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Abstract

Semi-Markov decision processes are used to formulate many control
problems and also play a key role in hierarchical reinforcement learning.
In this chapter we show how to translate the decision making problem into
a form that can instead be solved by inference and learning techniques. In
particular, we will establish a formal connection between planning in semi-
Markov decision processes and inference in probabilistic graphical models,
then build on this connection to develop an expectation maximization
(EM) algorithm for policy optimization in these models.

1 Introduction

Researchers in machine learning have long attempted to join the fields of infer-
ence and learning with that of decision making. Influence diagrams, for example,
explicitly cast the decision making process as inference in a graphical model [see
e.g. 4, 20]. However, while these methods are a straight-forward application of
inference techniques they only apply to finite-horizon problems and only learn
non-stationary policies.

For goal-directed decision problems, more general techniques such as that
of Attias [1] exist for finding the maximum a posteriori action sequence. (This
technique was later extended in [27] to compute the maximal probable explana-
tion.) It is crucial to note, however, that these approaches are not optimal in
an expected reward sense. Instead, they can be interpreted as maximizing the
probability of reaching the goal.

While it is well known in the optimal control literature that there exists a
fundamental duality between inference and control for the special case of linear-
quadratic Gaussian models [15], this result does not hold in general. Extending
these ideas to more general models has been attempted by locally approximating
the optimal solution [see e.g. 24, 23].

A key step in realizing general inference-based approaches while still main-
taining optimality with respect to expected rewards was originally addressed by
[6] for immediate reward decision problems. In particular this work proposes
an expectation maximization (EM) approach to the problem which works by
optimizing a lower bound on the expected rewards. This technique was then
greatly formalized by Toussaint et al. [26] who extend it to the infinite-horizon
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case [see also 25]. This line of research has since enjoyed substantial success in
the field of robotics [19, 16, 28], where empirical evidence has indicated that
these methods can often outperform traditional stochastic planning and control
methods as well as more recent policy gradient schemes.

The focus of this chapter is two-fold: to act as an introduction to the “plan-
ning as inference” methodology and to show how to extend these techniques
to semi-Markov Decision Processes (SMDPs). SMDPs are an extension of the
MDP formalism that generalize the notion of time—in particular, by allowing
the time-intervals between state transitions to vary stochastically. This allows
us to handle tradeoffs not only between actions based on their expected rewards,
but also based on the amount of time that each action takes to perform.

SMDPs are interesting problems in their own right, with applications to call
admission control and queueing systems [21, 5]. This formalism also serves as
a natural platform in robotics for building complex motions from sequences of
smaller motion “templates” [18]. Finally, SMDPs are a crucial building block
for hierarchical reinforcement learning methods [10, 22, 9]. While this chapter
serves as an introductory text to the paradigm of inference and learning, and
its application to SMDPs, we hope that future work in this area will leverage
advances in structured inference techniques for hierarchical tasks of this nature.

In Section 2 we will describe the basic mixture of MDPs model that we
build on and in Section 3 will show how to extend this to the SMDP formalism.
Section 4 describes an EM algorithm for solving these problems. Finally, in
Section 5 we apply this approach to a small SMDP example.

2 A mixture of finite-time MDPs

Following the notation of [12] an MDP can be succinctly described via the
following components:

• an initial state model p(x0),
• a state transition model p(xn+1|xn, un),
• an immediate reward model r(xn, un),
• and finally a stochastic policy πθ(un|xn).

In this model, n = 1, 2, . . . is a discrete-time index, {xn} is the state process,
and {un} is the action process. The model further assumes a randomized policy,
but one can also easily adopt a deterministic policy πθ(u|x) = δφθ(x)(u), where
δ denotes the Dirac function and φ is a deterministic mapping from states to
actions. (By this same reasoning we can also encode knowledge of the initial
state using a Dirac mass.) We will assume that the policy-parameters are real-
valued, i.e. θ ∈ Rd.

