can be derived in terms of the first and

second order statistics (Anderson and Moore, 1979).

A.1 Prior Gaussian Density Function

The mean and covariance are given by:

W 	 � �f��� ? @A��� ��� � W � � � B � ��? @A��� �)"
� W � � �S? @A��� � "
� �

� �

177



Bayesian Derivation of the Kalman Filter 178

and:

Cov 	 � �f���w? @A��� ��� � W � 	 � � B � � ~ �
� � �:	 � � B � � ~ �

� ��� � ? @A��� �)"
� � � B � � B � W �w	 � � ~ �

� � � �u� ? @ ��� � "
� � � B � �

Hence, the prior is:

Prior = 0 	 � �f���w? @A��� ��� � � 	 � � ��� � � B � ���

A.2 Evidence Gaussian Density Function

The mean is given by:

W 	)@ �f���E? @A��� ��� � W � � �f��� � �f��� B�� �f��� ? @A��� �)"
� � �f��� W � � �f��� ? @ ��� � "
� � �f��� � � �f��� 	 �
� � �f��� � � �

and the covariance is given by:

Cov 	)@ �f��� ? @ ��� � � � W � 	 � �f��� � �f��� B�� �f��� ~ � �f��� � � � �
	 � �f��� � �f��� B�� �f��� ~ � �f��� � � � � � ? @A��� � "

� W � 	 � �f��� 	 � �f��� ~ �
� � � B � �f��� �:	 � �f��� 	 � �f��� ~ �

� � � B�� �f��� � � ? @ ��� � "
� � �f���w	 � � B � ��� � ��f��� B � �f���

Hence, the evidence is given by:

Evidence: 0 	)@��f��� ? @A��� ��� � � 	 � �f��� � � �f����� � �f����	 � � B � � � � ��f��� B � �f�����
A.3 Likelihood Gaussian Density Function

The mean is given by:

W 	)@u�f���E? � �f���S� � W � � �f��� � �f��� B�� �f��� ? � �f����"
� � �f��� W � � �f��� ? � �f��� "
� � �f��� � �f���

while the covariance is given by:

Cov 	)@��f���? � �f����� � W ��	 � �f��� � �f��� B�� �f��� ~ � �f��� � �f�����
	 � �f��� � �f��� B�� �f��� ~ � �f��� � �f����� � ? � �f��� "

� � �f���
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Hence, the expression for the likelihood is:

Likelihood: 0 	)@��f��� ? � �f����� � �� � ��� � ��� � � 	 � �f��� � �f����� � �f�����
A.4 Posterior Gaussian Density Function

Substituting the equations for the means and covariances of the evidence, prior and

likelihood into equation (A.3) and completing squares in the exponent of the Gaussian

exponential, yields the posterior density function:

0 	 � �f���w? � �f����� � �� � ��� � ��� � | �f��� [:\�] ��~ M� 	 � �f��� ~ �
� �f���S� � ����f��� 	 � �f��� ~ �

� �f������ (A.4)

where the coefficients | �f��� are represented by the following expression:

|"�f��� � ? � �f��� 	 � � B � � � � ��f��� B � �f��� ? ��@��
	����u� � @�� ? � �f��� ? ��@�� ? � � B � �S? ��@��

and
�
� �f��� and � �f��� are given by:�

� �f��� � �
� � B�
 �f���w	)@��f��� ~ � �f��� � � ��� (A.5)

� �f��� � � � B � � ~ 
 �f��� � �f����	 � � B � � � (A.6)

where 
 � is known as the Kalman gain:


 �f��� �
	 � � B � � � � ��f��� � � �f��� B � �f��� 	 � � B � � � � ��f��� " ��� (A.7)
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Computing Derivatives for the Jacobian Matrix

For the network depicted in Figure B.1, the output layer mapping is given by:

� � � � B � � 8 ��� B �
� 8 �)�

and consequently, the derivatives with respect to the weights are given by:

� �
� � � � M
� �
� � � � 8 ���
� �
� �
�
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Figure B.1 Simple MLP structure for regression problems.

The hidden layer mapping for the top neuron is:

8 ��� � M
M5B [:\�] 	 ~ �u����� , where �u��� � � � B � � � � B �

� � �
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The corresponding derivatives with respect to the weights are:

� �
� � �

�
� �
� 8 ���

� 8 ����
� ���

�
� ���
� � �

� � � 8 ��� 	 M ~ 8 ��� �� �
� � � � � � 8 ��� 	 M ~ 8 ��� � � �
� �
� �
�

� � � 8 ����	 M ~ 8 ����� � �
(B.1)

The derivatives with respect to the weights of the other hidden layer neuron can be

calculated following the same trivial procedure.



C

An Important Inequality

This appendix proves an important inequality that arises in the derivation of the EM

algorithm (Baum et al., 1979):

W � afe 0 	 � ? @ � � old ��" � W � afe 0 	 � ? @ � � ��"
where the expectations are taken as follows:

� � a,e 0 	 � ? @ � � old � " 0 	 � ? @ � � old � d � � � � afe 0 	 � ? @ � � � " 0 	 � ? @ � � old � d � (C.1)

We begin by noticing that the function � ~ M is tangent to the function
a,e � at � � M .

In addition, the logarithmic function is concave, hence the following inequality holds:

a,e � � �7~ M
As a result, it follows that:

W � a,e 0 	 � ? @ � � � " ~ W � a,e 0 	 � ? @ � � old � " � � � a,e 0 	 � ? @ � � � ~ a,e 0 	 � ? @ � � old � " 0 	 � ? @ � � old � d �
� � a,e 0 	 � ? @ � � �

0 	 � ? @ � � old � 0 	 � ? @ � � old � d �
� � � 0 	 � ? @ � � �

0 	 � ? @ � � old � ~ M � 0 	 � ? @ � � old � d �
� O

Hence:

W � afe 0 	 � ? @ � � old ��" � W � afe 0 	 � ? @ � � ��"
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An Introduction to Fixed and Variable Dimension MCMC

The objective of this appendix is to present a first-principles and “easy to understand”

derivation of the Metropolis-Hastings and reversible jump Markov chain Monte Carlo

(MCMC) algorithms (Metropolis et al., 1953; Green, 1995). These algorithms are of

particular relevance to people working in fields where the estimation of parameters or

latent variables is of paramount importance. These fields include machine learning, ap-

plied statistics, econometrics, forecasting, signal processing, communications, control

and neural networks, among others.

The Metropolis-Hastings algorithm is useful to estimate, among other things, the

posterior distribution of the model parameters in a Bayesian context. In doing so, it

is possible to compute many quantities of interest such as the mean, modes and error

bars on the estimates. The reversible jump algorithm allows one to cast the net much

further. It estimates not only the unknown quantities but also the number of unknown

quantities. Typical examples include estimating the number of neurons in a neural

network (Andrieu et al., 1999d; Holmes and Mallick, 1998; Rios Insua and Müller,

1998), the number of sinusoids in a noisy signal (Andrieu, 1998), the number of lags

in an autoregressive process (Troughton and Godsill, 1998), the number of components

in a mixture (Richardson and Green, 1997) and the number of levels in a change-point

process (Green, 1995).

In making the derivations of the algorithms more accessible, their usage in the en-

gineering and computer science communities should increase. There are a few reasons

for this premise. Firstly, people tend to feel more comfortable applying tools that they

can perfectly understand. Secondly, the derivation sheds light on routes for modifying

or tuning the algorithms to specific applications. Finally, a fair understanding of the

pivotal assumptions, involved in the derivation, allows one to avoid incurring many

common mistakes.

There is, nonetheless, a price to pay for this perspicuity in terms of generality and
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mathematical rigour. With this in mind, readers are encouraged to consult the excellent

texts of (Gilks et al., 1996; Meyn and Tweedie, 1993; Robert and Casella, 1999) and

papers by (Andrieu et al., 1999f; Besag et al., 1995; Brooks, 1998; Tierney, 1994).

In addition, the appendix concentrate on the derivations of the algorithms so as to

keep the discussion manageable. Topics such as applications, empirical convergence

assessment techniques and algorithmic details are beyond the scope of this appendix.

Chapters 5 to 7 and the afore-cited references provide valuable information on these

topics.

The need for MCMC simulation is justified in Section D.1. Section D.2 introduces

the concepts of measure, densities, distributions and � -fields. Subsequently, Section

D.3 defines Markov chains and describes some of the properties that play a fundamental

role in MCMC simulation. Sections D.4 and D.5 present the Metropolis-Hastings and

reversible jump MCMC algorithms respectively.

D.1 Why MCMC?

MCMC techniques are a set of powerful simulation methods that may be applied to

solve integration and optimisation problems in large dimensional spaces. These two

types of problems are the major stumbling blocks of Bayesian statistics and decision

analysis. For instance, given some unknown variables � N = �
and data @ N = �

, the

following three integration problems arise in Bayesian analysis:

Normalisation: To obtain the posterior distribution 0 	 � ? @A� given the prior 0 	 � � and

likelihood 0 	)@ ? � � , the normalising factor in Bayes’ theorem needs to be computed:

0 	 � ? @ � � 0 	)@ ? � � 0 	 � �H � � 0 	)@ ? � � 0 	 � � d �
Marginalisation: Given the joint posterior of 	 � � � � N = � 1 = 9

, we may often be

interested in the marginal posterior:

0 	 � ? @ � � � �
�

0 	 � � � ? @A� d �

Expectation: The objective of the analysis is often to obtain summary statistics of the

form:

W 	 � 	 � ��? @ � � � � � � 	 � � 0 	 � ? @A� d �

It is usually impossible to evaluate the above integrals analytically. To overcome this

difficulty, we have to resort to analytical approximation, deterministic numerical in-

tegration or Monte Carlo simulation. Approximations tend to disregard some of the
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salient statistical features of the processes under consideration, thereby often leading

to poor results. In addition, it is often difficult to quantify the effect of the approx-

imations on the estimates. Deterministic numerical integration in high dimensions,

although accurate, is far too computationally expensive to be of any practical use. As

we shall see soon, Monte Carlo methods provide the middle ground.

