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Abstract

A recently proposed formulation of the
stochastic planning and control problem as
one of parameter estimation for suitable ar-
tificial statistical models has led to the adop-
tion of inference algorithms for this no-
toriously hard problem. At the algorith-
mic level, the focus has been on developing
Expectation-Maximization (EM) algorithms.
For example, Toussaint et al (2006) uses EM
with optimal smoothing in the E step to
solve finite state-space Markov Decision Pro-
cesses. In this paper, we extend this EM ap-
proach in two directions. First, we derive a
non-trivial EM algorithm for linear Gaussian
models where the reward function is repre-
sented by a mixture of Gaussians, as opposed
to the less flexible classical single quadratic
function. Second, in order to treat arbitrary
continuous state-space models, we present an
EM algorithm with particle smoothing. How-
ever, by making the crucial observation that
the stochastic control problem can be reinter-
preted as one of trans-dimensional inference,
we are able to propose a novel reversible jump
Markov chain Monte Carlo (MCMC) algo-
rithm that is more efficient than its smooth-
ing counterparts. Moreover, this observation
also enables us to design an alternative full
Bayesian approach for policy search, which
can be implemented using a single MCMC
run.

1 Introduction

Continuous state-space Markov Decision Processes
(MDPs) are notoriously difficult to solve. Except for a
few rare cases, including linear Gaussian models with
quadratic cost, there is no closed-form solution and

approximations are required [3]. A large number of
methods have been proposed in the literature relying
on value function approximation and policy search; in-
cluding [2, 9, 12, 15, 16]. In this paper, we follow the
policy learning approach because of its promise and re-
markable success in complex domains; see for example
[13, 14]. Our work is strongly motivated by a recent
formulation of stochastic planning and control prob-
lems as inference problems. This line of work appears
to have been initiated in [4], where the authors used
EM as an alternative to standard stochastic gradient
algorithms to maximize an expected cost. In [1], a
planning problem under uncertainty was solved using
a Viterbi algorithm. This was later extended in [19].
In these works, the number of time steps to reach the
goal was fixed and the plans were not optimal in ex-
pected reward. An important step toward surmount-
ing these limitations was taken in [17, 18]. In these
works, the standard discounted reward control prob-
lem was expressed in terms of an infinite mixture of
MDPs. To make the problem tractable, the authors
proposed using the estimated posterior horizon time
to truncate the mixture.

Here, we make the observation that, in the probabilis-
tic approach to stochastic control, the objective func-
tion can be written as the expectation of a positive
function with respect to a trans-dimensional probabil-
ity distribution, i.e. a probability distribution defined
on an union of subspaces of different dimensions. By
reinterpreting this function as a (artificial) marginal
likelihood, it is easy to see that it can also be max-
imized using an EM-type algorithm in the spirit of
[4]. However, the observation that we are dealing with
a trans-dimensional distribution enables us to go be-
yond EM. We believe it creates many opportunities for
exploiting a large body of sophisticated inference algo-
rithms in the decision-making context. In this paper,
we make three contributions in this research direction.

First we extend the approach initiated in [17] and
present a closed-form derivation of the EM algorithm



for policy optimization in linear Gaussian models with
a flexible model of the reward (a mixture of Gaus-
sians). We believe this is an important step as it elim-
inates the need for quadratic cost functions in one of
the most popular control algorithms in academia and
industry: Linear Quadratic Gaussian (LQG) control.

Second, to attack general state-space models, we
present two Monte Carlo implementations of the EM
algorithm. The first method involves a Sequen-
tial Monte Carlo (SMC) implementation of optimal
smoothing [8]. However, this method is computation-
ally intensive and relies on a truncation of the time
domain, as in [17]. Consequently, we propose an alter-
native trans-dimensional MCMC scheme to implement
the E-step of the EM algorithm, which bypasses par-
tially such problems.

