
Technical Report TR-2004-08

University of British Columbia

Owed to a Martingale: A Fast Bayesian On-Line EM

Algorithm for Multinomial Models

Eric Brochu • Nando de Freitas • Kejie Bao ◦

September 11, 2004

• Department of Computer Science, University of British Columbia
2366 Main Mall, Vancouver, BC Canada V6T 1Z4

{ebrochu, nando}@cs.ubc.ca

◦ Department of Computer Science, University of Toronto
10 King’s College Road, Toronto, ON Canada M5S 3G4

{kbao}@cs.toronto.edu

Abstract

This paper introduces a fast Bayesian online expectation maximiza-
tion (BOEM) algorithm for multinomial mixtures. Using some prop-
erties of the Dirichlet distribution, we derive expressions for adaptive
learning rates that depend solely on the data and the prior’s hyper-
parameters. As a result, we avoid the problem of having to tune the
learning rates using heuristics. In the application to multinomial clus-
tering, choosing the prior’s hyperparameters is an easy task. Our ex-
periments on large real data sets demonstrate that our Bayesian online
learning algorithms are fast and provide accurate regularized solutions.
We prove asymptotic convergence of our algorithms using stochastic
approximation theory.

1 Introduction

Clustering and classifying massive discrete datasets is a ubiquitous problem
in web applications. Typical datasets include documents with images, text
and music (Brochu and de Freitas 2002, Brochu, de Freitas and Bao 2003),
web-links visited by users when shopping (Sen and Hansen 2003) and logs
of states and actions in on-line computer games (Lipson, Kueck, Brochu
and de Freitas 2003). What makes this problem hard is that the number
of parameters and data can be very large. The first issue can be dealt
by adopting principled Bayesian priors and regularizers while the second
requires the development fast of on-line learning algorithms.

A popular approach is to model the data with a finite mixture of multi-
nomial distributions, whose parameters are estimated with the EM algo-
rithm (McKendrick 1926, Hartley 1958, Baum, Petrie, Soules and Weiss
1970, Dempster, Laird and Rubin 1977). However, the EM algorithm re-
quires that the entire data set be read at each iteration, and hence fails to
scale well as the data set becomes large. To bypass this limitation, on-line
EM algorithms which update the parameter estimates using only a single
datum at a time have been proposed in statistics (Titterington 1984, Titter-
ington, Smith and Makov 1985, Celeux and Diebolt 1992), machine learning
(Sato and Ishii 1998, Sato 1999, Sato 2001) and computer vision (Petrovic,
Jojic, Frey and Huang 2003, Jepson, Fleet and El-Maraghi 2003).

These on-line EM algorithms can be shown to be stochastic approxima-
tion algorithms of the Robins-Monro type (Bertsekas and Tsitsiklis 1996,
Kushner and Yin 1997). This connection allows us to prove asymptotic con-
vergence of the algorithms under some assumptions on the learning rates. It
is well known, that learning rates of the form a/(t + b), where t denotes the
iteration index and a and b are user chosen parameters, ensure asymptotic
convergence. The important open problem is choosing these parameters in
non-asymptotic real life scenarios. That is, what values are guaranteed to
give us acceptable results in a finite number of iterations?

Here we propose a Bayesian solution to this problem. Our work builds
on a much earlier treatment that appeared under the name of quasi-Bayes
in (Smith and Makov 1978). In this publication, the authors dealt with the
problem of mixtures with known mixture parameters. Here, we extend the
method to parameterized mixture components. In doing so, we show that it
is possible to obtain analytical expressions for the learning rates that depend
only on the parameters of the Dirichlet priors. As a result, the choice of prior
in our models automatically leads to a choice of the parameters of the on-line
learning algorithms. Our experiments on large real data sets demonstrate

1

that our Bayesian on-line learning algorithms are fast and provide accurate
regularized solutions. Finally, we prove convergence of our algorithms using
stochastic approximation tools.

2 Probabilistic Model and Batch EM

Our data is a set of discrete observations xi = (xi1, xi2, . . . , xina
), for i =

1, 2, . . . , T . That is, xia is the fequency of occurrence of the discrete state a
at time i. In text mining, we can think of xia as the number of times word
a appears in document i. The model also applies when xi is a matrix and
we are interested in clustering Markov sequences, such as music or weblogs.
We adopt the following multinomial mixture model to cluster the data:

xi|(λ,ϕ)
iid
∼

nc∑

c=1

λc

na∏

a=1

ϕa,c
xi,a

Here nc is the number of clusters, na is the number of discrete attributes,
λc = p(c) is the prior probability of each cluster and ϕa,c = p(a|c) is the
probability of item a in cluster c. The unknown parameters are λ and ϕ.