The idea of Monte Carlo integration is to draw an i.i.d. sample � � x
& { � * � M �8�E������� ��I �

from the target distribution 0 	 � � (it could be the posterior in Bayesian analysis) so as

to approximate the integrals by discrete sums:

W 	 � 	 � ��� � MI
�� & 
�� � 	 � x

& { � � 	 	 	~�~�~B~ �� � � W 	 � 	 � ��� � � � � � 	 � � 0 	 � � d �

The estimate
W 	 � 	 � ��� is unbiased and by the strong law of large numbers, it will almost

surely converge to
W 	 � 	 � ��� . That is:

�
< a h,g� � � W 	 � 	 � ��� � W 	 � 	 � ��� > � M

If the variance � �� of
� 	 � � is finite, a central limit theorem yields convergence in distri-

bution of the error:

a h,g� � � � I < W 	 � 	 � ���A~ W 	 � 	 � ��� > � � 	 O � �
�� �

Note that the rate of convergence of the Monte Carlo estimate is of the order
H 	�I ����@�� � ,

while the corresponding error for the deterministic integration method is typicallyH 	�I � � @�� � . The Monte Carlo estimate is independent of the dimension of � . It should

be mentioned, however, that the constant of proportionality will often depend on 6 .

The advantage of Monte Carlo integration over deterministic integration arises from

the fact that the former positions the integration grid (samples) in regions of high

probability, as shown in Figure D.1.

The main disadvantage of simple Monte Carlo methods is that often it is not possible

to draw samples from 0 	 � � directly. This problem can, however, be circumvented by

the introduction of MCMC algorithms. Assuming that we can draw samples from a

proposal distribution 3 	 � � , the key idea of MCMC simulation is to design mechanisms

that cause the proposal samples to migrate, so that their distribution approximates

0 	 � � . This can be demonstrated by means of a simple example. Suppose we wish to

draw samples from the target distribution:

0 	 � � � O � �

� ��� �
[:\E] < ~ M� � � � � > B O � �

� ��� �
[:\�] < ~ M� � � 	 � ~ M�O � � >

This task can be accomplished by starting, for example, with a set of uniformly dis-

tributed samples � � x & {� C G � � ( � � � � * � M �������u� M�OOO � and sampling from the proposal
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Deterministic Integration
.

..

Monte Carlo Integration

Figure D.1 Deterministic versus Monte Carlo integration. The latter is more parsimonious in that

it positions the integration grid (dots) in regions of high probability.

3 	 � � � � 	 O � � � � � (see Figure D.2). An iterative mechanism that ensures that the sam-

ples become distributed according to 0 	 � � follows:

My first MCMC algorithm

1.
� �'� 4 � O �6,-� � �
	 * � M �������u� M�OOO � , � � � � $A� �/� � x & {� C G � � ( � � �

2. � �:� 	�� � � � , 4 ; � �*	 * � M �������u� M�OOO�=
�

� �
�5( $ � �7C G � � ( � � 3
�

� �
�5( $ � � � x & {� � 	�� � 3 	 � � � � � 	 � x & {� � � � � ��3
� If � � � 	 � x & {� � � � x & {� � � gih e � M � � � �� :������ �
	 � � 9:�� : x� �

� R �
, { : " � � � �� :������ ��	 � � 9:�� : x� �

� R �
, ��� � { : "

� � �� :���� � ��	 � � 9:�� : x� � R �, { : " � � � �� :���� � ��	 � � 9:�� : x� � R��, ��� � { : " �
� x & {�f��� � � � x & {�

else
� x & {�f��� � � x & {�

3. 4�� 4 B M �6,-� � � � � � 3
�

Figure D.3 shows that the distribution of the samples, for 9 iterations, � � � and
� � � M 	 , converges to the the target distribution. Three important characteristics of

the previous algorithm need to be emphasised. Firstly, the normalising constants of

the target distribution are not required. We only need to know the target distribution

up to a constant of proportionality. Secondly, although the algorithm makes use of

1000 chains, one single long chain would suffice to approximate the target distribu-

tion. Finally, the success or failure of the algorithm hinges on the choice of proposal
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Figure D.2 Initial, proposal and target distributions for the MCMC example.
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Figure D.3 Approximating the target distribution in the MCMC example.

distribution. As shown in Figure D.4, if the proposal is too narrow, only one mode of

0 	 � � might be visited. On the other hand, if it is too wide, the rejection rate can be very

high. If all the modes are visited while the acceptance probability is high, the chain is

said to “mix” well.



An Introduction to Fixed and Variable Dimension MCMC 188

Target distribution

MCMC approximation

Markov chain

t θ

σ =1 σ =100

σ =10

* *

*

Figure D.4 Approximations obtained for three proposals with different variances.

A very powerful property of MCMC algorithms is that it is possible to combine

several proposal distributions. For instance, if we suspect that the target distribution

has two modes separated by a distance of ten units, we can adopt the following mixture

of MCMC steps to improve the mixing:

Mixture of MCMC steps

1.
� �'� 4 � O �6,-� � �
	 * � M �������u� M�OOO � , � � � � $A� �/� � x & {� C G � � ( � � �

2. � �:� 	�� � � � , 4 ; � �*	 * � M �������u� M�OOO�=
�

� �
�5( $ � �7C G � � ( � � �6,��iYiC G � � ( � � 3
� if Y � O �
	

–
� �6�5( $ � � � x & {� � 	�� � 3 	 � � � � � 	 � x & {� � � � � ��3

– If � � � 	 � x & {� � � � x & {� � � gih e � M � - x� �
� R �
, { � �
	 � � 9:�� : �

x� � R��, � � �
� R �
, { : "

- x� � R��, { � ��	 � � 9:�� : �
x� �

� R �
, � � � R��, { : " �
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� x & {�f��� � � � x & {�
else

� x & {�f��� � � x & {�
� � $ �/�"� � Y � O � � 	

–
� �6�5( $ � � � x & {� � 	�� � 3 	 � � � � � 	 M�O B � x & {� � � � � ��3

– If � � � 	 � x & {� � � � x & {� � � gih e � M � - x� �
� R �
, { � �
	 � � 9:�� : �

x� � R��, ��� � � � �
� R �
, { : "

- x� � R��, { � ��	 � � 9:�� : �
x� �

� R �
, ��� � � � � R��, { : " �

� x & {�f��� � � � x & {�
else

� x & {�f��� � � x & {�
� � $ �/�

–
� �6�5( $ � � � x & {� � 	�� � 3 	 � � � � � 	 ~ M�O B � x & {� � � � � ��3

– If � � � 	 � x & {� � � � x & {� � � gih e � M � - x� �
� R �
, { � �
	 � � 9:�� : �

x� � R��, ��� � � � �
� R �
, { : "

- x� � R��, { � ��	 � � 9:�� : �
x� �

� R �
, ��� � � � � R��, { : " �

� x & {�f��� � � � x & {�
else

� x & {�f��� � � x & {�
3. 4�� 4 B M �6,-� � � � � � 3

�

This algorithm is a particular implementation of the Metropolis-Hastings (MH) al-

gorithm, which shall be presented in its more general form in Section D.4. The results

obtained applying this algorithm are shown in Figure D.5. The mixture of MCMC steps

consists of a local mode exploration step and steps to jump from one mode to the other.

As a result, if the local exploration proposals are too narrow, as illustrated in the top left

plot of figure D.4, the jump steps will allow the other modes to be explored. Mixtures

of MCMC steps, therefore, permit the introduction of more ingenious strategies for ex-

ploring the parameter space. Indeed, one of the most powerful attributes of MCMC

algorithms is that heuristics and domain specific knowledge can be incorporated using

mixtures of MCMC steps. This allows us to obtain very accurate results at a reasonable

computational cost.

MCMC methods are also suitable for optimisation. Here, the objective is to find the

best among several alternatives. That is, we seek a decision with minimal cost, where,

for convenience, the target distribution is assumed to be the cost function. The optimal

choice is given by the peak of the target distribution (the maximum a posteriori (MAP)

estimate in the Bayesian paradigm):

��� s � � jon c gij \� t � � 0 	 � �
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Figure D.5 Approximating the target distribution with a mixture of MCMC steps.

The following slight modification of our first algorithm achieves this goal:

MCMC optimisation algorithm

1.
� �'� 4 � O ; � � � M �6,-� � �
	 * � M ��������� M�OOO ; � , � � � � $8� �/� � x & {� C G � � ( � � �

2. � �:� 	�� � � � , 4 ; � �*	 * � M �������u� M�OOO�=
�

� �
�5( $ � �7C G � � ( � � 3
�

� �
�5( $ � � � x & {� � 	�� � 3 	 � � � � � 	 � x & {� � � � � ��3
� If � � � 	 � x & {� � � � x & {� � � g h e � M � � � �� :���� � �
	 � � 9:�� : x� �

� R �
, { : " � � � �� :���� � ��	 � � 9:�� : x� �

� R �
, ��� � { : "

� � �� :��
� � ��	 � � 9:�� : x� � R �, { : " � � � �� :���� � ��	 � � 9:�� : x� � R��, ��� � { : " � 9� ,

� x & {�f��� � � � x & {�
else

� x & {�f��� � � x & {�
�

� �'� � �f��� � O � � 	 � � � .
3. 4�� 4 B M �6,-� � � � � � 3

�

The results of applying this algorithm, known as simulated annealing (SA), are

shown in Figure D.6. As can be seen, the samples are globally concentrated in the
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Figure D.6 Discovering the modes of the target distribution with the simulated annealing algo-

rithm.

modes of the target distribution.

If the reader has been able to follow the presentation thus far, he or she should,

without any major difficulty, be able to apply the MH and SA algorithms to a wide

spectrum of problems. However, for complex applications, perhaps involving model se-

lection, a reasonable grasp of some concepts of probability, measure theory and Markov

chains is highly advisable. The following section reviews a few basic principles of prob-

ability and measure theory, which will make it possible to establish some important

properties of Markov chains and, subsequently, present the MH and reversible jump

MCMC algorithms in their general form.

D.2 Densities, Distributions, � -Fields and Measures

The concepts of density, distribution and measure are essential to understand the deriva-

tions hereafter. A very simplified treatment is presented. Interested readers are advised

to consult (Billingsley, 1985) for an in-depth presentation.

Let us consider a circular area on which we can obtain a quantity 6 	�| � , say mass,

for any area | within the circle. In particular, we need to focus on an infinitesimal area

corresponding to the neighbourhood of a point
� 	 �u� ��� . The density � 	 ��� �B� , that is the

limit of the ratio of the mass of the neighbourhood to the area of the neighbourhood,

depends on how we define the neighbourhood. In other words, on how we “measure”



An Introduction to Fixed and Variable Dimension MCMC 192

the area. A density is thus a measure dependent quantity.