Third, we propose a full Bayesian policy search alter-
native to the EM algorithm. In this approach, we set
a prior distribution on the set of policy parameters
and derive an artificial posterior distribution which
is proportional to the prior times the expected re-
turn. In the simpler context of myopic Bayesian ex-
perimental design, a similar method was developed in
[10] and applied successfully to high-dimensional prob-
lems [11]. Our method can be interpreted as a trans-
dimensional extension of [10]. We sample from the
resulting artificial posterior distribution using a single
trans-dimensional MCMC algorithm, which only in-
volves a simple modification of the MCMC algorithm
developed to implement the EM.

Although, the Bayesian policy search approach can
benefit from gradient information, it does not require
gradients. Moreover, since the target is proportional
to the expected reward, the simulation is guided to
areas of high reward automatically. This property re-
sults in an immediate reduction in variance in policy
search.

2 Markov Decision Processes

2.1 Model

Let n = 1, 2, . . . be a discrete-time index. Consider the
following model defined by X1 ∼ µ,

Xn| (Xn−1 = x, An−1 = a) ∼ fa ( ·|x) ,
Rn| (Xn = x, An = a) ∼ ga ( ·|x) ,
An| (Xn = x, θ) ∼ πθ ( ·|x) ,

where {Xn} is the X−valued state process, {An} is
the A−valued action process, {Rn} is a positive real-
valued reward process, fa the transition density, ga the
reward density and πθ the randomized policy. If we
have a deterministic policy then πθ (a|x) = δϕθ(x) (a)

and fa ( ·|x) (resp. ga ( ·|x)) becomes fθ ( ·|x) (resp.
gθ ( ·|x)).

We are here interested in maximizing with respect to
the parameters of the policy θ the expected future re-
turn

V π
µ (θ) = E

[
∞∑

n=1

γnRn

]

where 0 < γ < 1 is a discount factor.

Let us introduce the trans-dimensional probability dis-

tribution on
⊎

{k} × X k ×Ak × R
+ given by

pθ (k, x1:k, a1:k, rk) = (1 − γ)
−1

γkµ (x1)×

gak
(rk|xk)

k∏

n=2

fan−1 (xn|xn−1)

k∏

n=1

πθ (an|xn)

(1)
then we can rewrite V π

µ (θ) as

V π
µ (θ) = (1 − γ)Epθ

[RK ] (2)

for a randomized policy. For a deterministic policy, the
representation (2) also holds for the trans-dimensional

probability distribution defined on
⊎

{k} × X k × R
+

given by

pθ (k, x1:k, rk) = (1 − γ)
−1

γkµ (x1)×

gθ (rk|xk)
k∏

n=2

fθ (xn|xn−1) .
(3)

2.2 Policy Optimization via the EM

The representation (2) was used in [5] to compute the
value function through MCMC for a fixed θ. In [17],
this representation is exploited to maximize V π

µ (θ) us-
ing the EM algorithm which, applied to this problem,
proceeds as follows at iteration i

θi = arg max
θ∈Θ

Q (θi−1, θ)

where

Q (θi−1, θ) = Eepθi−1
[log (RK .pθ (K, X1:K , A1:K , RK))] ,

p̃θ (k, x1:k, a1:k−1, rk) =
rkpθ (k, x1:k, a1:k, rk)

Epθ
[RK ]

.

We can rewrite Q (θi−1, θ) as

Q (θi−1, θ) ≡ Eepθi−1

[∑K

n=1 log πθ (An|Xn)
]

=
∑

∞

n=1

∫
log πθ (an|xn) .p̃θi−1 (k ≥ n, xn, an) dxn

where ‘≡’ means equal up to an additive constant in-
dependent of θ.