Having defined the model, our objective is to maximize the expected future
reward with respect to the parameters of the policy θ:

J(θ) = E
[ ∞∑
n=0

γn r(xn, un)
∣∣θ], (1)
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where 0 < γ < 1 is a discount factor. In order to ease notation later we will
also note that for a given θ this model induces a Markov chain over state/action
pairs zn = (xn, un). The transition probabilities for this “extended state space”
can then be written as

pθ(z0) = p(x0)πθ(u0|x0) and

pθ(zn+1|zn) = p(xn+1|xn, un)πθ(un+1|xn+1),

where the joint distribution over any finite k-length sequence of state/action
pairs is defined as

pθ(z0:k|k) = pθ(z0)

k∏
n=1

pθ(zn|zn−1). (2)

Finally, we will also write the rewards as r(z) = r(x, u).
In order to transform the problem into one that is more amenable to inference

methods we will first note that any maximum of (1−γ)J(θ) is also a maximum of
J(θ), as this extra multiplicative term just rescales the expected reward. Now,
by expanding (1) we can write the (rescaled) expected reward as

(1− γ)J(θ) = (1− γ)

∫ [
pθ(z0)

∞∏
n=1

pθ(zn|zn−1)
][ ∞∑

k=0

γk r(zk)
]
dz0:∞

and by exchanging the order of integration and summation we arrive at

=

∫
(1− γ)γ0pθ(z0|k = 0) r(z0) dz0

+

∫
(1− γ)γ1pθ(z0:1|k = 1) r(z1) dz0:1 + . . .

=

∞∑
k=0

∫
(1− γ)γk︸ ︷︷ ︸
time prior

pθ(z0:k|k)︸ ︷︷ ︸
state/action

prior

r(zk) dz0:k.

It is for this reason that the additional factor of (1− γ) was introduced. Under
this formulation the discounting terms can be seen as a geometric distribution
p(k) = (1− γ)γk and the expected reward under this random time-horizon can
be written as

(1− γ)J(θ) = Ek,z0:k
[
r(zk)|θ

]
, (3)

p(k, z0:k) = p(k) p(z0:k|k).

As originally noted by Toussaint et al. [26], we can now view this problem
as an infinite mixture of finite horizon MDPs where rewards only occur at the
end of a chain whose length is given by the random variable k. A diagram of
this interpretation is shown in Figure 1. We must emphasize, however, that
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Figure 1: Illustration of the mixture of finite horizon MDPs described in Sec-
tion 2. Expected rewards are computed by mixing over individual MDPs with
probability p(k) and taking reward rk = r(xk, uk).

we have not changed the model nor the form of the expected rewards, but are
instead departing from the standard interpretation of these types of decision
problems. The classical approach to these problems is to take the expectation of
an infinite-length trajectory and sum over increasingly discounted rewards (i.e.
the rewards are worth less as time passes due to the discount factor). Instead
we are taking the expectation with respect to a finite-length trajectory whose
length is stochastic with probability equal to the discounting associated with
this length. We then evaluate the expected reward only at the end of this chain,
but by taking the expectation with respect to k we are essentially summing over
the rewards at all such trajectory lengths. Note in particular that this is still
an infinite-horizon problem!

This formulation is the basis for many inference and learning approaches to
solving MDPs. In the next sections we will show how to extend this formulation
in the context of SMDPs and will then describe an Expectation-Maximization
(EM) algorithm for optimizing the parameters θ. We will first note, however,
that these techniques are quite general and can be applied in both discrete1 and
continuous state-spaces [26, 12]. As we will briefly see in Section 4.3 these meth-
ods can be applied to situations where the models themselves are unknown and
can only be sampled from [16, 29]. Finally, it is also possible to derive Markov
chain Monte Carlo (MCMC) methods to optimize via sampling in parameter
space. While we will omit discussion of these methods entirely we can point the
interested reader towards [13, 14] for an introduction. This further enables the
solution of planning problems using generic inference algorithms [see 11].