This can be clarified by means of an example. In Cartesian coordinates, we can

measure the circle’s area by adding small rectangular areas
� � � � within the circle, as

shown in Figure D.7. This type of measure is known as the Lebesgue measure. In polar

Polar coordinates

dy
dx

d

dθ

ρ

Cartesian coordinates

Figure D.7 Two ways of measuring the area of a circle.

coordinates, we can do the same thing using elements of area
� � � �

along the radius

� and angle
�
, as illustrated in Figure D.7. As the size of the neighbourhoods become

increasingly small, we find that:

� 	 ��� �B� � a h,g
�

�
� � � � 6 	 ��� �B�

� � � �
� a h,g
����� � � � 6 	 � � � �

� � � �
� � 	 � � � �

That is, the densities in terms of the polar and Cartesian infinitesimal elements of area

are different. This result follows from elementary calculus, where it is well known that:

� s�� � 	 ��� �B� d � d � � � s�� � 	 � � � � d � d
� � � s�� � 	 � � b l 	 � ��� � l h e 	 � ��� ����

� 	 �u� ���
� 	 � � � �

���� d � d
�

where |	� denotes the area of the circle and
��
�ox

�

(
� {�ox
� ( ��{ �� � � denotes the Jacobian of the

transformation of coordinates. Hence, we have � 	 � � � � � � � 	 �u� ��� , thus proving that

the value of the density depends on how we define the neighbourhood.

A further complication arises when we analyse spaces of different dimension. Here,

it is possible to evaluate the ratio of the masses of two objects lying on separate dimen-

sions, say a circle and a sphere. However, the ratio of the densities cannot be calculated

as it requires a meaningless comparison between the area of the circle and the volume

of the sphere. We need, therefore, to extend the dimension of the object in the lower

dimensional space and define a dominating measure that is common to both objects.

This dominating measure is, usually, the measure of the object in the higher dimen-

sion. This is illustrated in Figure D.8, where a univariate density has been expanded

to a two-dimensional space by sampling a proposal from a uniform density. Needless

to say, we could have used many other types of proposal densities. In this case, the

Lebesgue measure
� � � � � � can be used as the dominating measure.
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Figure D.8 Comparing the densities �
i
 u between models with one and two dimensions.

To understand the properties of Markov chains, we need to introduce the concepts

of probability space and � -fields. A probability space is a triple 	�G2� F 	�G7��� � � , whereG is the space containing all elements � & , F 	�G7� is a � -field of subsets of G and � is

a probability law. This is perhaps best demonstrated by means of a simple example.

Consider the tossing of a die and assume that we are only interested in the outcomes

even and odd. In this experiment, the space G contains six elements (the six faces of

the die):

G ��� � ��� � � � �
� � � �o� � � � �

� �

Although this set has � � possible subsets, we are only interested in measuring the class

of events even and odd. The corresponding � -field is:

F 	�G7� � �E�!� � ��� �
� � � � �#�!� � �o� � �� �

� �#�:G
That is, the � -field contains the class of events that interest us, the impossible event �
and the certain event G (odd or even outcome). This definition ensures that any set

operations involving events is also an event. More precisely,
F 	�G4� is a � -field of subsets

of G if it satisfies the following conditions:



An Introduction to Fixed and Variable Dimension MCMC 194

1. G N F 	�G4� .
2. if | N F 	�G � then | � N F 	�G � .
3. if | $DN F 	�G4� for � � M �8�E������� then � �$ 
�� |"$DN F 	�G7� .

where | � denotes the complement of the set | .

The pair 	�G � F 	�G4��� is known as the measurable space or state space. To complete

the definition of a probability space, a number � 	�| & � is assigned to each event | & in

the � -field. In the die example, since the outcomes even and odd are equally likely,

we can assign the following probabilities to the events of the � -field: � 	 �#� � O ,
� 	 � � ��� �

� � � � � � � M $�� , � 	 � � �o� � �o� �
� � � � M $�� and � 	�G7� � M . In general, the probabilities

should satisfy the following conditions:

1. � 	�G � � M .
2. � 	�| & � � O for any | & N F 	�G7� .
3. If | $ N F 	�G7� for � � M �8�E������� and | & � |r� ��� � * �  , then �

<
� �& 
�� | & > �

	 �& 
�� � 	�| & � .
On the real line

= � 	 ~ � ��� � , events will consist of the sets that belong to the

smallest � -field containing all intervals
� � � � for any

� � . This � -field, known as the

Borel � -field
F 	 = � , contains all open and closed intervals, all points and any countable

union or intersection of intervals or points. The concept can be easily extended to

higher dimensions. For example, in the plane the events will consist of the sets of

points that can be expressed as countable unions or intersections of rectangles.

We can now be slightly more precise about the definition of measures. A measure
q

on the space 	�G � F 	�G4��� is a function from
F 	�G7� to 	 ~ � ��� � that is countably additive.

That is, if | $ N F 	�G4� for � � M �8�E������� and | & � |r� ��� � * �  , then

q < ��& 
�� | & > �
�� & 
�� q 	�| & �

For any interval 	�Z!� � � on the real line, the Lebesgue measure
q

Leb is a positive measure

(
q 	�|}��� O for any | ) that satisfies

q
Leb 	�Z � � � � � ~ Z . In higher dimensional Euclidean

spaces
=��

,
q

Leb is constructed using the area of rectangles as the basic definition. A

probability is, therefore, a positive measure that sums up to unity over the entire mea-

surable space.

We can now define the distribution of a random variable � (for example, a vector of

model parameters) as a probability measure
q

defined for all events | & � * � M �8�E������� ,
of

F 	�G4� by:

q 	�| & � � 0 	 � N4| & �
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If we assume that we have a function 0 	 � � on the real line that satisfies:

0 	 � � � O and � �� � 0 	 � � d � � M
that is, a probability density, then the probability distribution of the interval 	 ~ � � � � � is

given by:

0 	 ~ � � � � � � � � � � 9
� � 0 	 � � d �

For an infinitesimal interval
q 	 d � � � d

�
, the distribution is given by:

0 	 d � � � 0 	 � � q 	 d � � (D.1)

Note that, as customary,0 has been used to denote both the density and the distribution.

This relation is illustrated in Figure D.9. The distribution of the infinitesimal element

d
�

corresponds to the area of the rectangle. It is the probability given by the product

of the measure (width of the rectangle) and the density (height of the rectangle).

p

θ
µ(  θ)=    θd d

(θ)

Figure D.9 Relation between distributions, densities and measures.

Most of the probability distributions used to represent continuous physical phenom-

ena are meant to measure infinitesimal intervals or “spots” of the parameter space, and

not single points (the delta Dirac mass is an exception). This is done, in simple terms,

because it is possible to treat “spots” in
= �

as events. It is important to appreciate

that the theory underlying the algorithms we use in practice relies on the notion of

probabilities that measure “spots” of the parameter space (distributions). However,

the implementation of these algorithms makes use of points in the parameter space,

not “spots”. The latter is a result of the fact that computers are not able to deal with
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“spots”, which consist of uncountable sets of points. Equation (D.1) bridges the gap be-

tween theory and implementation. It allows us to replace the distributions by products

of functions of points (densities) and measures.

D.3 Markov Chains

This section reviews some of the fundamental properties of Markov chains. These per-

mit the study of the convergence behaviour of many MCMC algorithms. In particular,

it will be shown that if a Markov chain has an invariant distribution 0 , that is if
� �AC 0

then
� �f��� C 0 , it follows that:

a hfg� � � 
 � 	 � � � � � N |}� � 0 	 � � N |}�
where � � is the initial state of the chain and 
 	 � � � � �f��� N |}� is a mechanism by means

of which the chain moves from one sample to the next. For example, for discrete state

spaces, 
 	 � ��� � �f���"N4|}� will simply be a transition matrix, while for more general state

spaces, 
 	 � ��� � �f��� N | � will correspond to various types of transition kernels. This

convergence result states that if we iterate the transition mechanism many times, the

samples produced by it will be approximately distributed according to the invariant dis-

tribution 0 . Typically, one devises transition mechanisms so that the target distribution

corresponds to the invariant distribution.

The section will begin with a review of Markov chains and transition kernels. Sub-

sequently, it will present a few concepts (irreducibility, recurrence, aperiodicity and

reversibility) that allow us to construct mechanisms to generate samples from the tar-

get distribution 0 . It will also discuss some theoretical notions (drift, minorisation and

small sets) that serve to determine how fast the convergence takes place.

D.3.1 Markov chains and transition kernels

It is intuitive to introduce Markov chains on finite (discrete) state spaces, where � can

only take � possible values � N G � � � � � � � ��������� � 	 � . The stochastic process � is

called a Markov chain if:

0 	 � � � � � ��������� � � � � 0 	 � � � �
�
& 
�� 0 	 �

& ? � & ��� �

where 4 N >
is the time index. The chain is homogeneous if there is a transition matrix:

� �

�����
�
0 ��� 0 �)� ^�^�^ 0 � 	
0 ��� 0 ��� ^�^�^ 0 � 	

. . .

0 	 � 0 	 � ^�^�^ 0 	 	

������
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such that the the transition probabilities � 	 � � � � � ? � ����� � � & � � 0 & � for all 4 . That is,

the evolution of the chain in a space G depends solely on the current state of the chain

and a fixed transition matrix. Note that the transition matrix is a mapping
� � � 1 �

�� O � M � , with 	 & 0 & � � M for any * .
As an example, consider a Markov chain with three states 	 � � � � and a transition

graph as illustrated in Figure D.10. The transition matrix for this example is:

� �

��
� O M O

O O � M O � �

O � � O � � O

���
	

If the probability vector for the initial state is 0 	 � � � � 	 O �
	E� O � �E� O � � � , it follows that

0 	 � ��� � 0 	 � � � � � 	 O � M � � O � � � � O � M � � . After several iterations (multiplications by
�

),

the outer product 0 	 � � � � 0 	 � � � � �
converges to 	 O � � �E� O � � M � O � � � � . More importantly, no

matter what initial distribution 0 	 � � � we use, the chain will stabilise at 	 O � � �E� O � � M � O � � � � .
This result plays a fundamental role in MCMC simulation. We can start the chain

anywhere in the space and be assured of convergence to the invariant distribution

0 	 � � � 	 O � � �E� O � � M � O � � � � . All we have to do to accomplish this is to design a suitable

transition operator so that the target distribution, which is assumed to be known up to a

normalising constant, corresponds to the invariant distribution. Section D.1 presented

a few examples of such operators.

0.1

1

0.6

0.4

0.9

α

α
1

2

α
3

Figure D.10 Transition graph for the Markov chain example with
� � � � R 1��{��1�� � � .

In general state spaces 	�G � F 	�G7��� , Markov chains are defined as sequences of ran-

dom variables � � ��� 4 � O � M �8�E������� � , whose evolution in the space G depends solely on

the current state of the chain and a transition kernel. Here, the events correspond to
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the � -algebra generated by a countable collection of subsets of G , for example intervals

in
= �

. The transition kernel can be interpreted as a matrix with an infinite number of

elements, where the elements in each row add up to one. It satisfies:

0 	 � �f��� N |5? � � � � ����������� � � � � 0 	 � �f��� N |5? � � �
� � s 
 	 � ��� d � �f�����

for all measurable sets | N F 	�G4� . That is, the kernel is a mapping 
 �uG 1 F 	�G4� �� O � M � , with the following properties:

� For any fixed set | N F 	�G7� , 
 	�^���| � is measurable.

