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ABSTRACT

Experimental design is a fundamental problem in science. It
arises in the planning of medical trials, sensor network deploy-
ment and control as well as in costly data gathering in physics,
chemistry and biology. Bayesian decision theory provides a
principled way of treating this problem, but leads to an in-
tractable joint optimization and integration problem. Here,
we propose a viable solution to this hard computational prob-
lem using sequential Monte Carlo samplers.

1. PROBLEM FORMULATION

We assume that we have a measurement model p(y|6, d) of
experimental outcomes y € ) given a design d as well as a
prior p(6) on the model parameters § € ©. The prior could
be based on expert knowledge or previous experiments.

The goal is then to choose the optimal design d* € RP,
which maximizes the expected utility
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with respect to some measure of utility u(y, d, ). When the
model parameters are the objects of interest, the negative pos-
terior entropy is commonly chosen as the utility function.
That is, one aims to maximize

= f o

As shown in [1], under the assumptions of stationarity and
standard bounds on distributions, this criterion is equivalent
to maximizing the marginal entropy of the outcome y

)u(y,d,8) dy db 1)

(16, d) [p(0'|y, d)log p(0' |y, d)] d6’dy db.

U(d)=C — / p(yld) log p(yld) dy, @

where C'is an arbitrary constant. This transformation reduces
the complexity by eliminating one parameter space integral.

2. PREVIOUS WORK

The joint optimization and nested integration problem in equa-
tion (2) is computationally challenging. For this reason, most
research has focused on the simple linear-normal model, for

which closed form solutions exist [2]. However, many de-
sign problems encountered in practice are inherently nonlin-
ear. One could linearize around a point estimate 6, but this
crude approximation often leads to sub-optimal designs.

Another strategy involves discretizing the decision space
RP and approximating the integrals with direct Monte Carlo
methods [3]. However, this approach is expensive and inade-
quate for high dimensional design spaces.

To eliminate the need for discretizing the decision space,
Miiller et al. [4] proposed a Markov chain Monte Carlo an-
nealing technique for simultaneous maximization and integra-
tion. They define the following artificial target distribution
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It is easy to show that this distribution admits U(d)” (with
U(d) as defined in Equation (1)) as its marginal distribution.
That is, as J increases the samples concentrate on the modes
of U(d).

In [5], this idea has been extended with particle filtering.
The intuition here is that interacting multiple chains can pro-
vide better exploration of distributions with distant modes.
Both approaches however resort to sampling outcomes % in-
dependently of outcomes 7~ at the previous iteration. This
independent sampling is well known to be inefficient [6]. Fur-
thermore, the annealing can only proceed in integer steps.

3. SMC SAMPLERS APPROACH

We adopt the sequential Monte Carlo (SMC) samplers frame-
work of [7]. Our approach is based in particular on the ap-
plication of SMC samplers to marginal parameter estimation
presented in [8], where Miiller’s algorithm is generalized to
non integer annealing steps. In contrast to the algorithms
mentioned in the previous section, SMC samplers also en-
able us to replace the independent proposal distributions with
more sophisticated and efficient proposal mechanisms.

SMC samplers [7] are a generalization of SMC methods
such as particle filtering. They facilitate efficient sampling
from sequences of distributions {7}, . The distributions
can be defined on the same or different spaces, but subsequent
distributions should be close in the sense that efficient propos-
als for sampling from 7, can be constructed based on samples



from 7;_. The key idea is to define an artificial joint distrib-
ution 7; on a space of increasing dimension, which admits the
distribution of interest 7, as its marginal. More specifically,
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where L; is an appropriate backward Markov kernel. Stan-
dard SMC methods can be used to sample from this extended
growing distribution. Typically, this is done in the framework
of sequential importance sampling with resampling. In doing
so, new particle locations are proposed according to a forward
Markov kernel K;. These particles are weighted recursively
as follows:
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It is important to carefully choose the kernels K and L in
order to achieve good mixing properties and keep the variance
of the importance weights small.