3 An extension to semi-MDPs

Formally we can define an SMDP as a continuous-time controlled stochastic
process z(t) = (x(t), u(t)) consisting, respectively, of states and actions at every
point in time t. In particular we will assume that the system transitions at
random arrival times tn and that the process is stationary in between jumps,

1For discrete models the integrals become sums (i.e. integration with respect to the count-
ing measure).
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Figure 2: Relationship between arrival times tn, sojourn times sn, and the
system state (xn, un).

i.e. x(t) = xn and u(t) = un for all t ∈ [tn, tn+1). Here each of the state/action
pairs evolves according to models defined in Section 2 for MDPs. What makes
this model a semi -MDP is the use of random transition times. In order to
handle this generalization we will introduce random sojourn times sn > 0 which
represent the amount of time spent in the nth state. We will then assume the
following distribution:

• a time model p(sn|xn, un),
• where tn = tn−1 + sn and t0 = 0.

Importantly, the conditional probability for sojourn times does not include the
duration of the previous interval. See Fig. 2 for an illustration of this process.
More generally, we could also allow the sojourn times sn to depend on the next
state xn+1. While the methods we will describe are fully capable of handling this
situation, we will ignore this dependency for notational simplicity. Finally, we
can write the joint probability over sequences of states/action pairs and sojourn
times as

pθ(z0:k, s0:k) = pθ(z0) p(s0|z0)

k∏
n=1

p(sn|zn) pθ(zn|zn−1) (4)

for any choice of horizon k.
Just as in the standard MDP formulation we must also specify a reward

function r(z) = r(x, u) over states and actions. However, unlike in an MDP our
discounting behaves differently in order to take into account the variable time
in each state. In particular, we will discount the reward continuously over our
entire trajectory, which because of the jump-Markov nature of our transitions
will simplify to

J(θ) = E
[∫∞

0
βe−βt r(z(t)) dt

∣∣θ]
= E

[∑∞
n=0 e

−βtn(1− e−βsn) r(zn)
∣∣θ]. (5)
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Here β > 0 is a discount rate which is analogous to the discount factor in an
MDP. In fact, when the sojourn times are deterministically given by sn = 1 we
recover a standard infinite-horizon, discounted MDP with a discount factor of
γ = e−β . Those readers more familiar with continuous-time control problems
may note that in the first line of the expected reward definition we have in-
troduced an additional multiplicative term of β. We do this so that later we
can give the discount factors a more intuitive interpretation as a probability
distribution, and we point out that since this is a multiplicative constant it will
not change the optimal policy parameters of the system.

Based on the intuition developed in Section 2 for MDPs we can interpret the
discount terms in (5) as a distribution over random time horizons k and write
the following joint distribution over paths and path lengths:

pθ(k, z0:k, s0:k) = e−β(s0+···+sk−1)(1− e−βsk) pθ(z0:k, s0:k). (6)

This distribution is not, however, nearly as straightforward as that in the MDP
case. Nor is there the simple division between path-lengths and paths.

Proposition 1. The joint distribution introduced in (6) is properly defined
and normalized, i.e. it integrates to 1.

Proof. In theory we can integrate out each of the infinitely many trajectory
and time variables see that for any k the marginal over path lengths is given
by

pθ(k) = E[e−βs0 ] · · · E[e−βsk−1 ] (1− E[e−βsk ]).

Given this marginal we can consider an infinite sequence of non-identical
Bernoulli trials, where pn = E[e−βsn ] is the probability that the nth trial
fails. Note, we need not compute this quantity in practice.

Due to the restriction that sojourn times are greater than zero we know
that each such quantity lies in the range 0 < pn ≤ 1. With this in mind, we
can then see that pθ(k) is the probability that this sequence of trials has its
first success after k − 1 failures. As a result the marginal distribution over
K can be properly defined as a conjunction of Bernoulli random variables
and thus the full joint (i.e. not integrating over the trajectory and time
variables) must be similarly well defined and integrate to 1.
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Finally, given the joint distribution pθ(k, z0:k, s0:k) we can rewrite our ob-
jective from (5) as the expected final reward under this distribution, i.e.