� For any fixed � N G , 
 	 � ��^_� is a probability measure.

The analysis is restricted to time-homogeneous Markov chains, that is the transition ker-

nel is fixed over time. Time varying kernels are, however, necessary when dealing with

MCMC optimisation algorithms such as simulated annealing (Andrieu et al., 1999d;

Geman and Geman, 1984; Van Laarhoven and Arts, 1987).

As illustrated in the discrete case, once we know the initial distribution of the chain,

say 0 	 d � � � , the transition kernel fully determines the behaviour of the chain. However,

in general state spaces, the iterative multiplications by the transition matrix are re-

placed by the following recursion:

0 	 � � N | � � � � s � 0 	 d � � �
0 ��	 � � � � ��� N | � 1 | � " � � s � � s 9 0 	 d � � � 
 	 � � � d � �S�

0 � 	 � � � � ��� � ��� N | � 1 | � 1 | �/" � � s � � s 9 � s : 0 	 d � � � 
 	 � � ? d � ��� 
 	 � �:� d � ���
...

0 � 	 � � ������� � � � � N | � 1 ^�^�^ 1 | � " � � s � ^�^�^ � s �

�
�
� 
�� 0 	 d �

� � 
 	 � ������� d � � �

By marginalising and choosing the initial condition | � � � � � � , if follows that the
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distribution 
 � 	 � � � � � N | � � 0 	 � � N |5? � � � is given by:


 � 	 � � � � � N |}� � 
 	 � � � � � N | �

 � 	 � � � � �}N |}� � � y 
 	 � � � d � ��� 
 	 � ��� � �}N | �


 � 	 � � � � � N |}� � � y � y 
 	 � � � d � � � 
 	 � � � d � � � 
 	 � � � � � N |}�
� � y 
 	 � � � d � ��� 
 � 	 � ��� � � N | �
...
 � 	 � � � � � N |}� � � y 
 	 � � � d � ��� 
 � ��� 	 � ��� � � N |}� (D.2)

In general, we obtain the Chapman-Kolmogorov equation:


 � � � 	 � ��|}� � � y 
 � 	 � � d � � 
 � 	 � ��| � (D.3)

When considering discrete state spaces, it was shown, by means of an example,

that the iterated application of the transition kernel (multiplication by the transition

matrix) converges to an invariant distribution. In general state spaces, it is also possible

to demonstrate that the iterated application of the transition kernel (equation (D.2))

converges to an invariant distribution. Moreover, we can choose the target distribution

to be the invariant distribution, as demonstrated with the examples of Section D.1. The

following subsections will discuss some conditions that need to be satisfied to achieve

this result in general.

D.3.2 � -Irreducibility

A Markov chain is irreducible if the transition kernel allows for moves over the entire

state space. The chain is � -irreducible if it has positive probability of entering any set

to which the distribution � assigns positive probability. That is, for every | N F 	�G7�
with � 	�| � � O , there exists a

�
such that 
 � 	 � ��|}� � O for all � N G . In a Bayesian

context, irreducibility guarantees that we can visit all the sets of parameter values in the

posterior’s support. For example, the first two algorithms described in Section D.1 are

0 -irreducible because they allow for a complete exploration of the support of the target

distribution 0 . As a result of this, we can draw samples from the target distribution 0
wherever it is bigger that zero, as illustrated in Figures D.3 and D.5.

D.3.3 Aperiodicity

A 0 -irreducible transition kernel is periodic if there exist an integer
� � M and a

sequence of non-empty disjoint sets ��| � ��| ��������� ��| ��� in
F 	�G7� such that for all 4 �
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M �8�E������� � � ~ M :

 	 � ��| �f����� � M for � N |"�

 	 � ��| ��� � M for � N | �

Otherwise, the kernel is aperiodic. Aperiodicity holds if the transition kernel is such

that there is a non-null probability of staying at a particular state � or if the kernel has

a positive density in the neighbourhood of � (Robert and Casella, 1999). Section D.3.5

(Theorem 3) will show that aperiodicity allows us to avoid the use of Cesaro averages,

leading to stronger convergence results.

D.3.4 Recurrence

To explain the concept of recurrence, the following definitions need to be introduced:

� The stopping time
� s � gih e � 4 � M � � � N |
� is the first 4 for which the chain

reaches the set | .

� The number of visits to the set | is � s ��	 �� 
�� J s 	 � ��� .
� The average number of passages in | is denoted

W � 	 � s � .
� The probability of return to | in a finite number of steps is 0 � 	 � s � � � .

Using the above definitions, a set | is called uniformly transient if
W � 	 � s � � � � �

for all � N | and recurrent if
W � 	 � s � � � for all � N | . Furthermore, the set is Harris

recurrent if 0 � 	 � s � � � � M for all � N<| . Harris recurrence ensures that the Markov

chain will exhibit the same limiting behaviour regardless of its starting value. This form

of stability is, therefore, stronger than 0 -irreducibility.

D.3.5 Invariance and convergence

Most Markov chains constructed for MCMC simulation algorithms exhibit an important

stability condition: if � � C 0 then � �f��� C 0 . When this happens, the distribution 0 is

said to be invariant. More formally, a measure 0 is invariant if:

0 	�| � � � y 0 	 d � � 
 	 � ��|}� for all | N F 	�G4� (D.4)

When dealing with Bayesian inference problems, 0 typically corresponds to the poste-

rior distribution.

The appendix shall now proceed to present one the most fundamental theorems in

the theory of MCMC simulation. Before doing so, the following definition is required:

a chain is positive recurrent if the total mass of 0 is finite; otherwise it is null recurrent.

The theorem can now be stated:
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Theorem 3 (Meyn and Tweedie, 1993; Tierney, 1994) Suppose we have a � -irreducible

Markov chain with invariant distribution 0 . Then the finite measure � on
F 	�G � is abso-

lutely continuous with respect to 0 , the chain is positive recurrent and 0 -irreducible and 0
is the unique invariant distribution. Moreover, for almost all � :

M�
�� � 
�� 
 � 	 � ���_�r~ � 0

as 4 tends to infinity. If the chain is also aperiodic, then for almost all � :

p 
 � 	 � ���_�A~ 0 p TV

� O as 4 � �
If the chain is Harris recurrent, then the convergence occurs for all � .

Here,
p�qrp

TV denotes the total variation norm. For a measure
q

on 	�G2� F 	�G7��� , this norm

is defined as:

p�qrp
TV
� l�m ]s t v x�y { q 	�| � ~ h eBks t v x�y { q 	�|}�

This theorem is very powerful. Among other things, it tells us that if we construct an

MCMC algorithm with invariant distribution 0 , we only need to prove � -irreducibility

and not the more demanding task of proving 0 -irreducibility. The theorem also says

that there is no need for aperiodicity to obtain convergence of averages:

�
< a h,g� � � M�

�� � 
�� � 	 � � � � W 	 � 	 � ��� > � M

D.3.6 Reversibility and detailed balance

A Markov chain with invariant (stationary) distribution 0 is said to be reversible if it

exhibits detailed balance:

0 	 d � ��� 
 	 � ��� d � �f����� � 0 	 d � �f����� 
 	 � �f����� d � ���

By integrating both sides with respect to � � , it follows that reversibility implies invari-

ance:

� y 0 	 d � � � 
 	 � � � d � �f��� � � 0 	 d � �f��� �

Hence, if we know the target distribution 0 , we can ensure that this distribution will be

the invariant distribution of a Markov chain by designing kernels that exhibit detailed

balance.



An Introduction to Fixed and Variable Dimension MCMC 202

D.3.7 Ergodicity and rates of convergence

A Markov chain is called ergodic if it is positive Harris recurrent and aperiodic. There

are several stronger forms of ergodicity that describe how fast the chain is converging,

namely ergodicity of degree 2, geometric ergodicity and uniform ergodicity:

Ergodicity of degree 2 : A Markov chain with invariant distribution 0 is ergodic of

degree 2 if:

4 p 
 � 	 � ���_�A~ 0 p TV

� O as 4 � �
for almost all � N G .

Geometric ergodicity : The chain is geometrically ergodic if there exists a nonnega-

tive real valued function
� 	 � � , with

W - � ? � 	 � ��? " � � , and a positive constant

� � M such that:

p 
 � 	 � ���_�A~ 0 p TV

� � 	 � � � �

for all � N G .

Uniform (geometric) ergodicity : The chain is uniformly ergodic if there exists a pos-

itive constant
� � � and a positive constant � � M such that:

p 
 � 	 � ���_� ~ 0 p TV

� � �
�

for all � N G .

Uniform ergodicity implies geometric ergodicity, which in turn implies ergodicity of

degree 2.

D.3.8 Minorisation and small sets

The minorisation condition and small sets are two important notions that will assist

us greatly if we have to verify sufficient conditions for geometric and uniform conver-

gence. A transition kernel satisfies the minorisation condition for an integer
� � O , a

constant ( � O , a set
� N F 	�G7� and a probability measure � if:


 � 	 � ��| � � ( � 	�|}� for all � N �
and | N F 	�G7� (D.5)

A set
�

satisfying this condition is called a small set. Under certain topological continu-

ity conditions, Meyn and Tweedie (1993) show that every compact set (e.g. a bounded

set in
= 9

such as
� ~ �E�8��� ) is small. By using this result and small sets, we can easily

prove that many MCMC algorithms are � -irreducible (Chan, 1993; Roberts and Polson,

1994).
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D.3.9 Drift conditions

Drift conditions, also known as Foster-Lyapunov conditions, are useful to derive con-

vergence rates for MCMC algorithms (Meyn and Tweedie, 1993). The drift operator is

given by:

� � 	 � ��� � � y 
 	 � ��� d � �f����� � 	 � �f�����A~ � 	 � ��� � W�� x � , 	d 	 { � � 	 � �f������? � ��" ~ � 	 � � �
If a Markov chain is 0 -irreducible, then it is recurrent if for a small set

� N F 	�G7� and a

positive function
�

unbounded off the small set, the following inequality holds:

� � 	 � ��� � O for � � $N �

This inequality is equivalent to saying that the chain is a super-martingale. That is:

W�� x � , 	d 	 { � � 	 � �f������? � ��" � � 	 � � �
As shown in Figure D.11, the super-martingale tells us that the expected value of the

new state will be closer to the small set. That is, the chain drifts towards the small set.

t+1 tθθ

V(    )

E           [V(      )|     ]

θ

θ

V(      )θ

Small set C

Drift t

θK(    |d.)t

Figure D.11 Graphical interpretation of Foster-Lyapunov drift stability conditions.