4. SMC SAMPLERS FOR MAXIMUM ENTROPY
SAMPLING

Motivated by [4] and [8], we define the following artificial
target distribution:
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with ¢(y;,d) = p(y;|d) (C — log p(y;|d)) .

Unlike the extended target distribution of Equation (3), this
distribution allows for real as well as integer annealing steps.
The annealing is controlled by n; € N and v, € [0,1]. In
particular, n; determines the discrete number of simulations
of the outcomes y and v is a real valued annealing factor for
the last outcome. Both n; and 1, are driven by schedules de-
pending on the index t. We restrict ourselves to schedules in
which n; 4+ v; is monotonically increasing and assume that
ny < ng_1 + 1. That is, at most one new outcome is intro-
duced per iteration. Every time the schedule passes through
vy = 1, the target m,, 1(d, y1.n,) admits p(d) U(d)™ as its
marginal distribution (with U(d) as defined in Equation (2)).
The extended artificial distributions with rational values of
1, are convenient, because they provide a smooth bridge be-
tween the distributions of interest, but their marginal distrib-
utions are meaningless. Ideally we would want to use a com-
pletely uninformative prior p(d) on the design, but in order to
ensure that the target is proper, it may be necessary to choose
a uniform prior p(d) on a finite interval of the design space in-
stead. We further choose the constant C' to be an upper bound
on the log marginal likelihood to ensure that ¢(y;, d) > 0.

Having defined the target distribution, the incremental im-
portance weights follow from Equation (5):
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In [8, Algorithm 3], the forward kernel is the product of a
Metropolis-Hastings kernel K,,, 1,1 with invariant distribu-
tion 7, 1,1, which updates the previously added outcomes
Y1:n,—1, and an independent proposal distribution g, for the
outcome ¥y, . In mathematical terms,

Kt ((yg;llc,lvdt_l)a (yiznta dt)) =
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Choosing the following backward kernel
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leads to the incremental weights
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Note thatif KC,,, 1 1 was not a kernel with the correct invariant
distribution, the choice of backward kernel above would be
invalid. This is because the artifical joint distribution 7, in
Equation (4) then would no longer admit 7; as its marginal.

The full SMC sampler corresponding to the above choices
for K and L is given in Algorithm 1.

To implement the MH kernel K,,, _; 1 we need to evaluate
Tn.—1,1,» Which in turn requires evaluation of p(y|d). To this
end, we draw a large set of samples {0;}/<, from p(6) and
use the approximation

K
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Algorithm 1 has two important shortcomings. First, its
performance depends critically on the choice of the proposal
distribution ¢,,,. We found empirically that the marginal dis-
tribution p(y|d) behaves well as proposal when v; = 1. Sam-
pling from p(y|d) as approximated in Equation (6) is straight-
forward for many problems. However, for 14 < 1, we noticed
that p(y|d) is no longer a good proposal and even heavy-tailed
and adaptive proposal distributions were not sufficient to keep
the variance of the importance weights small.

The second shortcoming is that the outcome y,,, is sam-
pled independently at each annealing step. It is more reason-
able to only sample a new outcome y,,, independently when
it first gets introduced, that is when ny = ny—1 + 1.



Initialization, t = 1
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e Compute incremental weights
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e Resample if ESS < Threshold.

together with the backward kernel
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These kernels lead to the incremental weights
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That is, the weights do not need to be updated during these
steps. The resulting sampler is described in Algorithm 2.
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Algorithm 1: SMC sampler for optimal design. This algorithm
corresponds to Algorithm 3 in [8] but the notation is simplified
thanks to reasonable assumptions on the schedule. The effective
sample size (ESS) is a standard measure of the efficiency of the set
of particles[9].

To overcome these shortcomings, we propose a different
target distribution

ng—1
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This distribution still has the same desired property that for
vy = 1 it admits p(d) U(d)™ as its marginal distribution.