We introduce the latent random variables zi ∈ {1, . . . , nc} to indicate
that a particular document xi belongs to a specific group c. These indicator
variables are drawn from a multinomial distribution, zi ∼ Mnc

(1;λ), which
admits the density

p(zi|λ) =

nc∏

c=1

λIc(zi)
c .

That is, p(zi = c) = λc. The latent variables enable us to write the mixture
model as a nested multinomial model:

p(xi, zi|λ,ϕ) =
nc∏

c=1

[
λc

na∏

a=1

ϕ
xi,a
a,c

]
Ic(zi)

,

where Ic(zi) = 1 if xi belongs to group c and Ic(zi) = 0 otherwise. The
learning problem under consideration can be supervised (when all the indi-
cator variables are known), semi-supervised or unsupervised (when none of
the indicator variables are known).

The posterior distribution of the indicator variables follows easily:

ξ(i)
c , p(zi = c|λ,ϕ,xi) =

p(xi, zi = c|λ,ϕ)

p(xi|λ,ϕ)
=

λc

∏na

a=1 ϕ
xi,a
a,c∑nc

c′=1 λc′
∏na

a=1 ϕ
xi,a

a,c′

. (1)

2

We place standard conjugate Dirichlet priors on the mixing coefficients
λ ∼ Dnc

(α), admitting the following density

p(λ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αnc
)

nc∏

c=1

λαc−1
c I{

P

c λc=1},

where Γ(·) denotes the Gamma function and α0 =
∑

c αc is the sum of the
hyper-parameters α. Similarly, we place independent Dirichlet priors on the
component parameters ϕc ∼ Dna

(βc).
Using Bayes rule, the posterior distributions of the parameters are:

λ|(z,x, α) ∼ Dnc
(k1 + α1, . . . , knc

+ αnc
) (2)

ϕc|(z,x, β) ∼ Dna

(
T∑

i=1

xi,1Ic(zi) + β1,c, . . . ,

T∑

i=1

xi,na
Ic(zi) + βna,c

)
.(3)

where where kc ,
∑T

i=1 Ic(zi) denotes the total number of data samples
assigned to class c. The posterior means of these distributions are

λ(PME)
c =

αc +
∑T

i=1 Ic(zi)

α0 + T

ϕ(PME)
a,c =

βa,c +
∑T

i=1 xi,aIc(zi)

β0,c +
∑T

i=1

∑na

a′=1 xi,a′Ic(zi)
,

while the posterior modes are:

λ(MAP)
c =

αc − 1 +
∑T

i=1 Ic(zi)

α0 − nc + T

ϕ(MAP)
a,c =

βa,c − 1 +
∑T

i=1 xi,aIc(zi)

β0,c − na +
∑T

i=1

∑na

a′=1 xi,a′Ic(zi)

The problem with these equations is that indicators Ic(zi) are unknown
in unsupervised learning. In the EM approach, one replaces these indicators

with their expectations ξ
(i)
c = p(zi = c|xi,λ,ϕ) = Ep(zi|xi,λ,ϕ)(Ic(zi)) and

alternates between an expectation (E) step and a maximisation (M) step.
In the E step one computes p(zi = c|xi, λ̂, ϕ̂) using equation (1). In the M
step, we update the parameters using the following MAP estimates:

λ̂c =
αc − 1 +

∑T
i=1 ξ

(i)
c

α0 − nc + T

ϕ̂a,c =
βa,c − 1 +

∑T
i=1 xi,aξ

(i)
c

β0,c − na +
∑T

i=1

∑na

a′=1 xi,a′ξ
(i)
c

3

Setting all the hyperparameters (α, β) to 1, we obtain the maximum likeli-
hood estimates. In practice, we do not typically favour any cluster so α is
set to 1. β is a regularisation parameter that controls the number of clus-
ters (de Freitas and Barnard 2001). The higher the value of β, the fewer
clusters. This happens because by increasing β in all clusters, we are adding
pseudo-counts to the clusters. Since some clusters cannot explain these ex-
tra counts, their probability λc goes to zero. In text mining, all the betas
are often set to 2, giving rise to an estimator known as Laplace smoothing.
The important thing is that setting β is easy and enables us to introduce a
priori knowledge about the model complexity in a natural way.

The problem with EM is that it requires summing over the entire dataset.
To circumvent this when the datasets are extremely large, we introduce on-
line EM algorithms in the following sections.