A stronger drift condition is to ensure that for a small set
�

, ( � M , � � � and a

drift function
� ��G � � M ��� � , we have:� y 
 	 � ��� d � �f����� � 	 � �f����� � ( � 	 � ��� B�� J�� 	 � ���

This condition guarantees geometric convergence (Meyn and Tweedie, 1993). Thus,

to prove geometric convergence for a particular MCMC algorithm the trick is to find a

suitable small set and a tailored “potential” function
� 	�^_� (Roberts and Tweedie, 1996).
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D.3.10 Important theorems on ergodicity

The following theorems are very useful when proving geometric or uniform ergodicity:

Theorem 4 [Theorem 15.0.1 of (Meyn and Tweedie, 1993)] Suppose that a Markov

chain � � ��� 4 � O � M �8�E������� � is � -irreducible and aperiodic. Then the following conditions

are equivalent:

1. The Markov chain � � � � 4 � O � M �8�E������� � is geometrically ergodic.

2. The chain is positive recurrent with invariant measure 0 and there exist a function
� 	 � � and a positive constant � � M such that:

p 
 � 	 � ���_� ~ 0 p TV

� � 	 � � � �

for all � N G .

3. There exists a small set
�

, ( � M , � � � and a function
� 	 � � finite almost every-

where such that: � y 
 	 � � � d � �f����� � 	 � �f����� � ( � 	 � ��� B�� J � 	 � ���
In this case the geometric convergence can be strengthened to:

p 
 � 	 � ���_�A~ 0 p TV

� � � 	 � � � �

for some
� � � . That is, the convergence occurs for any � for which

� 	 � � is finite.

Theorem 5 [Theorem 16.0.2 of (Meyn and Tweedie, 1993)] For any Markov chain
� � ��� 4 � O � M �8�E��������� , the following statements are equivalent:

1. The Markov chain � � � � 4 � O � M �8�E������� � is uniformly ergodic.

2. There exists a positive constant
� � � and a positive constant � � M such that:

p 
 � 	 � ���_�A~ 0 p TV

� � �
�

for all � N G .

3. The space G is small. For an integer
� � O , a constant O � ( � M and a probability

measure � we have:


 � 	 � ��^_� � ( � 	�^_� for all � N G �
In particular, if O � ( � M , we have:

p 
 � 	 � ���_� ~ 0 p TV

� �B	 M ~ ( � � @��
4. The chain is aperiodic and for ( � M and � � � , there exists a bounded solution

� 	 � � � M to:

p 
 � 	 � ���_�A~ 0 p TV

� � � 	 � � � �
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D.3.11 Limit behaviour

When we simulate long MCMC chains, one of our main interests is to estimate expec-

tations of the type
W - 	 � � using sample averages:

�� � M�
�� � 
�� � 	 � ��� (D.6)

The estimate is validated by the law of large numbers and central limit theorems. The

former states that:

Proposition 6 [Corollary to Theorem 3.6 in Chapter 4 of (Revuz, 1975)] Suppose we

have an ergodic Markov chain with invariant distribution 0 and a real valued function
�

such that
W -5��? � ? " � � . Then for any initial distribution,

�� � W - 	 � � almost surely.

We have the following central limit theorems in terms of the rates of convergence:

Proposition 7 [Corollary 7.3 of (Cogburn, 1972)] Suppose we have a Markov chain,

which is ergodic of degree 2 and has invariant distribution 0 , and a bounded real valued

function
�

. Then there exists a real number � � such that the distribution of:

� 4 � �� ~ W - 	 � ��"
converges weakly to a normal distribution with mean O and variance � �� for any initial

distribution.

Proposition 8 [Corollary 4.2(ii) of (Nummelin, 1984)] Suppose we have a Markov

chain, which is uniformly ergodic and has invariant distribution 0 , and a real valued

function
�

such that
W - � � � " � � . Then there exists a real number � � such that the

distribution of:

� 4 � �� ~ W - 	 � � "
converges weakly to a normal distribution with mean O and variance � �� for any initial

distribution.

The theoretical concepts covered in this section can be used to present and validate

the Metropolis-Hastings and reversible jump MCMC algorithms in their general form.

This is done in the following sections.

D.4 The Metropolis-Hastings Algorithm

The Metropolis algorithm is the most ubiquitous class of MCMC algorithm. It was intro-

duced in 1953 by (Metropolis et al., 1953) and subsequently generalised by (Hastings,
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1970). Since then, many variants have been proposed (Gilks et al., 1996; Robert and

Casella, 1999). Here, the discussion focuses, solely, on the Metropolis-Hastings (MH)

algorithm as the derivation of the other variants is similar. An MH step of invariant

distribution, say 0 	 � � , and proposal distribution, say 3 	 � ��? � � , involves sampling a can-

didate value � � given the current value � according to 3 	 � � ? � � . The Markov chain then

moves towards � � with probability � 	 � � � � � � gih e � M ��	 0 	 � � 3 	 � � ? � ��� ��� 0 	 � � � 3 	 � ? � � � � ,
otherwise it remains equal to � . The pseudo-code follows:

Metropolis-Hastings algorithm

1. � , � ��� � $8� �/� � � �6,�� �/�'� 4 � O 3
2. � �:� 	�� � � � , 4

�
� �
�5( $ � �7C G � � ( � � 3

�
� �
�5( $ �
� � � � 	�� � 3 	 � � � ? � ����3

� If � � � 	 � � � � � � � � gih e � M � - x � , � { . x � , 	 � , � {- x � , { . x � , � 	 � , { �
� �f��� � � � �

else

� �f��� � � �
3. 4�� 4 B M �6,-� � � � � � 3 �

This algorithm is very general, but to perform well in practice it is necessary to use

“clever” proposal distributions to avoid excessive rejection of candidates. The transition

kernel associated with the algorithm is:


 	 � ����|}� � � s 
 	 � ��� d � � � � B 6 	 � ��� J s 	 � � � (D.7)

where


 	 � ��� d � � � � � 3 	 d � � � ? � ��� � 	 � ��� � � � �
and

� 	 � ��� � � � � � g h e � M � 0 	 d � � � � 3 	 d � ��? � � � �0 	 d � ��� 3 	 d � � � ? � ��� �
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is the probability associated with a candidate being accepted and

6 	 � � � � M ~ � y 3 	 d � � � ? � � � � 	 � ��� � � � �
is the probability of remaining at the same point.

If the target and proposal distributions admit densities with respect to the measures

d � � and d � � � , we can replace the distributions by products of densities and measures

(equation (D.1)) to obtain:


 	 � ����|}� � � s 3 	 � � � ? � � � � 	 � ��� � � � � d � � � B 6 	 � ��� J s 	 � � �

with

� 	 � ��� � � � � � g h e � M � 0 	 � � � � d � � � 3 	 � ��? � � � � d � �0 	 � ��� d � � 3 	 � � � ? � � � d � � � �
� g h e � M � 0 	 � � � � 3 	 � ��? � � � �0 	 � � � 3 	 � � �E? � � � �

A very interesting type of Metropolis-Hastings algorithm can be obtained when we

adopt the full conditional distributions 0 	 � & ? � � & � � 0 	 � & ? � ��������� � � & ����� � & ���:��������� � � � as

proposal distributions. This algorithm, known as the Gibbs sampler, has been very pop-

ular since its development (Geman and Geman, 1984). The following section describes

it in more detail.

D.4.1 The Gibbs sampler

Suppose we have ; unknown random variables � � ��� � � ( � � � � ( � �������u� � � ( 9 � . If, in addi-

tion, we know the full conditionals 0 	 � � ( & ? � � ( ���������u� � � ( & ���:� � � ( & �����������u� � � ( 9 � , it is advanta-

geous to use the following proposal distribution for * � M ������� � ; :

3 	 � � � ? � ��� �
� 0 	 � � � ( & ? � � ( � & � If � � � ( � & � � � ( � &

O Otherwise

The corresponding acceptance probability is:

� 	 � ��� � � � � � gih e � M � 0 	 � � � � 0 	 � � ( & ? � � � ( � & �0 	 � � � 0 	 � � � ( & ? � � ( � & � �
� gih e � M � 0 	 � � � � 0 	 � � ( & ? � � ( � & �0 	 � � � 0 	 � � � ( & ? � � � ( � & � �
� gih e � M � 0 	 � � � ( � & �0 	 � � ( � & � �
� M
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Since the acceptance probability for each proposal is one, the Gibbs sampler algorithm

is often presented as follows:

Gibbs sampler algorithm

1. � , � ��� � $8� �/� � � ( ��� 9 �6,-� �/�'� 4 � O 3
2. � �:� 	�� � � � , 4

�
� �
�5( $ �
� �f��� ( � C 0 	 � � ? � � ( � � � � ( � �������u� � � ( 9 ��3

�
� �
�5( $ �
� �f��� ( � C 0 	 � �? � �f��� ( ��� � � ( � �������u� � � ( 9 ��3

...

�
� �
�5( $ �
� �f��� ( & C 0 	 � & ? � �f��� ( ���������u� � �f��� ( & ����� � � ( & ������������� � � ( 9 ��3

...

�
� �
�5( $ �
� �f��� ( 9 C 0 	 � 9 ? � �f��� ( � � � �f��� ( � ������� � �f��� ( 9 ��� ��3

3. 4�� 4 B M �6,-� � � � � � 3
�

Since the Gibbs sampler can be viewed as a special case of the MH algorithm, it is

possible to introduce MH steps into the Gibbs sampler. That is, when the full condition-

als are available and belong to the family of standard distributions (Gamma, Gaussian,

etc.), we will draw the new samples directly. Otherwise, we can draw samples with

MH steps embedded within the Gibbs algorithm. For ; � � , the Gibbs sampler is also

known as the data augmentation algorithm, which is closely related to the EM algo-

rithm (Dempster et al., 1977; Tanner and Wong, 1987).

D.4.2 On the convergence of the MH algorithm

Since 
 	 � ��� � � � � � 3 	 � � � ? � � � � 	 � � � � � � � satisfies the reversibility condition:

0 	 � � � 
 	 � � � � � � � � 0 	 � � � � 
 	 � � � � � � �
it follows that for any measurable set | :

� y 
 	 � ����|}� 0 	 d � ��� � � y � s 
 	 � � � � � � � 0 	 � ��� d � � � d � �
� � y � s 
 	 � � � � � ��� 0 	 � � � � d � � � d � �
� � s 0 	 � � � � d � � � � 0 	�|}� (D.8)
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since

H
y 
 	 � � � � � ��� d � � � M . Thus, by construction, the MH algorithm admits 0 as invari-

ant distribution.