J(θ) =

∫
pθ(z0:∞, s0:∞)

[∑∞
k=0 e

−βtk(1− e−βsk) r(zk)
]
ds0:∞ dz0:∞

=

∞∑
k=0

∫
pθ(z0:k, s0:k) e−βtk(1− e−βsk) r(zk) ds0:k dz0:k

=

∞∑
k=0

∫
pθ(k, z0:k, s0:k) r(zk) ds0:k dz0:k

= Ek,z0:k
[
r(zk)

∣∣θ]. (7)

Similar to the MDP case we have obtained this result by exchanging the order of
integration and summation and pulling the discount factor into the previously
introduced distribution from (6). In the next section we will take this one step
further and treat the reward terms r(zk) as the likelihood of some “imaginary
event”. We can then use this to develop an EM algorithm for finding the most
likely policy parameters under this “data”.

Finally, as an aside, we should note how the formulations of this section
simplify in the MDP case, and more importantly why these simplifications do not
hold for SMDPs. In particular, for an MDP it is not necessary to reason about
times sn (since these are deterministically set to 1) and the joint distribution
(6) can be factorized as

pθ(k, z0:k) = p(k) pθ(z0:k|k).

Here the conditional distribution is given by (4) and the “time prior” p(k) is
given by a geometric distribution with success probability γ = e−β , i.e. the
constant discount factor. This factorization is what allowed [26] to reformulate
the infinite-horizon MDP problem as a mixture of finite-time MDPs, where the
random variable k acts as an indicator variable. Unfortunately this interpre-
tation does not hold in the case of more general SMDPs. By looking at the
discount factors in (6) we can see that the probability of a specific trajectory
length k is a function of all sojourn times s0:k, and as a result the distribution
over the random variable k depends on an infinite number of sojourn times.
However, while the SMDP formalism does not have as clean of a probabilistic
interpretation as MDPs, we can still apply this model by working directly with
the joint distribution.

4 An EM algorithm for SMDPs

Expectation-Maximization (EM) is an algorithm formulation that is used to
compute maximum likelihood estimates in the presence of unobserved or hidden
variables. In our case, the unobserved variables consist of the trajectory length
k along with the state/action pairs and their corresponding sojourn times, z0:k
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and s0:k respectively. The observed variables for this model are then implicitly
given by the reward function—i.e. we are assuming some imaginary random
variable was observed where the likelihood of this observation conditioned on
our hidden variables is given by r(zk). Note, treating the rewards as likelihoods
does place some restrictions on their allowable forms. While they need not sum
to 1, they must be positive. However, for finite models or models which are
bounded below this is easily obtainable by adding some constant term.

Given this interpretation we can introduce the following quantities which
are necessary for deriving the EM algorithm:

• The complete data likelihood is the likelihood of both our observed and
unobserved data; here given by r(zk) pθ(k, z0:k, s0:k).

• The incomplete data likelihood is the integral of the complete data likeli-
hood with respect to the hidden variables; here given by E[r(zk)|θ].

• Finally, the predictive distribution over the hidden variables is given by
the “posterior” that takes into account both the prior and likelihood, and
is thus the ratio of complete and incomplete likelihoods.

In particular, we will write the predictive distribution using the following nota-
tion:

p̃θ(k, z0:k, s0:k) =
r(zk) pθ(k, z0:k, s0:k)

E[r(zk)|θ]
. (8)

Given these quantities the EM algorithm is an iterative procedure which at
iteration i computes the expected complete data log-likelihood, parameterized
by θ, under the previous iteration’s policy parameters θ(i−1). This quantity,
which we will denote with Q(θ, θ(i−1)), is then optimized with respect to the
policy parameters in order to obtain θ(i). We can summarize this procedure as:

Q(θ, θ(i−1)) = E
[

log{pθ(k, z0:k, s0:k) r(zk)}
∣∣θ(i−1)], (E-step)

θi = arg max
θ
Q(θ, θ(i−1)). (M-step)

This EM procedure is known to locally maximize the incomplete data likeli-
hood [8, 17] and hence will maximize our original objective J(θ).