For a deterministic policy, we introduce

p̃θ (k, x1:k, rk) =
rkpθ (k, x1:k, rk)

Epθ
[RK ]

and Q (θi−1, θ) := Eepθi−1
[log (RK .pθ (K, X1:K , RK))]

is given by

Q (θi−1, θ) ≡ Eepθi−1
[log gθ (RK |Xk)+

+
∑K

n=1 log fθ (Xn|Xn−1)
]

=
∑

∞

n=1

(∫
log gθ (rn|xn) .p̃θi−1 (n, xn, rn) dxndrn

+
∫

log fθ (xn|xn−1) .p̃θi−1 (k ≥ n, xn−1:n) dxn−1:n

)
.

(4)
where fθ (x1|x0) = µ (x1).

For simplicity, we restrict the presentation to deter-
ministic policies and reward functions gθ (rn|xn) =
δr(xn) (rn) ; the extension of our algorithms to the ran-
domized case is straightforward. With this restriction
in mind, we need to be able to compute distributions
of the form p̃θ (k, xn−1:n) to implement the EM where

p̃θ (k, xn−1:n) = p̃θ (xn−1:n|k) p̃θ (k)

with

p̃θ (xn−1:n|k) ∝
∫

pθ (x1:k) r (xk) dx1:n−2dxn+1:k,
p̃θ (k) ∝

∫
pθ (x1:k) r (xk) dx1:k.

3 EM for Continuous State-Space

Models

In this section we present three Monte-Carlo EM algo-
rithms for stochastic control and planning. The first
two algorithms are based on a smoothing procedure
outlined in Section 3.1. The third one, presented in
Section 3.4, is relies on direct sampling from a trans-
dimensional distribution in the E-step. As we shall see,
this algorithm is not only cheaper when dealing with
Monte Carlo state spaces, but also avoids the need for
truncation in the time domain.

3.1 Forward-Backward Recursion

We restrict k to the finite interval {1, ..., kmax}. To
compute p̃θ (xn−1:n| k) and p̃θ (k), we can use the fol-
lowing forward-backward algorithm. The derivation is
standard if we think of p̃θ (x1:k| k) as a posterior distri-
bution arising from the prior distribution pθ (x1:k) and
the likelihood r (xk) whereas p̃θ (k) can be thought of
as a marginal likelihood.

Forward recursion

• Set α1 (x1) = µ (x1) .

• For k = 2, ..., kmax

• αk (xk) =
∫

αk−1 (xk−1) fθ (xk|xk−1) dxk−1.

Backward recursion

• Set βkmax (xkmax) = r (xkmax) .

• For k = kmax − 1, ..., 1

• βk (xk) =
∫

βk+1 (xk+1) fθ (xk+1|xk) dxk.

We have p̃θ (k) =
∫

αk (xk) r (xk) dxk and we can com-
pute p̃θ (xn−1:n| k) for any n ≤ k and k ∈ {1, ..., kmax}
using

p̃θ (xn−1:n| k) ∝ αn−1 (xn−1) fθ (xn|xn−1) (5)

× βkmax+n−k (xn) .

3.2 Forward-Backward for Linear Gaussian

Models with Mixture of Gaussians

Reward

There are very few cases for which it is possible to com-
pute the forward and backward recursion in closed-
form. While improving upon the work initiated in
[18], we address in this section the important class of
linear Gaussian models where µ (x1) = N (x1; µ1, Σ1),
fθ (xn|xn−1) = N (xn; Fθxn−1 + mθ, Σθ) when the re-
ward is modelled by a sum of P Gaussian distributions,
i.e.

r (x) =

P∑

i=1

πiN (yi; Mix, Li) ,

where πi > 0, yi, Mi and Li are fixed parameters.
Note that the model for r (x) is quite flexible and al-
lows essentially to model any bounded reward func-
tion on X . In this case, we show how it is possible to
perform the forward-backward calculations in closed-
form. The backward recursion relies on the following
parametrization of the backward message