If we can show the � -irreducibility and aperiodicity of the MH kernel, then The-

orem 3 guarantees the convergence of the algorithm. If the space G is small (for

example, bounded in
= �

), then it is possible to use the minorisation condition to prove

uniform ergodicity. It is also possible to prove geometric ergodicity using drift condi-

tions with test functions such as
� 	 � � � � 0 	 � � " � � for some choice of � (Roberts and

Tweedie, 1996).

D.5 The Reversible Jump MCMC Algorithm

This section introduces the reversible jump MCMC algorithm. For a more detailed

introduction, readers are strongly encouraged to consult (Andrieu et al., 1999f). The

reversible jump MCMC algorithm is a generalisation of the MH algorithm to spaces

of different dimension (Green, 1995; Richardson and Green, 1997). It allows one to

perform model selection and parameter estimation simultaneously. Figure D.12 shows

a typical reversible jump MCMC move. A higher dimension is proposed by sampling � �
from a proposal distribution. If the move is accepted, the 2D parameter space expands

to 3D. Otherwise, it remains the same. As shown in this section, the decision to accept

or reject a move depends on a ratio involving the densities and measures for each

dimension.

In the joint parameter estimation and model selection problem, we consider a

family of I models � � 9 � ; � M �������u��I � , defined on a union of subspaces G �
� �9 
�� � ; � 1 G 9

, where I may be infinite. The full target distribution defined in this

space is given by:

0 	 � � d � � �
��9 
�� 0 9 	 ; � d � 9 � J � 9 � ��y �

	 � � � �

That is, the probability of � being equal to ; and � belonging to an infinitesimal set

centred around
� 9

is 0 	 ; � d � 9 � . By marginalisation, the probability of being in subspaceG 9
is:

0 9 	 ; � � � y 0 9 	 ; � d � 9 �
For simplicity, we shall consider only two subspaces: the more general case follows

trivially (Andrieu et al., 1999f). The target distribution is reduced to:

0 	 � � d � � � 0 � 	 M � d � � � J � � � ��y 9 	 � � � � B20 � 	��E� d � � � J � � � ��y : 	 � � � �
defined on the space G ��� M � 1 G2� � �2�&� 1 G � .
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Figure D.12 Proposing a birth move (dimension increase) with the reversible jump MCMC algo-

rithm.

We can extend the MH algorithm by adopting a transition kernel 
 	 � � � � � � � d � �o�
that allows us to move from 	 � � � � to 	 � � � � � � . If the subspaces G � and G � are disjoint

and, for clarity, we only consider moves from one subspace to the other (moves within

a particular subspace can be done with the MH algorithm), the proposal distribution

can be written as:

3 	 d � �E? � � � 3 � ( � 	 d � � � ? � � � J y 9 ��y : 	 � �� � � B 3 � ( � 	 d � � � ? � � � J y 9 ��y : 	 � �#� � �
That is, if we are in subspace � M � 1 G2� , we move to �2�&� 1 G � using the proposal 3 � ( �
and vice-versa. The corresponding acceptance ratio for a move from 	 M � � �S� to 	��E� � � � � is

given by:

� 	 M � � ���8�E� � � � � � gih e � M � 0 �	��E� d � � � � 3 � ( �w	 d � � ? � � � �0 ��	 M � d � ��� 3 � ( �#	 d � � � ? � ��� �
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If the target and proposal distributions admit densities with respect to the measuresq ��	 d � ��� and
q �#	 d � � � � , we have (see equation (D.1)):

� 	 M � � � �8�E� � � � � � gih e � M � 0 �	��E� � � � � q �#	 d � � � � 3 � ( ��	 � �w? � � � � q ��	 d � ���0 ��	 M � � ��� q �w	 d � ��� 3 � ( �	 � � � ? � ��� q �	 d � � � � �
� gih e � M � 0 �	��E� � � � � 3 � ( �w	 � �w? � � � �0 ��	 M � � ��� 3 � ( �#	 � � � ? � �S� �

It is often necessary to consider the more general case where the two sets are not

disjoint: for example G � � G � 1 � � ( � and one wants to jump between G � and G � .
In many cases, it is natural to link the current state � � and the candidate state � � �
deterministically. For instance, one could add an extra component � � ( � N � � ( � to � � to

obtain � � � as follows:

� � � �
	 � ��� � � ( � ��� (D.9)

This is a reasonable proposal in the case of two nested models, where one wants to

keep as much information as possible when moving from parameter space G � to G �
and vice-versa. Examples of this type of model include neural networks, models of

signal components (sinusoids, impulses, etc.) in noise, auto-regressive processes and

many types of mixture models. For instance, one might wish to jump from a model

consisting of � fixed-variance Gaussian components to one comprising � B M components

by proposing a new mean � � ( � , while keeping the current values of the other means.

The reverse move, to jump from G � to G � , is automatically defined and consists of

removing an appropriate component from � � .
The acceptance ratio of the move from G � to G � is still equal to:

� 	 M � � ���8�E� � � � � � gih e � M � 0 � 	��E� d � � � � 3 � ( � 	 d � � ? � � � �0 ��	 M � d � ��� 3 � ( �#	 d � � � ? � ��� �
However, reparametrising in terms of 	 � ��� � � ( � � , results in the following acceptance

ratio:

� 	 M � � � �8�E� � � � � � gih e � M � 0 � � �E� d 	 � ��� � � ( � � " 3 � ( � � d � � ?z	 � ��� � � ( � � "0 ��	 M � d � ��� 3 � ( � � d 	 � ��� � � ( � ��? � ��" �
� gih e � M � 0 �#	��E� d � � �:� � � ( � � " P � 9 	 d � ���

0 � 	 M � d � � � 3 � ( � 	 d � � ( � ? � � � 3 � ( � 	 d � � ? � � � �
� gih e � M � 0 � 	��E� d � � � � � � ( � ��" P � 9 	 d � � �

0 ��	 M � d � ��� 3 � ( �	 d � � ( � ? � ��� P � 9 	 d � �S� �
as only � � ( � is sampled, whereas � � is kept fixed. If we now convert the distributions

to products of densities and measures (equation (D.1)), the acceptance ratio becomes:

� 	 M � � � �8�E� � � � � � gih e � M � 0 � � �E��	 � � � � � ( � ��" q � � d 	 � � � � � ( � ��"
0 ��	 M � � ��� 3 � ( �	 � � ( � ? � ��� q �w	 d � ��� q � 	 d � � ( � � �
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which requires the existence and the evaluation of the ratio of measures:

� �
q � 	 d 	 � � � � � ( � ���q �w	 d � ��� q � 	 d � � ( � �

In numerous cases,
q � , q � and

q � are the Lebesgue measures on the sets G � , G � and
� � ( � , and the ratio, known as the Jacobian, is equal to M .

Finally, one can extend the derivation to a more general case where there exists a

deterministic invertible relationship
� 	�^_� between G � 1 � � ( � and G � 1 � � ( � of the form:< � � �

� � � ( � > � < � � 	 � ��� � � ( � �
�

�
	 � ��� � � ( � � > (D.10)

The proposals � � ( � and � � ( � allow us to expand the dimensions of the parameter spaces

( G � and G � ) to spaces ( G � 1 � � ( � and G � 1 � � ( � ) that can “communicate”. In other

words, to spaces that can be compared. The acceptance ratio for a move from G � toG � is given by:

� 	 M � � � �8�E� � � � � � gih e � M � 0 �#	��E� d � � � � 3 � ( ��	 d � � ? � � � �0 �w	 M � d � ��� 3 � ( �	 d � � � ? � ��� �
� gih e � M � 0 � � �E� d � � 	 � �:� � � ( � ��" 3 � ( � � d �

�
	 � ��� � � ( � ��? � � 	 � ��� � � ( � ��"

0 � 	 M � d � � � 3 � ( � 	 d � � ( � ? � � � �
� gih e � M � 0 �#	��E� � � 	 � ��� � � ( � ��� 3 � ( �w	 � �

	 � ��� � � ( � � �� � � 	 � ��� � � ( � ���
0 ��	 M � � ��� 3 � ( �	 � � ( � �� � �S�

1
q �	 d � � 	 � ��� � � ( � ��� q � 	 d �

�
	 � ��� � � ( �����q ��	 d � ��� q � 	 d � � ( � � � (D.11)

Again, in numerous cases,
q � , q � , q � and

q � are Lebesgue measures and therefore this

ratio satisfies:q �	 d � � 	 � ��� � � ( � ��� q � 	 d �
�
	 � ��� � � ( � ���q ��	 d � ��� q � 	 d � � ( � � � � � � ����

� [�� � � 	 � ��� � � ( ���� 	 � ��� � � ( ��� ���� (D.12)

where
� � is the Jacobian of the transformation

� 	�^_� .

D.6 Summary

This appendix presented an introduction to Markov chains and Monte Carlo simulation.

Starting with a brief discussion of measure theory and probability, it developed some

important properties of Markov chains which were useful to describe the Metropolis-

Hastings, Gibbs sampling and reversible jump MCMC algorithms. The introduction

is by no means exhaustive. Readers are encouraged to use it as a starting point and

proceed to study more advanced topics in MCMC simulation, such as empirical conver-

gence diagnostics, simulated tempering, coupling, perfect sampling, sequential Monte
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Carlo, hit and run algorithms, auxiliary variables and continuous time sampling meth-

ods (Besag et al., 1995; Brooks, 1998; Gilks et al., 1996; Meyn and Tweedie, 1993;

Robert and Casella, 1999; Tierney, 1994).



E

Proof of Theorem 1

The proof1 of Theorem 1 follows from similar proofs in the field of signal processing

(Andrieu and Doucet, 1999; Andrieu et al., 1999a). It relies on the following theorem,

which is a result of Theorems 14.0.1 and 15.0.1 in (Meyn and Tweedie, 1993):

Theorem 6 Suppose that a Markovian transition kernel � on a space
�

1. is a ��~ irreducible (for some measure � ) aperiodic Markov transition kernel with

invariant distribution � .

2. has geometric drift towards a small set
�

with drift function
� � � � � M � B � � i.e.

there exists O � ( � M , � � O , � � and an integrable measure � such that:

� � 	��E� � ( � 	���� B�� J � 	���� (E.1)

�
$ � 	��B��T�� � � � J�� 	��E� � 	�T � � � (E.2)

then for � -almost all � � , some constants � � M and
� � B � , we have:

p
�
9 	�� � ��^_�A~�� 	�^_� p � � � � � 	�� � � � 9 (E.3)

That is, � is geometrically ergodic.