Before deriving the E-step in more detail we will first take a brief look at the
quantities that are actually needed in order to perform the maximization in the
M-step. We can first let θ′ denote the previous iteration’s parameter estimate
and rewrite the Q-function as

Q(θ, θ′) = E
[

log
{∏k

n=0 πθ(zn)
}∣∣∣θ′]+

E
[

log
{
r(zk) p(x0)

∏k
n=1 p(xn|zn−1)

}∣∣∣θ′]+
E
[

log
{∏k

n=0 p(sn|zn)
}∣∣∣θ′]
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where we have expanded the complete data likelihood and separated those terms
which do and do not depend on θ. Since only the first of these three quantities
depends on θ we can drop the others and expand this expectation:

=

∞∑
k=0

∫ [ k∑
n=0

log πθ(zn)
]
p̃θ′(k, z0:k) dz0:k + const.

=

∞∑
k=0

k∑
n=0

∫
log πθ(zn) p̃θ′(k, zn) dzn + const. (9)

Finally, in order to optimize the Q-function with respect to the policy parame-
ters θ we will also need to evaluate the gradient

∇θQ(θ, θ′) =

∞∑
k=0

k∑
n=0

∫
p̃θ′(k, zn)∇θ log πθ(zn) dzn. (10)

Ultimately, this expansion informs how we will derive the steps required for the
EM algorithm. In the E-step we need to construct the distribution p̃θ′(k, zn) and
in the M-step we will compute the expectation of the gradient ∇ log πθ(zn) un-
der this distribution. We should note that this is the same form of the marginal
distribution that would be computed in the E-step for a standard MDP. We
will see shortly, however, that the computations necessary to compute this dis-
tribution are different due the integration over sojourn-times. In the next two
subsections we will discuss these steps in more detail.

4.1 The E-step

As noted in the previous section, we need to construct the marginals p̃θ(k, zn)
in order to compute the gradient of the expected complete log-likelihood. In
this section, we will derive an efficient method for recursively constructing this
distribution. We start by writing the marginal distribution as the integral of
the predictive distribution with respect to all those terms other than k and zn,

p̃θ(k, zn) =

∫
p̃θ(k, z0:k, s0:k) dz0:n−1 dzn+1:k ds0:k.

This integral can then be broken into those components that come before and
after n respectively, and we can then see that the marginal distribution is pro-
portional to

p̃θ(k, zn) ∝
∫
e−β(s0+···+sn−1) pθ(z0:n, s0:n−1) dz0:n−1 ds0:n−1 × (11)∫
e−β(sn+···+sk−1)(1− e−βsk) r(zk) pθ(zn+1:k, sn:k|zn) dzn+1:k dsn:k.

We should emphasize the fact that we are not integrating over zn, which en-
ables us to break the original integral into two independent integrals. Here we
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have also omitted the constant of proportionality, given by the expected reward
E[r(zk)].

In an analogy to the forward-backward algorithm for hidden Markov mod-
els we will call the two sets of integrals from (11) “forward” and “backward”
messages, denoting them as αθ(zn) and βθ(zn|τ = k − n) respectively2. Using
these messages we can then write the marginal distribution as

p̃θ(k, zn) =
1

E[r(zk)]
αθ(zn)βθ(zn|k − n). (12)

Intuitively the forward messages are integrating information forward in time
from the initial-state distribution where the nth such message is the state/action
distribution at step n weighted by the expected discounting up to step n −
1. Meanwhile, the backward messages are integrating information backward
from the rewards and can be seen as the expected reward at step k given the
state/action pair at step n (weighted by the expected discounting between n
and k). It is crucial to note, however, that these messages are not probability
distributions due to the way the discount factors have been split between the
forward and backward components, namely:

e−β(s0+···+sn−1)︸ ︷︷ ︸
forward

e−β(sn+···+sk−1)(1− e−βsk)︸ ︷︷ ︸
backward

.