3 On-line EM Algorithms via Weighted Statistics

The batch EM updates require that we compute the sufficient statistics:

〈1〉(1:T)
c ,

T∑

i=1

ξ(i)
c

〈xi,a〉
(1:T)
c ,

T∑

i=1

xi,aξ
(i)
c

The idea of on-line EM is to replace these statistics with weighted statistics,
so that we pay more attention to the most recent data (Titterington 1984,
Sato 1999). That is, we compute the weighted statistics of f(x) at time t,

〈f(x)〉
(t)
c , as follows

〈f(x)〉(t)c , η(t)
t∑

τ=1

(
t∏

s=τ+1

ζ(s)

)
f(x(τ))ξ(τ)

c (4)

where x(τ) is the data at time τ , ξ
(τ)
c = p(z(τ) = c|x(τ), θ(τ−1)) and the

parameter ζ(t)(0 ≤ ζ(t) ≤ 1) is a time-dependent forgetting factor, with
boundary condition

∏t
s=t+1 ζ(s) = 1. The normalising factor is a learning

rate:

η(t) =

(
t∑

τ=1

t∏

s=τ+1

ζ(s)

)−1

(5)

4

The following classical proposition allows us to map the forgetting factor
representation of equation (4) to a recursive (on-line) estimator of the suf-
ficient statistics of f(x).

Proposition 1 (Sato and Ishii 1998) The forgetting factor representation
of equation (4) is equivalent to the following on-line update

〈f(x)〉(t)c = 〈f(x)〉(t−1)
c + η(t)

(
f(x(t))ξ(t)

c − 〈f(x)〉(t−1)
c

)
(6)

and the learning rate is related to the forgetting factor as follows

η(t) =
η(t−1)

ζ(t) + η(t−1)

Proof: See Appendix A.

This on-line estimator only requires that we set the learning rate. There
is no need to set the forgetting factor. The estimator can also be written as
a binary decision process

〈f(x)〉(t)c =
(
1 − η(t)

)
〈f(x)〉(t−1)

c + η(t)
(
f(x(t))ξ(t)

c

)

The current estimate is a weighted sum of the previous estimate and the
expectation of the current data point.

Using this recursion, the on-line EM for mixtures of multinomials at time
t is:

• E step: Compute the distribution of the latent variables:

ξ(t)
c =

λc

∏na

a=1 ϕx
(t)
a

a,c

∑nc

c′=1 λ′
c

∏na

a=1 ϕx
(t)
a

a,c′

• M step: Update the estimates in terms of weighted-means:

〈1〉(t)c = 〈1〉(t−1)
c + η(t)

(
ξ(t)
c − 〈1〉(t−1)

c

)

〈xa〉
(t)
c = 〈xa〉

(t−1)
c + η(t)

(
x(t)

a ξ(t)
c − 〈xa〉

(t−1)
c

)

λ̂(t)
c = 〈1〉(t)c

ϕ̂(t)
a,c =

〈xa〉
(t)
c

∑
a ϕ̂

(t)
a,c

5

In the remainder, we refer to this algorithm as Sato’s on-line EM (SOEM).
The learning rates used in SOEM are often of the type a/(bt + c) where

the constants a, b and c are chosen by trial and error. In the following
section, we show how one can use Bayesian theory to circumvent this time
consuming task.

4 Bayesian On-Line EM

When we observe the first observation, the Dirichlet posteriors are:

λ|(x(1), α) ∼ Dnc

(
α

(0)
1 + I1(z

(1)), · · · , α(0)
nc

+ Inc
(z(1))

)

ϕc|(x
(1), β) ∼ Dna

(
β

(0)
1,c + x

(1)
1 Ic(z

(1)), · · · , β(0)
na,c + x(1)

na
Ic(z

(1))
)

Since the indicator variables are unknown, we replace them with their ex-
pectations as follows:

λ|(x(1), α) ∼ Dnc

(
α

(0)
1 + ξ

(1)
1 , · · · , α(0)

nc
+ ξ(1)

nc

)

ϕc|(x
(1), β) ∼ Dna

(
β

(0)
1,c + x

(1)
1 ξ(1)

c , · · · , β(0)
na,c + x(1)

na
ξ(1)
c

)

These Dirichlet distributions are updated recursively. That is, p(λ|x(t), α(t))

is Dirichlet with parameters α
(t)
c = α

(t−1)
c + ξ

(t)
c and p(ϕc|x

(t), β) is Dirichlet

with parameters β
(t)
a,c = β

(t−1)
a,c + x

(t)
a ξ

(t)
c . The corresponding posterior mean

estimates are:

λ̂(t)
c =

α
(t−1)
c + ξ

(t)
c

α0 +
∑t

k=1

∑nc

c=1 ξ
(k)
c

=
α

(t)
c

α0 + t
(7)

ϕ̂(t)
a,c =

β
(t−1)
a,c + x

(t)
a ξ

(t)
c

β0,c +
∑t

k=1

∑na

a′=1 x
(k)
a′ ξ

(k)
c

=
β

(t)
a,c

β0,c +
∑t

k=1

∑na

a′=1 x
(k)
a′ ξ

(k)
c

(8)

where α0 = α
(0)
1 + · · · + α

(0)
nc and β0,c = β

(0)
1,c + · · · + β

(0)
na,c. At time t − 1, we

have

λ̂(t−1)
c =

α
(t−1)
c

α0 + t − 1

Substituting this expression into Equation (7) gives us the following update
equation for λ:

λ̂(t)
c = λ̂(t−1)

c + rt

(
ξ(t)
c − λ̂(t−1)

c

)
(9)

6

where the learning rate is:

rt =
1

α0 + t
(10)

This recurrence is the same as in SOEM, but in this case the learning rate
is readily available in terms of the hyperparameters of the Dirichlet prior.