We need to prove five lemmas that will allow us to prove the different conditions

required to apply Theorem 6. These lemmas will enable us to prove Proposition 9

which will establish the minorisation condition (E.2) for some � � and measure � (to be

described). The � -irreducibility and aperiodicity of the Markov chain are then proved

in Corollary 3, thereby ensuring the simple convergence of the Markov chain. To com-

plete the proof, Proposition 10 will establish the drift condition (E.1). To simplify the

1Readers not familiar with the concepts of irreducibility, small sets and drift conditions are strongly

encouraged to consult Appendix D.
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presentation, only one network output is considered. The proof for multiple outputs

follows trivially.

Before presenting the various lemmas and their respective proofs, some notation

needs to be introduced. Let 
 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ : ��T P �$ : � � �o��T � ��� $ : � denote2 the tran-

sition kernel of the Markov chain. Thus, for fixed 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 � N = �?� 1�� , we

have:

0 �S	 � $ : � P �$ : � � �o� � ��� $ : �rN | $ : ?z	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 � "
� � s ' : 
 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ : ��T P �$ : � � �o��T � ��� $ : � (E.4)

where | $ : N F 	 = �?� 1 � � � � 1 � $ : � . This transition kernel is by construction (Section

5.3.2) a mixture of transition kernels. Hence:


 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ : ��T P �$ : � � �o��T � ��� $ : �
�
< � $ 9 
�7 & / �,+ 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ 9 ��T P �$ 9 � � � B M ��T � ��� $ 9 ��� �B T $ 9 
 � � � �,+ 	 � $ 9 � P �$ 9 � � � � � ��� $ 9 ��T � $ 9 ��T P �$ 9 � � � ~ M ��T � ��� $ 9 ��� �B ��$ 9 
 	 -

� & � 	 � $ 9 � P �$ 9 � � �w� � ��� $ 9 ��T � $ 9 ��T P �$ 9 � � � B M ��T � ��� $ 9 ��� �B 6 $ 9 
 � � /� � 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ 9 ��T P �$ 9 � � � ~ M ��T � ��� $ 9 ��� �B 	 M ~ � $ 9 ~ T�$ 9 ~ �w$ 9 ~D6 $ 9 � 
 �
- � � � � 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ 9 ��T P �$ 9 � � ����T � � ��� $ 9 � >

1 0 	 P �$ : ? P �$ 9 � � �o� � ��� $ : � � ��@ � 0 	 � $ : ? � ����T � $ : T P �$ : (E.5)

where 
�7 & /��,+ and 
 � � � �,+ correspond to the reversible jumps described in Section 5.3.2.1,


 	 -
� & � and 
 � � /� � to the reversible jumps described in Section 5.3.2.2 and 
 �

- � � � � is

described in Section 5.3.2.3. The different steps for sampling the parameters
P �$ : and

� $ : are described in Section 5.3.1.3.

Lemma 1 Let
� �$ denote the matrix

� $ for which
P � � B � and let � N = �

, then

�
� � �$ � � O if and only if � belongs to the space spanned by the columns of

� 	 � ��� $ � ��� ,
with � ��� $ N � $ .
Proof. Let us first assume that � belongs to the space spanned by the columns of� 	 � ��� $ � ��� , then it can be written as a linear combination as follows:

� �
� 	 � ��� $ � ��� �

Hence:

�
� � �$ � � � � � � 	 � ��� $ � ��� < 8 � ~ � 	 � ��� $ � ��� � � � 	 � ��� $ � ��� � 	 � ��� $ � ��� " ��� � � 	 � ��� $ � ��� > � 	 � ��� $ � ��� �

� O
2In what follows, the notation

� '  �� :' is adopted for ease of presentation. This does not mean that these

variables depend on the dimension � .
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which proves that if � belongs to the space spanned by the columns of
� 	 � ��� $ � ��� then

�
� � �$ � � O . To complete the proof, let us assume that � � � �$ � � O then:

�
� <
� ~ � 	 � ��� $ � ����� � � 	 � ��� $ � ��� � 	 � ��� $ � ��� " ��� � � 	 � ��� $ � ��� � > � O

Thus, taking into account that
� 	 � ��� $ � ��� � � � 	 � ��� $ � ��� � 	 � ��� $ � ����" ��� � �X	 � ��� $ � ��� � is the

projection of � onto the space spanned by the columns of
� 	 � ��� $ � ��� , it follows that

� � � �$ � � O only if � belongs to the space spanned by the columns of
� 	 � ��� $ � ��� �

Then, noting that @ � � $�@ � ���� � : @ � @ B � :��� � : @ � � �$ @ , we obtain the following corollary:

Corollary 2 If the observed data @ is really noisy, i.e. it cannot be described as the sum of

� basis functions and a linear mapping, then there exists a number � � O such that for all

� � ������� , P � N = �
and � ��� $ N � $

@ � � $w@�� � � O (E.6)

�

Lemma 2 For all � � � ����� , P � N = �
and � ��� $ N � $
@ � � $�@ � @ � @ (E.7)

�

Lemma 3 Let 
 � be the transition kernel corresponding to 
 such that � and
P �

are kept

fixed. Then there exists
� � � O such that for any

� � sufficiently large, any
P � N = �

and

� � � M �������u� � ����� :

 ��	 � � P � � � ��� � ��� $ 9 � � � P � � � � ~ M ��T � ��� $ 9 ��� � � � � J ����� ��� � : � 	 �r�

� � � � � � P ��� 9�� ' 9 	�T � ��� $ 9 ��� � (E.8)

with � � � O as defined in equation (5.20).

Proof. According to the definition of the transition kernel, for all pairs 	�	 � � � � ��� $ 9 ���	 � �o� � ��� $ : ��� N � � , one has the following inequality:


 � 	 �"� P � � � � � � ��� $ 9 � �"� P � � � � ��T � ��� $ : � � gih e � M � 6 � � � �,+ ��T $ 9 ��� � 9�� ' 9 x � � 9�� ' : {$ 9 (E.9)

where M $ � � is the probability of choosing one of the basis functions for the purpose of

removing it and
� � 9�� ' 9 � � � � N � $ 9 ��� $
	 �5N � M ������� � � � � such that � � � � � � � . Then

from equation (5.23) and for all � � � M ��������� � ����� , we have:

6 ���� � � �,+ �
<
�
� B @ � ��� � � $ 9 ��� @A��� �
�
� B @ � ��� � � $ 9 @A��� � > x � ��� �: { M

� �w	 MCB P � � ��@��
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As a result, we can use Lemmas 1 and 2 to obtain � and
� � such that:

6 ���� � � �,+ � < � � B @ � ��� � @A��� �
� > x � � � �: { M

� ��	 MCB P � � ��@�� � � � � B � (E.10)

Thus there exists
� � sufficiently large such that for any

� � sufficiently large (from

equation (5.20)),
P � N = �

, M � � � � � ����� and � ��� $ 9 N � $ 9

 �w	 � � P � � � ��� � ��� $ 9 � �"� P � � � � ~ M ��T � ��� $ 9 ��� � � J ����� ��� � : � 	 � � � �

� : �
� 9 $ 9 P ��� 9�� ' 9 	�T � ��� $ 9 ��� �

(E.11)

�

Lemma 4 The transition kernel 
 satisfies the following inequality for � � O :

 	 � � � P �� � O � � � ��T � �� ��T P � �� � O ��T � � � � � � 	 P � �� ? O � 0 	 � � ? O ��T P � �� T � � (E.12)

with
�
� O and � a probability density.

Proof. From the definition of the transition kernel 
 , it follows that3:


 	 � � � P �� � O � � � ��T � �� ��T P � �� � O ��T � � � � �
� 0 	 P � �� ? P �� � O ��T � � � � ��@ � 0 	 � � ? O ��T P � �� T � �

� 	 M ~ � � � 0 	 P � �� ? P �� � O ��T � � � � ��@ � 0 	 � � ? O ��T P � �� T � �
(E.13)

as O � M ~ � � � �
� � M and the notation � 	 P � � ? O � � 0 	 P � � ? P � � O � � � � � ��@ � is adopted

�

Lemma 5 There exists a constant � � O and a probability density � such that for allP � N = �
, O � � � ������� and � ��� $ N � $ one obtains:

0 	 P � � ? P � � � � � ��� $ � � ��@ � � � � 	 P � � ? � � (E.14)

Proof. From Section 4.1.2, to update
P �

at each iteration one draws from the distribu-

tion 0 	 � ��� � � � � ? P � � � � � ��� $ � � ��@ � , that is, one draws � � from:

0 	 �
� ? P � � � � � ��� $ � � ��@ � �

<�� � � � ) 9�� ��� ' � 9�� �� > � ��� �:
` � � � � �� " 	 � � � � ��� �: ��� [:\E] < ~ M� � � 	 � � B @ � ��� � � $w@A��� �"� > (E.15)

then � ��� � from:

0 	 � ��� � ? P � � � � � ��� $ � �
� � � ��@ � � M? ��� � � � $B? ��@�� [:\�] < ~ M� � � 	 � ��� � ~ � $o� � � ���$ 	 � ��� � ~ � $o� >

(E.16)

3When � ��� , the same notation for the transition kernel is used for convenience, even if % � does not

exist.
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and finally one draws
P � �

according to:

0 	 P � � ? P � � � � � � � ��@ � �
<
� ) 9�� � � ) x � 9�� ' ( � { � x � 9�� ' ( � { � 9�� ���� : B ��� : > � @���� ��� :

` 	76 $�� B ��� : �:	 P � � � � @���� � � : ���
1 [:\E] < ~ MP � � < � � ��� � � �X	 � ��� $ � ��� � 	 � ��� $ � ��� � ��� �� � � B � � : > > (E.17)

Consequently:

0 	 P � � ? P � � � � � � � ��@ � 0 	 � ��� � � �
� ? P � � � � � ��� $ � � ��@A�

�

< � � � � ) 9�� � � ' � 9�� �� > � � � �: <
� ) 9�� � � ) x � 9�� ' ( � { � x � 9�� ' ( � { � 9�� ���� : B ��� : > � @���� � � :

` 	 � � � �� � ` 	76 $�� B ��� : �:	����u� � @�� 	 � � � x � � � � � � { @������ 	 P � � � � @���� � � : ��� ? � $�? ��@��
1 [:\�] < ~ M� � � � 	 � ��� � ~ � $o� � � ���$ 	 � ��� � ~ � $o� B � � B @ � ��� � � $�@A��� �

B � � ��� � � � 	 � ��� $ � ��� � 	 � ��� $ � ��� � ��� �P � � 	 ~ ��� :P � � > (E.18)