This causes no technical (or conceptual) difficulties, though, because when com-
bined in (12) these messages form the desired probability distribution. This is
similar in spirit to techniques used to maintain numerical stability when working
with hidden Markov models [3].

At this point, we can also more fully describe the use of the τ term in
defining the backward messages. The reason behind this notation stems from
the fact that naively computing these messages for each choice of k and n turns
out to involve a great deal of redundant computation. Under the predictive
distribution defined in (8) the reward factors only interact with the end of a
finite-length trajectory. As a result the backward messages depend only on
the difference τ = k − n, i.e. how far in the future the rewards are obtained.
Because of this, we can instead define the backward messages purely in terms of
the “time-to-go”. This notation was originally presented by [26], but here the
messages are generalized to account for the fact that in the semi-Markov setting
the kth reward introduces a factor over the state and action zn and duration sn
at every epoch n prior to k.

Finally, by integrating the components of the first integral in (11) succes-

2The notation here is slightly confusing in that we have a term β denoting the continuous
discount factor and βθ(·|τ) denoting the backward messages. This confusion, however, seems
unavoidable as both of these terms are unanimously used in their respective literatures. To
somewhat alleviate this confusion we note that the backward messages are always subscripted.
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sively we can recursively define the forward messages as

αθ(z0) = µ(x0)πθ(u0|x0),

αθ(zn) =

∫
αθ(zn−1) pθ(zn|zn−1) dzn−1 ×

∫
e−βsn−1 pθ(sn−1|zn−1) dsn−1.

(13)

Here we can see that we have the standard MDP forward message recursion
multiplied by an additional integral due to the sojourn times. Similarly, we can
recursively define the backwards messages as

βθ(zn|0) = r(zn)

∫
(1− e−βsn) pθ(sn|zn) dsn,

βθ(zn|τ) =

∫
βθ(zn+1|τ − 1) pθ(zn+1|zn) dzn+1 ×

∫
e−βsn pθ(sn|zn) dsn. (14)

Again we can see that these messages can be seen as two integrals, one corre-
sponding to the standard MDP message and a sojourn time message. Given
the format of these two messages we can further introduce what we call an
“expected discount factor”

γ(z) =

∫
e−βs T (s|z) ds (15)

which corresponds to the integral over sojourn times noted above. We can
consider this term as a generalization of the MDP formalism wherein discount
factors are no longer constant and instead depend on the current state and the
action taken from that state. Further, we can see that for any exponential-family
distribution this integral will exist in closed form.

4.2 The M-step

The M-step requires us to maximize the Q-function with respect to the policy
parameters θ. If possible we can analytically maximize this function by solving
for the fixed point of ∇θQ(θ, θ′) = 0. If this is not possible we can still evalu-
ate the gradient at the current set of policy parameters ∇θQ(θ′, θ′) and follow
the resulting ascent direction, resulting in a generalized EM algorithm (GEM).
When this procedure is iterated, both of these methods are known to locally
maximize the incomplete data likelihood [8, 17].

While EM methods are, in general, only able to guarantee local convergence
it can be shown via its relation to policy iteration that these methods exhibit
global convergence for discrete models when using exact/analytic inference (see
[25] for more details). In more general continuous settings no such guarantees
can be made, however as noted by [12] a sufficiently exploratory initial policy
does seem to have a tempering effect. This is especially true if the exact EM
updates can be used, as additional exploratory noise does not cause the dra-
matic increase in variance associated with sample-based methods (such as policy
gradients).
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4.3 Monte Carlo EM

It is also possible to perform a Monte Carlo approximation during the E-step
in order to optimize these problems when either the necessary distributions
are unknown or the updates cannot be computed in closed form. As is de-
rived for MDPs in [16, 29], we can sample from the initial-state and transition
distributions in order to approximate the Q-function. Given M trajectories