To shorten the notation, we define the quantities h
(k)
c ,

∑na

a′=1 x
(k)
a′ ξ

(k)
c

and g
(t)
c , (β0,c +

∑t
k=1 h

(k)
c)−1, then Equation (8) can be written as follows

at times t and t − 1:

ϕ̂(t)
a,c = g(t)

c

(
β(t−1)

a,c + x(t)
a ξ(t)

c

)

ϕ̂(t−1)
a,c = g(t−1)

c

(
β(t−2)

a,c + x(t−1)
a ξ(t−1)

c

)

Combining these equations, we obtain a recursive estimator for ϕ

ϕ̂(t)
a,c =

g
(t)
c

g
(t−1)
c

ϕ̂(t−1)
a,c + g(t)

c x(t)
a ξ(t)

c

= ϕ̂(t−1)
a,c + g(t)

c

(
x(t)

a ξ(t)
c − h(t)

c ϕ̂(t−1)
a,c

)

Let the adaptive learning rate be

η(t)
c =

h
(t)
c

β0,c +
∑t

k=1 h
(k)
c

(11)

Then,

ϕ̂(t)
a,c = ϕ̂(t−1)

a,c + η(t)
c

(
x

(t)
a ξ

(t)
c

∑
a′ x

(t)
a′ ξ

(t)
c

− ϕ̂(t−1)
a,c

)
(12)

The Bayesian online EM (BOEM) algorithm has the same E step as
SOEM, but the M step is given by equations (9) and (12). The learning
rates for both recursions are automatically given in terms of the Dirichlet
priors. The learning rate for ϕ also has the nice property that it adapts with
the data.

5 Asymptotic Convergence of BOEM

In this section, we show that the BOEM parameter estimates converge with
probability 1 to the batch EM estimates with an infinite number of data.
Specifically, we show that λ̂c

a.s.
−→ E[ξ] and ϕ̂a,c

a.s.
−→ E [xaξc/hc], where the

7

expectations are taken with respect to the data x and ξ is a function evalu-
ated at the optimal parameters, ξ = ξ(x, λ?, ϕ?).

The proof follows from standard results in stochastic approximation the-
ory (Bertsekas and Tsitsiklis 1996, Chapter 4). First, we show that the
learning rates r and η satisfy some conditions necessary for convergence.

Lemma 1 Let ε < h
(t)
c < B for a small constant ε and some constant B. 1

Then the learning rates r(t) and η
(t)
c , satisfy the following Properties:

1. limt→∞ r(t) = 0 and limt→∞ η
(t)
c = 0

2.
∑∞

t=1 r(t) = ∞ and
∑∞

t=1 η
(t)
c = ∞

3.
∑∞

t=1(r
(t))2 < ∞ and

∑∞
t=1(η

(t)
c)2 < ∞

Proof: See Appendix B.

An intuitive discussion on why these conditions on the learning rates are
required is provided in (Bertsekas and Tsitsiklis 1996, Section 4.1).

It is important to note for the remainder of the proof that, by definition,
λ̂c, ϕ̂a,c, ξc and xaξc/hc are upperbounded by 1 because the data consists of
finite counts and all quantities are appropriately normalized in the algorithm
presented in the previous section. Hence, there is no need for projection
operators.

The parameter update equations in BOEM can be interpreted as small
stepwise iterations of the fixed point λ?

c = E[ξc] and ϕ?
a,c = E [xaξc/hc]. For

notational brevity we summarise both fixed point equations by introducing
the quantities θ , {ξ, ϕ}, γ = {r, η} and φ , {ξc,xaξc/hc}. Hence, for
the remainder of this section, we only concentrate on the single fixed point
equation:

θ? = E[φ]

= (1 − γ)θ? + γE[φ]

where again we emphasize that E[φ] is a function of the optimal parmaters
θ?. Since we only gather one observation at each time step, the expecta-
tion in the fixed point iteration is approximated by a single sample φ(t) =

1The upperbound is trivially satisfied as h is given by finite counts, while the lower-

bound is simply a requirement that there should be no empty clusters. This assumption

is not overly restrictive in practice as we can enforce a small lowerbound ε at the level of

machine precision or, after sufficient steps, we can eliminate empty clusters by pruning.