We define different forward and backward kernels for steps
in which the number of simulated outcomes increases (n; =
n¢—1+1) and for those in which it stays constant (n; = ny_1).
Let us first look at the case n; = n;_1. As the forward kernel
K, we use a MCMC kernel lint,l,t with invariant distribution
T, v, - We further choose the backward kernel as
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These kernel choices result in the incremental weights
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For steps withn; =n;—1 +1(and vy =0and 1,1 = 1),
we adopt the forward kernel
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Initialization, t = 1

e For each particl_ei =1,...,N:
o Sample d'! ~ p(d)
o Sample y{”"! ~ p(y)ld(i Y
1

e Initialize weight w(
Attimet = 2,3,.
e For each particle i =1,...,N:
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Algorithm 2: New SMC sampler for optimal design.

5. EXAMPLE PROBLEM

We study a synthetic problem that, despite its apparent sim-
plicity, exhibits complex multi-modality. In particular, we ad-
dress the problem of inferring the parameters of a sine wave.
This nonlinear experimental design example is motivated by
the problem of scheduling expensive astronomical observa-
tions [10]. The sine wave is parameterized by its amplitude
A, frequency w and phase p as follows

y = flz; A w, p)

We place Gamma priors on A and w and a (0, 1) prior on
p. The objective is to find the optimal location d* within a fi-
nite interval along the x-axis at which to make the next noisy
y measurement. In our example two prior observations have
been made. That is, p(#) in Equation (1) here is the pos-
terior parameter distribution after these measurements. Sine
waves corresponding to samples from p(f) are depicted in

= Asin (27[(dw) + p]) -




© |

d

) Zre) =t} 50 o0

B
|

36 Ee) =) ER) Too

Fig. 2. The effective sample size for the first 100 steps of running
(a) Algorithm 1 and (b) Algorithm 2 on the optimal design problem
shown in Figure 1. The new algorithm, because of its lower variance,
requires far fewer resampling steps (in total 3 compared to 189 out
of 500 steps) in order to maintain an acceptable sample size.
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Fig. 1. Plot (a) shows some samples of the stochastic process p(y|d)
after 2 observations. The corresponding expected utility U(d) is
shown as a dashed blue line in (b) while U (d)®° is displayed in solid
red. (c) presents a histogram of the final samples of 100 indepen-
dent chains using the approach of Miiller et al. [4] when annealing
to U(d)50, while (d) and (e) shows the final locations of 100 particles
using, respectively, the sampler of Johansen et al. [8] (Algorithm 1)
and the proposed new SMC sampler (Algorithm 2).

Figure 1. The same figure shows that the utility U(d) is ex-
tremely multi-modal. It also illustrates the performance of
the algorithms of Miiller et al. [4], Johansen et al. [8] and our
new algorithm in approximating the annealed utility U (d)®°.
The same random walk proposal in d and the same amount of
computation were used in all cases. While many of the inde-
pendent MCMC chains get stuck, the interaction in the SMC
samplers assists in escaping local minima, thus yielding a bet-
ter approximation of the target. However, we note that our
algorithm maintains a richer particle set than the algorithm of
Johansen et al. [8] and, hence, leads to a better approxima-
tion of the target. This is due to dramatically smaller variance
of the incremental weights. Figure 2 provides clear evidence
of this. The new algorithm maintains a higher effective sam-
ple size (lower variance). As a result, it requires far fewer
resampling steps. Finally, Figure 3 shows that the proposed
algorithm does a better job at exploring all modes of the ob-
jective as the simulation progresses. This explains the higher
quality of the final approximation as seen in Figure 1.

6. CONCLUSION

We have introduced a new SMC algorithm for Bayesian opti-
mal nonlinear design. It behaves well when exploring densely
multi-modal target distributions and exhibits lower variance
than existing approaches. We believe these two properties
will play a crucial role when scaling to real high-dimensional
problems.
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Fig. 3. Location of the particles along the design space (x-axis)
over 500 steps (y-axis, increasing upwards). for (a) Algorithm 1 and
(b) Algorithm 2. The plots demonstrate the annealing effect. They
also show that Algorithm 1 looses track of the minor modes due to
excessive resampling.
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