βk (xk) =

P∑

i=1

πip̃
i
θ (yi|k, xn) (6)

where p̃i
θ (yi| k, xk) = N (yi; Mixk, Li),

p̃i
θ (yi| k, xn) =

∫
p̃i

θ (yi| k, xk)

k∏

j=n

fθ (xn|xn−1) dxn+1:k,

which is parametrized as follows

−2 log p̃i
θ (yi| k, xn) ≡ ci

k,n+xT
nΩi

k,nxn−2xT
nµi

k,n. (7)

Note that p̃i
θ (yi| k, xn) is not a Gaussian dis-

tribution for the argument xn as it can satisfy∫
p̃i

θ (yi| k, xn) dxn = ∞. The forward recursion is
straightforward whereas the backward recursion relies
on tedious calculations, which are omitted here in the
interest of space. The algorithm proceeds as follows.



Forward recursion

• For k = 2, ..., kmax

• mk = Fθmk−1 + mθ.

• Σk = FθΣk−1F
T
θ + Σθ.

Backward recursion

• For i = 1, ..., P

• Set ci
kmax

= log (|Li|) + yT
i L−1

i yi,

Ωi
kmax

= MT
i L−1

i Mi, µi
kmax

= MiL
−1
i yi.

• For k = kmax − 1, ..., 1

• Σ̃−1
k = Ωi

k+1 + Σ−1
θ .

• ci
k = ci

k+1 + log (|Σθ|) + log
(∣∣∣Σ̃−1

k

∣∣∣
)
−

(
µi

k+1 + Σ−1
θ mθ

)T
Σ−1

k

(
µi

k+1 + Σ−1
θ mθ

)
+mT

θ Σ−1
θ mθ.

• µi
k = FT

θ Σ−1
θ

(
Σ̃kµi

k+1 + mθ

)
.

• Ωi
k = FT

θ

(
Σ−1

θ − Σ−1
θ Σ̃kΣ−1

θ

)
Fθ.

Based on αk (xk) = N (xk; mk, Σk) and βk (xk) given
by (6), it is straightforward to compute the joint dis-
tributions p̃θ (xn−1:n| k) using (5) for any n ≤ k and
k ∈ {1, ..., kmax}. These distributions are a mixture
of P Gaussians. It is also straightforward to compute
p̃θ (k) . Note that this procedure can be extended to the
case where we have a partially observed linear Gaus-
sian model. In this case, the forward recursion is a
Kalman filter and the backward recursion is computed
using P generalized backward information filters; the
generalization is coming from the fact that we need
here to compute not only Ωi

k,n and µi
k,n but also ci

k,n.

3.3 Forward-Backward Recursion using SMC

For a general non-linear non-Gaussian model, it is im-
possible to compute in closed-form the forward and
backward messages {αk (xk) , βk (xk)}kmax

k=1 . A flexi-
ble approximation consists of relying on Monte Carlo
methods. The first approximation consists of using
the following algorithm which approximates the se-
quences of distributions {pθ (x1:k)} and {p̃θ (x1:k| k)}
for k = 1, ..., kmax.

• Sample X
(i)
1 ∼ µ1 for i = 1, ..., N, p̂θ (x1) =

1
N

∑N
i=1 δ

X
(i)
1

(x1) , W
(i)
1 ∝ r

(
x

(i)
1

)
and ̂̃pθ (x1| 1) =

∑N
i=1 W

(i)
1 δ

x
(i)
1

(x1).

• For k = 2, ..., kmax

• Sample X
(i)
k

∣∣∣x(i)
k−1 ∼ fθ

(
·|x

(i)
k−1

)
, p̂θ (x1:k) =

1
N

∑N
i=1 δ

x
(i)
1:k

(x1:k) , W
(i)
k ∝ r

(
x

(i)
k

)
, ̂̃pθ (x1:k|k) =

∑N
i=1 W

(i)
k δ

x
(i)
1:k

(x1:k) .