The minorisation condition, given by equation (E.14), can be obtained by integrat-

ing with respect to the nuisance parameters � ��� � and � � . To accomplish this, some

algebraic manipulations are carried out to obtain the following relation:

	 � ��� � ~ � $o� � � ���$ 	 � ��� � ~ � $o� B 	
�
� B @A��� � � $w@A��� � � B � � ��� � � � 	 � ��� $ � ��� � 	 � ��� $ � ��� � ��� �P � �

� 	 � ��� � ~ ���$ � � � � ���$ 	 � ��� � ~ ���$ � B � � B @A��� � ���$ @A��� � (E.19)

with:

� � ���$ �
<
M5B MP � B MP � � > � � 	 � ��� $ � ��� � 	 � ��� $ � ���� �$ � � �$ � � 	 � ��� $ � ����@A��� �

���$ � 8 � ~ � 	 � ��� $ � ��� � �$ � � 	 � ��� $ � ���
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We can now integrate with respect to � ��� � (Gaussian distribution) and with respect

to � � (inverse Gamma distribution) to obtain the minorisation condition for
P � �

:

0 	 P � � ? P � � � � � ��� $ � � ��@ �
� � � � � � �

<�� � � � ) 9�� ��� ' � 9�� �� > � � � �: < ��� : > � @���� � � :
` 	 � � � �� � ` 	76 $�� B ��� : �:	����u� � @�� 	 � � � x � � � � � � { @������ 	 P � � � � @���� � � : ��� ? � $B? ��@��

1 [:\�] < ~ M� � � � 	 � ��� � ~ � �$ � � � � ���$ 	 � ��� � ~ � �$ � B � � B @ � ��� � � �$ @A��� � 	 ~ ��� :P � � > T � ��� � T �
�

�
? � �$ ? ��@��
? � $B? ��@��

< � � � � ) 9�� � � ' � 9�� �� > � ��� �: < � � : > � @���� ��� :
` 	76 $�� B � � : � < � � � � ) 9�� � � �' � 9�� �� > � ��� �: 	 P � � � � @���� � � : ��� [:\E]

< ~ ��� :P � � >
�

< MCB �� :
M5B �� : B ���� : > � @�� �

� ��� �: � � @���� � � :� :
	
�
� B @ � ��� � @A��� �"� � ��� �: ` 	76 $�� B ��� : � M	 P � � � � @���� � � : ���

1 [:\E]
< ~ ��� :P � � >

�
< M
M5B P � � > $ ����� @�� � � ��� �: gih e $ t � � (
	
	
	X( $�������� � � @���� � � :� :

	
�
� B @ � ��� � @A��� �"� � ��� �: ` � 	 � ����� B T B M ��$�� B ��� : "

1 M
	 P � � � ' ����� � � � 9: � � � : ��� [:\�] < ~ ��� :P � � > (E.20)

where Lemma 1, its corollary and Lemma 2 have been used �

Proposition 9 For any
� � large enough, there exists � � : � O such that for all pairs	�	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ����	 � $ : � P �$ : � � �o� � ��� $ : ���rN 	 = �?� 1#� � �


 x $������ { 	 � $ 9 � P � � � � ��� � ��� $ 9 ��T � $ : ��T P �$ : � � ���T � ��� $ : �
� J ��� ' 9 � � ' 9 � � : � 	 � $ 9 � � � : � 	�T � $ : ��T P �$ : � � �o��T � ��� $ : � (E.21)

where � 	�T �"��T P � � � ��T � ��� $ � � 0 	 �}? � ��T � � 	 P � ? � ��T P � J � � � 	 � � P � � � � 	�T � ��� $ � .
Proof. From Lemmas 3 and 5, one obtains for � � � M �������u� ������� :

 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ 9 ��� ��T P �$ 9 ��� � � � ~ M ��T � $ 9 ��� � � J ��� ' 9 � � ' 9 � � : � 	 � $ 9 � � �

� � M
� � � �

1 � 0 	 � $ 9 ��� ? � � ~ M ��T � $ 9 ��� � 	 P �$ 9 ��� ? � � ~ M ��T P �$ 9 ��� P ��� 9�� ' 9 	�T � $ 9 ��� �
(E.22)
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Consequently for � � � M ��������� ������� , when one iterates the kernel 
 � ����� times, the

resulting transition kernel denoted 
 x $������ {
satisfies:


 x $ ����� { 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � �� ��T P � �� � O ��T � �� �
� � � � � � � � � 
 x $ 9 { 	 � $ 9 � P �$ 9 � � � � � ��� $ 9 ��T � � ��T P �� � ����T � ��� � �

1 
 x $ ����� � $ 9 { 	 � � � P �� � ��� � ��� � ��T � �� ��T P � �� � O ��T � �� �
� � � � � � � �

� � � � � � 

x $ 9 { 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � � ��T P �� � ����T � ��� � �

1 
 x $ ����� � $ 9 { 	 � � � P �� � ��� � ��� � ��T � �� ��T P � �� � O ��T � �� �
� 
 x $ 9 { 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � � ��T P �� � O ��T � � � 
 x $ ����� � $ 9 { 	 � � � P �� � O � � � ��T � �� ��T P � �� � O ��T � �� �
� J ��� ' 9 � � ' 9 � � : � 	 � $ 9 � � $ 9 ���

�
	 � � �

� � � � � $ 9 � $ ����� � $ 9 ��	�T � �� ��T P � �� � O ��T � �� � (E.23)

where Lemma 4 has been used and
�
� � gih e $ 
�� (
	
	
	X( $������

H
����� ��� � : � 0 	 �}? � ��T � � O . The

conclusion follows with � � : � g h e � � $������ ��g h e $ t � � (
	
	
	 ( $������ � � $ ���
�

	 � � �

� 9 � : � $ � $ ����� � $ � � O
�

Corollary 3 The transition kernel 
 is � -irreducible. As 0 	�T � ��T P � � � ��T � ��� $ ? � ��@ � is an

invariant distribution of 
 and the Markov chain is � -irreducible, then from (Tierney,

1994, Theorem 1*, pp. 1758) the Markov chain is 0 	�T �"��T P � � � ��T � ��� $ ? � ��@A� -irreducible.

Aperiodicity is straightforward. Indeed, there is a non-zero probability of choosing the

update move in the empty configuration from equation (E.12) and to move anywhere in= � 1 � O � 1 � � � � . Therefore the Markov chain admits 0 	�T � ��T P � � � ��T � ��� $ ? � ��@ � as unique

equilibrium distribution (Tierney, 1994, Theorem 1*, pp. 1758).

The drift condition will be proved subsequently.

Proposition 10 Let
� 	 �"� P � � � � � ��� $ � � gij \ � M � � � � for � � O , then:

a h,g� � ��� 
 � 	 �"� P � � � � � ��� $ ��$ � 	 �"� P � � � � � ��� $ � � O (E.24)

where by definition:


 � 	 � � P � � � � � ��� $ � � � � � � � � � � 
 	 �"� P � � � � � ��� $ ��T � � ��T P � � � � � ��T � � ��� $ � � 	 � � � P � � � � � � � � ��� $ �
(E.25)

Proof. The transition kernel of the Markov chain is of the form (some arguments are

removed for convenience):


 � � � $ 9 
�7 & / �,+ B T $ 9 
 � � � �,+ B 6 $ 9 
 � � /� � B �w$ 9 
 	 -
� & � B 	 M ~ � $ 9 ~ T�$ 9 ~ �w$ 9 ~D6 $ 9 " 
 �

- � � � � �
1 0 	 P �$ : ? P �$ 9 � � �o� � ��� $ : � � ��@ � 0 	 � $ : ? � ��� (E.26)
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Now, study the following expression:


 � 	 � $ 9 � P �� � � ��� � ��� $ 9 �
� � $ 9 �$ : t�� $ 9 ( $ 9 ��� � � � ' :
 7 & / �,+ � � � 0 	 P �$ : ? P �$ 9 � � � � � ��� $ : � � ��@ ��T P �$ : � � � 0 	 � $ : ? � � ��� � $ : T � $ :
B T $ 9 �$ : t�� $ 9 ( $ 9 ��� � � � ' :
 � � � �,+ � � � 0 	 P �$ : ? P �$ 9 � � �o� � ��� $ : � � ��@A��T P �$ : � � � 0 	 � $ : ? � ����� � $ : T � $ :
B ��$ 9 �$ : t�� $ 9 ( $ 9 ��� � � � ' :
 	 -

� & � � � � 0 	 P �$ : ? P �$ 9 � � � � � ��� $ : � � ��@ ��T P �$ : � � � 0 	 � $ : ? � � ��� � $ : T � $ :
B 6 $ 9 �$ : t � $ 9 ( $ 9 ��� � � � ' :
 � � /� � ��� � 0 	 P �$ : ? P �$ 9 � � �o� � ��� $ : � � ��@ ��T P �$ : ��� � 0 	 � $ : ? � ����� � $ : T � $ :

B 	 M ~ � $ 9 ~"T $ 9 ~ ��$ 9 ~ 6 $ 9 � � � ' 9
 �
- � � � � � � �0 	 P � �$ 9 ? P �$ 9 � � � � � � ��� $ 9 � � ��@ ��T P �$ 9 � � �0 	 � �$ 9 ? � � ��� � �$ 9 T � �$ 9

� � $ 9 �$ : t�� $ 9 ( $ 9 ��� � � � � 0 	 � $ : ? � ����� � $ : T � $ : B T�$ 9 �$ : t � $ 9 ( $ 9 ��� � � � � 0 	 � $ : ? � ����� � $ : T � $ :
B ��$ 9 �$ : t�� $ 9 ( $ 9 ��� � � � � 0 	 � $ : ? � ����� � $ : T � $ : B 6 $ 9 �$ : t�� $ 9 ( $ 9 ��� � � � � 0 	 � $ : ? � ����� � $ : T � $ :
B 	 M ~ � $ 9 ~ T $ 9 ~ ��$ 9 ~!6 $ 9 � � � � 0 	 � �$ 9 ? � ����� � �$ 9 T � �$ 9

Since 0 	 �}? � � is a Gamma distribution, for any O � � � � ����� , one obtains the inequalityH � � 0 	 �}? � ��� � T � � B � and the result follows immediately �

Proof of Theorem 6

Proof. By construction, the transition kernel 
 	 � $ 9 � P �$ 9 � � ��� � ��� $ 9 ��T � $ : ��T P �$ : � � �o��T � ��� $ : �
admits 0 	�T �"��T P � � � ��T � ��� $ ? � ��@ � as invariant distribution. Proposition 9 proved the � -

irreducibility and the minorisation condition with � � � � ����� and Proposition 10 proved

the drift condition, thus Theorem 6 applies �
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