8

φ(x(t), θ(t)). (We could use more samples in a Monte Carlo fashion, but
this is unnecessary.) The fixed point equation leads to the following update
equation for the parameters:

θ(t+1) =
(
1 − γ(t)

)
θ(t) + γ(t)φ(t+1)

= θ(t) + γ(t)
(
φ(t+1) − θ(t)

)
(13)

This update can be re-written as a Robbins-Monro stochastic approximation

θ(t+1) =
(
1 − γ(t)

)
θ(t) + γ(t)

E [φ] + γ(t)
(
φ(t+1) − E [φ]

)
(14)

where E[φ] − θ is the mean field and e(t+1) , φ(t+1) −E [φ] is the stochastic
approximation error.

The key to our proof is to introduce a Lyapunov potential function
f
(
θ(t)
)

that measures how far the current estimate is from the true ex-
pectation. We can choose any function that is unbounded away from the
true expectation and whose minimum coincides with the true expectation.
In our case, we choose the following quadratic Lyapunov function:

f
(
θ(t)
)

=
1

2

∥∥∥θ(t) − E[φ]
∥∥∥

2

We will show that our algorithm descends on this quadratic function and
hence θ(t) converges to E[φ]. Since E[φ] is a function of only the optimal
parameters θ?, the gradient of the Lyapunov function with respect to θ(t) is
∇f(θ(t)) = θ(t) −E[φ]. This expression for the gradient, allows us to rewrite
Equation (14) as follows:

θ(t+1) = θ(t) − γ(t)
(
∇f

(
θ(t)
)
− e(t+1)

)

= θ(t) + γ(t)s(t+1)

where s(t+1) is the search direction. To descend on f
(
θ(t)
)
, we require

∇f
(
θ(t)
)

E

[
s(t+1)|F (t)

]
≤ 0

That is, s(t+1) must be a direction of gradient descent. Here, the his-
tory of the algorithm is described by the increasing family of Sigma-fields
F (t) , {θ(1) . . . θ(t), φ(1) . . . φ(t), γ(1) . . . γ(t)}. To avoid the problem of s(t+1)

becoming orthogonal to ∇f
(
θ(t)
)
, we require a stronger condition:

c∇f
(
θ(t)
)

E

[
s(t+1)|F (t)

]
≤ −

∥∥∥∇f
(
θ(t)
)∥∥∥

2
∀t

9

where c is a positive constant. The following lemma establishes these con-
ditions for BOEM.

Lemma 2 There exist positive constants c, k1 and k2 such that the BOEM
algorithm satisfies the following conditions:

1. ∀t, c∇f
(
θ(t)
)
· E
[
s(t+1)|F (t)

]
≤ −

∥∥∇f
(
θ(t)
)∥∥2

2. ∀t, E

[∥∥s(t+1)
∥∥2

|F (t)
]
≤ k1 + k2

∥∥∇f
(
θ(t)
)∥∥2

Proof: See Appendix C.

We can now state our convergence result.

Proposition 2 Under the conditions of Lemmas 1 and 2 and the Lipschitz
condition ‖∇f(θ)−∇f(E(φ))‖ ≤ L‖θ−E(θ)‖ for some constant L, we have
with probability 1:

1. The sequence f(θ(t)) converges.

2. limt→∞∇f(θ(t)) = 0.

3. Every limit point of θ(t) is a stationary point of f . Hence, θ(t) con-
verges almost surely to E(φ).

The proof of this proposition follows from the super-martingale conver-
gence theorem (Bertsekas and Tsitsiklis 1996, Section 4.2.3). The Lipschitz
continuity condition on ∇f is satisfied if f is twice differentiable and the
Hessian ∇2f is bounded over the search space.

It is interesting to note that E[‖γ(t)e(t+1)‖2|F (t)] = (γ(t))2E[‖e(t+1)‖2|F (t)]
is upperbounded. Moreover, let

M (t) ,

t∑

k=1

γ(k)e(k)

We have

E

[
M (t)|F (t−1)

]
= E

[
γ(t)e(t)

∣∣∣F (t−1)
]

+ E

[
M (t−1)|F (t−1)

]

= 0 + M (t−1)

Hence M (t) is a martingale with bounded second moments, and by the
martingale convergence theorem it converges to a limit point. It follows

10

that the term γ(t)e(t) vanishes to zero with probability 1. Consider our
stochastic approximation

θ(t+1) = θ(t) + γ(t)
(
θ(t) − E[φ]

)
.