We also obtained an estimate of p̃θ (k) by comput-

ing the sample average of r
(
x

(i)
k

)
. Although this al-

gorithm is straightforward to implement, it can only
work well if kmax is moderate, e.g. if the discount fac-
tor is close to zero. Indeed the discrepancy between
the distributions pθ (x1:k) and p̃θ (x1:k| k) can be quite
large if the reward r (xk) is concentrated in regions of
low probability masses of pθ (xk) and in this case the
importance sampling estimate of p̃θ (x1:k| k) is poor
as the unnormalized importance weights have a large
variance.

We propose here an SMC implementation of the for-
ward backward recursion to limit this problem. The
forward recursion is essentially similar to the one de-
scribed above except that we only limit ourselves to
the approximation of the marginals pθ (xk) = αk (xk).
To approximate the backward messages {βk (xk)}, we
underline that it is not possible to use standard SMC
algorithms (or even standard methods such as the Ex-
tended or the Unscented Kalman filter) as βk (xk) is
not a probability distribution in argument xk. More-
over, although it can seem intuitive to define a reverse
dynamics to compute such messages using the inverse
of the dynamic equation (i.e. if Xn = ϕ (Xn−1, Vn)
then use Xn−1 = ϕ−1 (Xn, Vn)), this common choice
in the literature is flawed and leads to erroneous re-
sults; see [8] for a discussion of these problems. To
implement a valid backward recursion, we can how-
ever introduce a sequence of artificial prior distri-
butions {ηn (xn)} and approximate the distributions
̺k (xn) ∝ ηn (xn)βk (xn) using the following algo-
rithm; see [8] for details.

• For k = 1, ..., kmax

• Sample X
(i)
k,k ∼ ηk for i = 1, ..., N and set η̂k (xk) =

1
N

∑N

i=1 δ
x
(i)
k,k

(xk) .

• Resample N times from
∑N

i=1 W
(i)
k,kδ

x
(i)
k,k

(xk) where

W
(i)
k,k ∝ r

(
x

(i)
k,k

)
to obtain N samples also denoted

{
x

(i)
k,k

}

• For n = k − 1, ..., 2

• Sample X
(i)
n,k

∣∣∣x(i)
n+1,k ∼ qθ

(
·|x

(i)
n+1,k

)
.

• Resample N times from
∑N

i=1 W
(i)
n,kδ

x
(i)
n,k

(xn)



where W
(i)
n,k ∝

ηn

“
x
(i)
n,k

”
fθ

“
x
(i)
n+1,k

˛̨
˛x(i)

n,k

”

ηn+1

“
x
(i)
n+1,k

”
qθ

“
x
(i)
n,k

˛̨
˛x(i)

n+1,k

” to obtain

N samples also denoted
{
x

(i)
n,k

}
.

The empirical measure of the samples
{
x

(i)
n,k

}
is an

approximation of ̺k (xn). Using the following identity
which is a generalization of (5)

p̃θ (xn−1:n| k) ∝
αn−1 (xn−1) fθ (xn|xn−1) ̺k (xn)

ηn (xn)
,

it is possible to combine the SMC approximations of
̺k (xn) and ηn (xn) to compute p̃θ (xn−1:n| k).

This method performs significantly better than the
naive method discussed at the beginning of this subsec-
tion but is computationally very intensive as it requires
computing kmax backward recursions instead of one.
That is, it is equivalent to running the backward recur-
sion for kmax (kmax + 1) /2 time steps instead of kmax

time steps. It would be possible to use ηn = η to by-
pass this problem but this choice is typically extremely
inefficient as we need to select ηn (xn) as close as pos-
sible to the optimal choice αn (xn). Moreover, this
approach is computationally inefficient in the sense
that it does not focus the computational efforts at the
time instants k which have an high probability mass
p̃θ (k). Assume for example that most of the mass of
this distribution is located in the interval {45, 55} and
kmax = 100. Then the previous algorithm spends ap-
proximately 90% of the computational resources com-
puting terms which have a very small contribution to
Q (θi−1, θ). This problem suggests the need for devel-
oping an alternative approach.