{z(i)0:k, s
(i)
0:k}i≤M sampled from pθ′(z0:k, s0:k) we can approximate the joint distri-

bution for any n < k with

p̃θ′(k, zn) ≈ 1

MA

M∑
i=1

[
e−βt

(i)
k

(
1− e−βs

(i)
k

)]
r(z

(i)
k ) δ

z
(i)
n

(zn),

where A is a proportionality constant, given by E[r(zk)] as noted earlier. If we
assume some maximum time-horizon Kmax we can approximate the Q-function
as

Q(θ, θ′) ≈
M∑
i=1

Kmax∑
k=0

k∑
n=0

[
e−βt

(i)
k

(
1− e−βs

(i)
k

)]
r(z

(i)
k ) log πθ(z

(i)
n )

=

M∑
i=1

Kmax∑
n=0

log πθ(z
(i)
n )

Kmax∑
k=n

[
e−βt

(i)
k

(
1− e−βs

(i)
k

)]
r(z

(i)
k ).

This function can then be optimized using the same techniques as in the stan-
dard M-step.

5 Discrete models with Gamma-distributed time

As an illustrative experiment we will consider a simple model where the states
and actions are discrete and sojourn times are given by a Gamma distribution.
While simple, this model nonetheless presents an interesting scenario for plan-
ning and control domains because it can naturally be extended to cases when
we want to reason about more complex distributions over the time to complete
an action. In our experiments, we define the discrete transition, initial-state,
and reward models according to

µx = p(x0 = x),

Pxux′ = p(xn+1 = x′|xn = x, un = u), and

Rxu = r(x, u)

where the sojourn times are Gamma-distributed according to

p(sn|xn = x, un = u) = Γ(sn; kxu, σxu).

Finally, we will assume a discrete policy where θxu = πθ(u|x).
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Under this formulation the forward and backward messages will be repre-
sentable as matrices, and by dropping the θ index we will let αnxu and βτxu
denote the n-step forward message and τ -step backward messages respectively.
By plugging initial state, transition, and reward matrices into (13) and (14) we
can explicitly write these messages as

αnxu = θxu
∑
x′,u′

αn−1x′u′ Px′u′x γx′u′ , α0
xu = θxu µx; (16)

βτxu = γxu
∑
x′,u′

βτ−1x′u′ Pxux′ θx′u′ , β0
xu = Rxu(1− γxu). (17)

To make notation easier we will also introduce a forward message defined only
over states, αx =

∑
u αxu. In this setting the expected discount factor noted

earlier can be written as the matrix

γxu =

∫
Γ(s; kxu, σxu) e−βs ds

=

∫
skxu−1

exp
(
− (β + σ−1xu ) s

)
Γ(kxu) σkxuxu

ds = (1 + βσxu)−kxu .

This particular form arises purely from the use of Gamma-distributed sojourn
times, and in fact we can imagine extending this to continuous spaces using
functions k(x, u) and σ(x, u).

At every iteration, for a given set of parameters θ′, the E-step consists of
calculating the forward and backward messages given by Equations (16,17). By
plugging these terms into the Q-function defined in (9) we can write

Q(θ, θ′) =
1

E[r(zk)]

∞∑
k=0

k∑
n=0

∑
u,x

(log θxu) θ′xu α
n
x β

k−n
xu

=
1

E[r(zk)]

∑
u,x

(log θxu) θ′xu

[ ∞∑
n=0

αnx

][ ∞∑
τ=0

βτxu

]
,

where the second equality can be obtained by rearranging the sums over k and
n. This alternate formulation is particularly useful in discrete models where
the sum over forward and backward messages can expressed as finite quantities,
i.e. a vector and a matrix respectively. Further, given this formulation we can
optimize theQ-function for each state x individually, which is possible because in
discrete domains we can find the optimal action to take for each state regardless
of the probability of visiting that state. By taking the gradient of the log-policy
∇ log πθ(u|x) = θ−1xu and solving ∇Q(θ, θ′) = 0 for θ, subject to the constraint
that