In the limit of γ(t) going to zero, the stability of the BOEM algorithm is
governed by the following differential equation

dθ

dt
= θ − E[φ]

6 Experiments: BOEM in the Wild

While we have established powerful theoretic capabilities of BOEM in Sec-
tion 5, if we are to expect BOEM to be used in the real world, it is also
necessary to show that there are, indeed, real-world situations in which it
should be used.

The following experiments show the performance of batch EM, Sato’s
online EM (SOEM) and BOEM. All code was implemented in C++ (an up-
dated GPL C++ implementation of batch EM, SOEM, and BOEM is avail-
able from the author’s web site, http://www.cs.ubc.ca/∼ebrochu.) using the
high-performance UBLAS library for linear algebra operations. Experiments
were conducted on an Intel 2.66 GHz Pentium 4.

6.1 Experiments on Synthetic Cases

Synthetic data sets often prove useful as a controlled environment in which
data can easily be manipulated to expose the utility of an algorithm. Our
first experiments involve such data.

Our synthetic data sets are simulations of i.i.d. documents. Let nc be the
number of clusters, in the underlying na-dimensional Multinomial mixture,
where each entry of the matrix ϕa,c is drawn from a Uniform distribution
U(0, 1) and normalized by

∑
a ϕa,c. The mixture weights λ are determined

similarly, by sampling each from U(0, 1) and normalizing over
∑

c λc. The
documents can then be generated by sampling a generating distribution c
from λ and then sampling n ‘words’ from the Multinomial distribution ϕc.

6.1.1 Log-likelihood comparison

The synthetic data set consists of 10000 data from 5 clusters of 1000 dimen-
sions. The number of ‘words’ in each datum is normally distributed with a

11

mean of 5000 and variance of 2500 (documents of fewer than 100 words are
discarded and new documents generated in their place).

There is no automatic means to select the learning rate parameters κ and
t0 for SOEM, but after several trials, we found κ = 0.7 and t0 = 5000 gave
the best performance on this data set. Because the goal of this experiment
was to maximize the log-likelihood, rather than to regularize or find the
underlying distributions, the Bayesian hyperparameters of BOEM were set
to α = 1, β = 1, which eliminates the prior – that is, it causes our MAP
model to collapse to the ML case.

50 trials were conducted for each algorithm on the same data set, with
randomly-chosen initialization parameters for ϕ. The log-likelihood was
computed at regular intervals. As Figure 1 shows, BOEM and SOEM have
similar rates of convergence, and both stabilize after a few thousand data,
but BOEM finds, on average, significantly superior log-likelihoods.

0 2000 4000 6000 8000 10000
−3.43

−3.42

−3.41

−3.4

−3.39

−3.38

−3.37

−3.36

−3.35
x 10

8

data examined

lo
g−

lik
el

ih
oo

d

BOEM

SOEM

0 50 100 150 200
−3.42

−3.41

−3.4

−3.39

−3.38

−3.37

−3.36

−3.35
x 10

8

elapsed time (seconds)

lo
g−

lik
el

ih
oo

d

BOEM

EM

SOEM

Figure 1: [Left] Log-likelihood of the ML version of BOEM (solid) and SOEM

(broken) on a synthetic data set of 10000 documents. BOEM and SOEM arrive at

good approximations quickly, but BOEM does significantly better on average, and

it does not require setting tricky forgetting factor parameters.[Right] Comparison of

SOEM and BOEM to batch EM on the same problem.

SOEM makes rapid estimates of ϕ during the very early time steps, which
then are slowly improved on. In BOEM, the learning rate starts out slower
and changes more slowly. SOEM is therefore more sensitive to the first few
data examined, and if these give a poor clustering, it may be very difficult
for the algorithm to escape even shallow local minima (often prevalent in
high-dimensional data) that BOEM, by nature of its more even steps, is
able to quickly escape. We also tried batch EM on this problem and report
the results in Figure 1. Clearly, batch EM is not as well suited as BOEM

12

to analysis of data sets of even this modest size. In general, the differences
between batch and online are only magnified as the data set grows in size.

6.1.2 Bayesian performance: BOEM vs batch

In a second experiment, we assessed the regularisation performance of the
MAP EM and BOEM algorithms. we repeated the synthetic experiment but
on this occasion generated the data from two mixture components of weights
{0.8, 0.2}. The algorithms were then trained with nc = 6 and β = 5. The
attained log-posterior values are shown in Figure 2. Here BOEM outper-
forms the batch MAP EM algorithm again. Figure 2 also shows that BOEM
computes the right number clusters. The batch EM algorithm also estimates
the right number of clusters and parameters when using the shrinkage reg-
ulariser.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

clusters

i
t
e
r
a
t
i
o
n
s

0 1 2 3 4 5 6

x 10
4

−3.4

−3.395

−3.39

−3.385

−3.38

−3.375

−3.37

−3.365

−3.36

−3.355

−3.35
x 10

8

data examined

lo
g−

po
st

er
io

r

BOEM

EM

Figure 2: [Left] λ evolution of a typical run of BOEM over synthetic data generated

from two mixture components of weights {0.8, 0.2}. BOEM starts with 6 clusters,

but eventually finds the right number. [Right] Performance using Bayesian regu-

larization. Log-posterior over 50 trials of BOEM and Batch EM with α = 1 and

β = 5, on the set of 10000 synthetic data.