3.4 Trans-Dimensional Markov chain Monte

Carlo

A simpler Monte Carlo approach to approximate nu-
merically Q (θi−1, θ) given by (4) would consist of ob-
taining directly samples from the trans-dimensional
distribution p̃θ (k, x1:k). The main advantage of this
approach compared to the forward backward is that
we would obtain samples which concentrate themselves
automatically in regions where p̃θ (k) has high prob-
ability masses. Moreover, contrary to previous ap-
proaches, it is no longer necessary to truncate the
time domain. It is impossible to sample directly from
this distribution but we can use the class of trans-
dimensional MCMC algorithms pioneered by the Re-
versible Jump MCMC (RJMCMC) method of [6, 7] to
achieve this.

We present here a simple RJMCMC methods com-
posed of two reversible moves (birth and death) and
several update moves. Assume the current state of

the Markov chain targeting p̃θ (k, x1:k) is (k, x1:k).
With probability bk, we propose a birth move; that
is we sample a location uniformly in the interval
{1, ..., k + 1}, i.e. J ∼ U {1, ..., k + 1}, and propose
the candidate (k + 1, x1:j−1, x

∗, xj+1:k) where X∗ ∼
qθ ( ·|xj−1:j+1). This candidate is accepted with prob-
ability Abirth = min{1, αbirth} where we have for
j ∈ {2, ..., k − 1}

αbirth =
p̃θ (k + 1, x1:j−1, x

∗, xj+1:k) dk+1

p̃θ (k, x1:k) bkqθ (x∗|xj−1:j+1)

=
γfθ (x∗|xj−1) fθ (xj+1|x∗) dk+1

fθ (xj |xj−1) bkqθ (x∗|xj−1:j+1)
,

for j = 1

αbirth =
γµ (x∗) fθ (x1|x∗) dk+1

µ (x1) bkqθ (x∗|x1:2)

and j = k + 1

αbirth =
γr (x∗) fθ (x∗|xk) dk+1

r (xk) bkqθ (x∗|xk−1:k)
.

With probability dk, we propose a death move; that
is J ∼ U {1, ..., k} and we propose the candidate
(k − 1, x1:j−1, xj+1:k) which is accepted with probabil-
ity Adeath = min{1, αdeath} where for j ∈ {2, ..., k − 1}

αdeath =
p̃θ (k − 1, x1:j−1, xj+1:k) bk+1qθ (xj |xj−1:j+1)

p̃θ (k, x1:k) dk

=
fθ (xj+1|xj−1) bk+1qθ (xj |xj−1:j+1)

γfθ (xj+1|xj) fθ (xj |xj−1) dk

,

for j = 1

αbirth =
µ (x2) qθ (x1|x1:2) bk+1

γµ (x1) fθ (x2|x1) dk

and for j = k

αbirth =
r (xk−1) qθ (xk|xk−2:k−1) bk+1

γr (xk) fθ (xk|xk−1) dk

.

Finally with probability uk = 1 − bk − dk, we pro-
pose a standard (fixed dimensional) move where we
update all or a subset of the components x1:k using
say Metropolis-Hastings or Gibbs moves. There are
many design possibilities for these moves. In gen-
eral, one should block some of the variables so as
to improve the mixing time of the Markov chain. If
one adopts a simple one-at-a time Metropolis-Hastings
scheme with proposals qθ (x∗|xj−1:j+1) to update the
j-th term, then the candidate is accepted with proba-
bility Aupd = min{1, αupd} where for j ∈ {2, ..., k − 1}

αupd =
p̃θ (k, x1:j−1, x

∗, xj+1:k) qθ (xj |xj−1, x
∗, xj+1)

p̃θ (k, x1:k) qθ (x∗|xj−1:j+1)

=
fθ (x∗|xj−1) fθ (xj+1|x∗) qθ (xj |xj−1, x

∗, xj+1)

fθ (xj |xj−1) fθ (xj+1|xj) qθ (x∗|xj−1:j+1)
,



for j = 1

αupd =
µ (x∗) fθ (x2|x∗) qθ (x1|x∗, x2)

µ (x1) fθ (x2|x1) qθ (x∗|x1:2)

and for j = k

αupd =
r (x∗) fθ (x∗|xk−1) qθ (xk|x

∗, xk−1)

r (xk) fθ (xk|xk−1) qθ (x∗|xk−1:k)
.