∑
u θxu = 1 for each x, we arrive at the following solution methods:

θxu ∝ θ′xu
∞∑
τ=0

βτxu, (EM)

θxu = δm(x)(u) where m(x) = arg max
u′

∑∞
τ=0β

τ
xu′ . (greedy-EM)
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Here the EM solution is performing exactly the optimization described above,
while the greedy-EM solution, however, myopically chooses for each state x
the one action u that maximizes the total future rewards when taken from
that state. In particular, the greedy solution can be seen as iterations which
correspond to repeated M-steps which skip intermediate E-steps as is shown by
[25], and in this sense this method is equivalent (again only for discrete models)
to policy iteration. In larger discrete models, however, the EM approach has the
advantage over policy iteration in that it is possible to prune computation (by
using the forward messages α) in a principled manner; see [25] for more details.

We first test these algorithms on a small, 16-state, 5-action domain with
randomly generated transition and sojourn parameters, as well as a randomly
generated reward model. The principal challenge of this domain, over other
discrete domains, is to take advantage of the structure in the sojourn time
distribution. The top-left plot of Figure 3 displays convergence properties of
the described algorithms as well as a comparison to a standard policy-gradient
method; see e.g. [2]. In particular we should note that the resulting model was
densely connected which allows for quick travel across the space, and explains
the very good performance of the stochastic policy gradient algorithm. Also
shown for policy gradients are error-bars corresponding to one standard devia-
tion. The other methods don’t need error bars because they are deterministic.

Building upon these results, the top-right plot shows the algorithms learn-
ing in a more structured environment. In particular the model used has grid-
structured transitions on a small 4-by-4 grid. This model is especially interesting
because we specify different Gamma-distributions for the inner nodes than the
outer nodes such that the inner nodes move much more slowly. Also, we use
a sparse reward model where most states have negligible reward and one state
has high reward. The most important thing to note from this sub-figure is that
the policy gradient method starts to break down under this sparse transition
and reward model, even though the size of the state and action spaces are the
same as in the previous example.

Lastly the bottom-left plot of this figure displays the progress of these al-
gorithms on a much larger 20-by-20 grid, i.e. one in which there are 2000
state/action pairs. Similar to the previous example there is a single (relatively)
large reward in the upper right corner of the grid and inner nodes with much
slower sojourn times. Here we see that the EM algorithms vastly out-perform
the policy gradient method and the learned policy successfully skirts the outside
edge of the state-space in order to most quickly get to the high reward. Here
the policy gradient method has relatively low-variance because it is not able to
make any progress (i.e. it is stuck exploring a plateau with very little gradient
information).

6 Conclusions

In this chapter, we have shown how it is possible to design effective planning
algorithms in continuous-time domains by framing the policy optimization prob-
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Figure 3: Results on various discrete models. The top-left plot shows conver-
gence of the described algorithms on a randomly generated, dense model; the
top-right plot shows performance on a model of the same size but with grid-like
transitions and more structured transition times. The bottom-left plot shows
performance on a larger grid domain. The bottom-right shows the learned pol-
icy in the larger domain. For both grid domains there is a single large reward
(denoted with a dot) and transitions taken outside of the edge states (denoted
with grey) have a larger expected sojourn time.
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lem in an SMDP as one of inference in a related probabilistic graphical model.
The connection between the reinforcement learning and probabilistic inference
domains allows us to exploit existing developments in exact and approximate in-
ference, and will perhaps provide us with leverage for tackling pressing problems
in hierarchical reinforcement learning.

Of particular interest are inference approaches which attempt to exploit
the structure of the underlying models. Preliminary work on applying such
techniques to control problems includes the pruning steps of [25]. As evidenced
by the small example in this chapter as well as larger continuous models in [12]
we can see large performance gains by using exact inference methods. Another
promising area of research would be the combination of these ideas with sample-
based methods such as [16], perhaps via Rao-Blackwellization [7].
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