6.2 Real World Data: The Gutenberg Corpus

To evaluate BOEM in a real world situation, we use data from Project
Gutenberg. Project Gutenberg is an online repository of public domain
texts, available at http://www.gutenberg.net. We randomly selected English-
language 10000 documents from the corpus, consisting of novels and plays
from various time periods and nationalities, political and philosophical writ-
ing, poetry, journalism and the like, to create a heterogeneous test set. We

13

0 500 1000 1500 2000 2500
−3.26

−3.24

−3.22

−3.2

−3.18

−3.16

−3.14

−3.12

−3.1

−3.08

−3.06

−3.04
x 10

9

elapsed time (seconds)

lo
g−

po
st

er
io

r

BOEM

EM

Figure 3: Log-posterior of BOEM and batch EM on the Project Gutenberg data.

removed any terms that appeared fewer than 5 times in the data set, or that
appeared in only one document. This resulted in na = 4322 terms.

We ran batch EM and BOEM 50 times each on the entire data set of
10000 documents to compute the MAP estimates. The results may be seen
in Figure 3. BOEM and batch eventually achieve similar results. BOEM
performs slightly better, but it would seem its performance advantage is lim-
ited on the noisier, higher-dimensional data set. However, BOEM achieves
good results in a fraction of the time batch takes.

7 Conclusions and Further Work

We have shown that BOEM outperforms batch EM and other online EM
variants when applied to mixtures of multinomials. BOEM is fast, leads to a
dramatic reduction in storage and typically results in better MAP estimates.
Future work will involve extending the algorithm to LDA models (Blei, Ng
and Jordan 2002) and sparse classifiers (Tipping 2001).

14

Acknowledgements

We are very indebted to Christophe Andrieu for substantial comments on
the manuscript and convergence proof. We would also like to thank Mike
Klaas for his corrections.

Appendix A: Proof of Proposition 1

The proof begins with the forgetting factor representation

〈f(x)〉(t)c = η(t)
t∑

τ=1

(
t∏

s=τ+1

ζ(s)

)
f(x(τ))ξ(τ)

c

= η(t)ζ(t)
t∑

τ=1

(
t−1∏

s=τ+1

ζ(s)

)
f(x(τ))ξ(τ)

c

= η(t)ζ(t)
t−1∑

τ=1

(
t−1∏

s=τ+1

ζ(s)

)
f(x(τ))ξ(τ)

c + η(t)f(x(t))ξ(τ)
c

Since

〈f(x)〉(t−1)
c = η(t−1)

t−1∑

τ=1

(
t−1∏

s=τ+1

ζ(s)

)
f(x(τ))ξ(τ)

c

we have:

〈f(x)〉(t)c =
η(t)

η(t−1)
ζ(t)〈f(x)〉(t−1)

c + η(t)f(x(t))ξ(t)
c

= 〈f(x)〉(t−1)
c + η(t)

{
f(x(t))ξ(t)

c +

(
ζ(t)

η(t−1)
−

1

η(t)

)
〈f(x)〉(t−1)

c

}

(15)

From equation (5), we know that

η(t) =

(
t∑

τ=1

t∏

s=τ+1

ζ(s)

)−1

=

(
1 + ζ(t)

t−1∑

τ=1

t−1∏

s=τ+1

ζ(s)

)−1

=
1

ζ(t) 1
η(t−1) + 1

=
η(t−1)

ζ(t) + η(t−1)

15

Thus we get:

1

η(t)
= 1 +

ζ(t)

η(t−1)
(16)

Combining equations (15) and (16), we have:

〈f(x)〉(t)c = 〈f(x)〉(t−1)
c + η(t)

(
f(x(t))ξ(t)

c − 〈f(x)〉(t−1)
c

)

�

Appendix B: Proof of Lemma 1

Since r(t) = 1
α0+t

, limt→∞ r(t) = 0. The series
∑∞

t=1 r(t) is a diverging

harmonic series and
∑∞

t=1(r
(t))2 converges. Next, we focus on η

(t)
c . We

have:

η(t)
c =

h
(t)
c

β0,c +
∑t

k=1 h
(k)
c

Since ε < h
(t)
c < B, we also have harmonic series for η

(t)
c , say η

(t)
c = k1

β0,c+k2t

where ε < k1, k2 < B. Consequently the three properties are also satisfied.