Under weak assumptions on the model, the Markov

chain
{
K(i), X

(i)
1:K

}
generated by this transition ker-

nel will be irreducible and aperiodic and hence will
generate asymptotically samples from the target dis-
tribution p̃θ (k, x1:k).

We emphasize that the structure of the distributions
p̃θ (x1:k| k) will not in many applications vary signif-
icantly with k and we will often have p̃θ (x1:k| k) ≈
p̃θ (x1:k| k + 1). Hence the probability of having the
reversible moves accepted will be reasonable. Stan-
dard Bayesian applications of RJMCMC usually do
not enjoy this property and it makes it more difficult
to design fast mixing algorithms. In this respect, our
problem is easier.

4 Bayesian Policy Exploration

The previous algorithm provides a point estimate of θ.
As the algorithm is based on the EM and its Monte
Carlo variants, we are not guaranteed to find the global
optimum of the expected return. The algorithm like
any other EM algorithm is sensitive to initialization
and might get trapped in a severe local maximum.

We propose an alternative full Bayesian approach. In
the simpler context of experimental design, this ap-
proach was successfully developed in [10], [11]. The
idea consists of introducing a vague prior distribution
p (θ) on the parameters of the policy θ. We then de-
fine the new artificial probability distribution defined

on Θ ×
⊎

{k} × X k × R
+X by

p (θ, k, x1:k) ∝ r (xk) pθ (k, x1:k) p (θ) .

By construction, this target distribution admits the
following marginal in θ

p (θ) ∝ V π
µ (θ) p (θ)

and we can select an improper prior distribution
p (θ) ∝ 1 if

∫
Θ

V π
µ (θ) dθ < ∞.

If we could sample from p (θ), then the generated
samples

{
θ(i)

}
would concentrate themselves in re-

gions where V π
µ (θ) is large. We cannot sample

from p (θ) directly but we can developed a trans-
dimensional MCMC algorithm which will generate

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: Example state-space. This figure shows an
illustration of the 2d state-space described in section 5.
Ten sample points are shown distributed according to µ,
the initial distribution, and the contour plot corresponds
to the reward function r. The red line denotes the policy
parameterized by some angle θ, while a path is drawn in
blue sampled from this policy.

asymptotically samples from p (θ, k, x1:k), hence sam-
ples from p (θ, k, x1:k).

To sample from p (θ, k, x1:k), we can propose an algo-
rithm which is very similar to the one described earlier
to implement the E-step of the EM. Assume the cur-
rent state of the Markov chain targeting p (θ, k, x1:k) is
(θ, k, x1:k). We propose first to update the components
(k, x1:k) conditional upon θ using the combination of
birth, death and update moves designed earlier. Then
we propose to update θ conditional upon the current
value of (k, x1:k). This can be achieved using a simple
Metropolis-Hastings algorithm or a more sophisticated
dynamic Monte Carlo scheme.

5 Experiments

It should be noted from the outset that the results pre-
sented in this paper are preliminary, and serve mainly
as an illustration of the Monte Carlo algorithms pre-
sented earlier. With that note aside, even these simple
examples will give us some intuition about the algo-
rithms’ performance and behaviour. We are also very
optimistic as to the possible applications of the ana-
lytic expressions for linear Gaussian models, but space
has not allowed us to present simulations for this class
of models here.

We will consider state- and action-spaces X = A = R
2

such that each state x ∈ X is a 2d position and
each action a ∈ A is a vector corresponding to a
change in position. A new state at time n is given by



Xn = Xn−1 + An−1 + νn−1 where νn−1 denotes zero-
mean Gaussian noise. Finally we will let µ be a normal
distribution about the origin, and consider a reward
(as in [17]) given by an unnormalized Gaussian about
some point m, i.e. r(x) = exp(− 1

2 (x−m)T Σ−1(x−m)).
An illustration of this space can be seen in Figure 1
where m = (1, 1).

For these experiments we chose a simple, stochas-
tic policy parameterized by θ ∈ [0, π/2]. Under this
policy, an action An is normally distributed about
nw(cos θ, sin θ) − xn for some (small) constant step-
length w. Intuitively, this ensures that an agent fol-
lowing this policy will advance on a path along the an-
gle θ. While unrealistic from a real-world perspective,
this allows us to easily evaluate the optimal policy.
For a state-space with initial distribution and reward
function defined as in Figure 1 the optimal policy cor-
responds to θ = π/4.

The plots in Figure 2 show the three previously
described algorithms performing on this synthetic
example—here the inferred value of θ is shown against
cpu time, averaged over 5 runs. The first thing
of note is the terrible performance of the SMC-
based algorithm. This comes as no surprise con-
sidering the O(N2k2

max) time complexity necessary
for computing the importance weights. While there
do exist methods [8] for reducing this complexity to
O(N log Nk2

max), the discrepancy between this and
the reversible jump MCMC method suggests that the
MCMC approach may be more adapted to this class of
problems. In the finite/discrete case it is also possible,
as shown by Toussaint et al (2006), to reduce the k2

max

term to kmax by calculating updates only using mes-
sages from the backwards recursion. The SMC method
might further be improved by better choices for the ar-
tificial distribution ηn(xn)—in this problem we used a
vague Gaussian centered on the relevant state-space.
It is however possible that any added benefit from a
more informative η distribution is counterbalanced by
the time required to calculate this η, for example by
simulating particles forward in order to find the invari-
ant distribution, etc.

The reversible jump Monte Carlo EM algorithm and
the fully Bayesian approach performed comparably on
this synthetic example. In this case the Bayesian ap-
proach performed slightly better, in general showing
less in-run variance, as well as less variance between
runs. The EM algorithm was also more sensitive, and
we were forced to increase the number of samples N
used by the E-step as the algorithm progressed, as well
as controlling the learning rate with a smoothing pa-
rameter. For higher dimensional and/or larger models
it is not inconceivable that this could have an adverse
affect on the algorithms performance.
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Figure 2: The top figure shows estimates for the policy
parameter θ as a function of the cpu time used to calcu-
late that value. This data is shown for the three discussed
Monte Carlo algorithms as applied to a synthetic exam-
ple and has been averaged over five runs; error bars are
shown for the SMC-based EM algorithm. The bottom fig-
ure shows a “zoomed” version of this plot in order to see
the reversible-jump EM algorithm and the fully Bayesian
algorithm in more detail. In both plots the red line denotes
the known optimal policy parameter of π/4.



6 Discussion

We believe that formulating stochastic control as a
trans-dimensional inference problem is fruitful. It has
enabled us to derive an algorithm that relaxes the
quadratic cost constraint in LQR. This algorithm re-
mains to be tested on high dimensional problems but
preliminary results (not presented here) were very en-
couraging. This interpretation also led to the develop-
ment of the first, to the best of our knowledge, trans-
dimensional MCMC algorithm for policy search in gen-
eral non-linear non-Gaussian control problems. Our
results, on an illustrative example, showed that this
trans-dimensional simulator is more effective that the
simulators based on a particle smoothing implemen-
tation of the forward-backward. In the near future,
we plan to apply our algorithms to several control and
planning tasks of interest.
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