�

Appendix C: Proof of Lemma 2

Proof: The noise term e(t+1) =
(
φ(t+1) − E[φ]

)
has zero mean and bounded

variance. That is, it has moments E[e(t+1)|F (t)] = 0 and E[‖e(t+1)‖2|F (t)] ≤
A + B‖∇f(θ(t))‖ for some constants A and B. The second property is an
immediate consequence of ξ and xaξ/b being upperbounded. Condition 1,
with c = 1 follows from:

∇f
(
θ(t)
)
· E

[
s(t+1)|F (t)

]
= ∇f

(
θ(t)
)
·
(
−∇f

(
θ(t)
)

+ E

[
e(t+1)|F (t)

])

= −
∥∥∥∇f

(
θ(t)
)∥∥∥

2

16

since ∇f
(
θ(t)
)

is determined by F (t) and can therefore be pulled out of the
expectation. Condition 2 results from:

E

[∥∥∥s(t+1)
∥∥∥

2
|F (t)

]
=

∥∥∥∇f
(
θ(t)
)∥∥∥

2
− 2∇f

(
θ(t)
)
· E
[
e(t+1)|F (t)

]

+E

[∥∥∥e(t+1)
∥∥∥

2
|F (t)

]

≤
∥∥∥∇f

(
θ(t)
)∥∥∥

2
+ A + B

∥∥∥∇f
(
θ(t)
)∥∥∥

2

= k1 + k2

∥∥∥∇f
(
θ(t)
)∥∥∥

2

�

References

Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximization
technique occurring in statistical analysis of probabilistic functions of
Markov chains, Annals of Mathematical Statistics 41: 164–171.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming,
Athena Scientific.

Blei, D. M., Ng, A. Y. and Jordan, M. I. (2002). Latent dirichlet allocation,
in T. G. Dietterich, S. Becker and Z. Ghahramani (eds), NIPS, MIT
Press, Cambridge, MA.

Brochu, E. and de Freitas, N. (2002). “Name That Song!”: A Probabilistic
Approach to Querying on Music and Text, NIPS, Vancouver, Canada.

Brochu, E., de Freitas, N. and Bao, K. (2003). The Sound of an Album
Cover: Probabilistic Multimedia and IR, AI-STATS, Florida, USA.

Celeux, G. and Diebolt, J. (1992). A stochastic approximation type EM
algorithm for the mixture problem, Stochastics and stochastics reports
41: 127–146.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood
from incomplete data using the EM algorithm, Journal of the Royal
Statistical Society Series B.

17

de Freitas, N. and Barnard, K. (2001). Bayesian modelling of documents
with images and text, TR 2001-15, Computer Science Department,
UBC.

Hartley, H. (1958). Maximum likelihood estimation from incomplete data,
Biometrics 14: 174–194.

Jepson, A. D., Fleet, D. J. and El-Maraghi, T. (2003). Robust online ap-
pearance models for visual tracking, IEEE Transactions on Pattern
Analysis and Machine Intelligence 25: 1296–1311.

Kushner, H. J. and Yin, G. G. (1997). Stochastic Approximation Algorithms
and Applications, Springer-Verlag.

Lipson, A., Kueck, H., Brochu, E. and de Freitas, N. (2003). Machine learn-
ing for computer games, First International Digital Games Research
Conference.

McKendrick, A. G. (1926). Application of mathematics to medical problems,
Proceedings of the Edinburgh Mathematical Society 44: 98–130.

Petrovic, N., Jojic, N., Frey, B. J. and Huang, T. S. (2003). Real-time on-line
learning of transformed hidden Markov models from video, Artificial
Intelligence and Statistics (AI-Stats 2003).

Sato, M. A. and Ishii, S. (1998). On-line EM algorithm for the normalized
Gaussian network, Neural Computation 12(2): 407–432.

Sato, M. A. (1999). Fast learning of on-line EM algorithm, Technical report,
TR-H-281, ATR Human Information Processing Research Laborato-
ries.

Sato, M. A. (2001). On-line model selection based on the variational Bayes,
Neural Computation 13(7): 1649–1681.

Sen, R. and Hansen, M. H. (2003). Predicting a Web user’s next request
based on log data, Journal of Computational and Graphical Statistics.

Smith, A. F. M. and Makov, U. E. (1978). A quasi-Bayes sequential pro-
cedure for mixtures, Journal of the Royal Statistical Society, Series B
40(1): 106–112.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector
machine, Journal of Machine Learning Research 1: 211–244.

18

Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical
Analysis of Finite Mixture Distributions, John Wiley and Sons, San
Diego.

Titterington, D. M. (1984). Recursive parameter estimation using incom-
plete data, Journal of the Royal Statistical Society 46: 257–267.

19

