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Abstract

The Bayesian Logic (BLOG) language was re-
cently developed for defining first-order proba-
bility models over worlds with unknown num-
bers of objects. It handles important problems
in Al, including data association and population
estimation. This paper extends BLOG by adopt-
ing generative processes over function spaces —
known as nonparametrics in the Bayesian liter-
ature. We introduce syntax for reasoning about
arbitrary collections of objects, and their prop-
erties, in an intuitive manner. By exploiting
exchangeability, distributions over unknown ob-
jects and their attributes are cast as Dirichlet pro-
cesses, which resolve difficulties in model selec-
tion and inference caused by varying numbers of
objects. We demonstrate these concepts with ap-
plication to citation matching.

Introduction

BLOG specifies a prior over the number of objects. In
many domains, however, it is unreasonable for the user to
suggest such a proper, data-independent prior. An inves-
tigation of this issue was the seed that grew into our pro-
posal for Nonparametric Bayesian Logic, or NP-BLOG,
a language which extends the original framework devel-
oped in [11]. NP-BLOG is distinguished by its ability to
handle object attributes that are generated by unbounded
sets of objects. It also permits arbitrary collections ef at
tributes drawn from unbounded sets. We extend the BLOG
language by adopting Bayesian nonparametrics, which are
probabilistic models with infinitely many parameters [1].

The statistics community has long stressed the need for
models that avoid commiting to restrictive assumptions re-
garding the underlying population. Nonparametric models
specify distributions over function spaces — a natural fit
with Bayesian methods, since they can be incorporated as
prior information and then implemented at the inference
level via Bayes’ theorem. In this paper, we recognize that
Bayesian nonparametric methods have an important role to
play in first-order probabilistic inference as well. We star

Probabilistic first-order logic has played a prominent roleWith @ simple example that introduces some concepts nec-
in recent attempts to develop more expressive models ifSSarY to understanding the main points of the paper.

artificial intelligence [3, 4, 6, 8, 15, 16, 17]. Among these, Consider a variation of the problem explored in [11]. You
the Bayesian logic (BLOG) approach [11] stands out forhave just gone to the candy store and have bought a box
its ability to handle unknown numbers of objects and dateof Smarties(or M&Ms), and you would like to discover
association in a coherent fashion, and it does not assunt@w many colours there are (while avoiding the temptation
unique names and domain closure. to eat them!). Even though there is an infinite number of
¢ colours to choose from, the candies are coloured from a fi-

A BLOG model specifies a probability distribution over *: - X
nite set. Due to the manufacturing process, Smarties may

possible worlds of a typed, first-order language. That is,b > ; ) )
it defines a probabilistic model over objects and their at-P€ Slightly discoloured. You would like to discover the un-

tributes. A model structure corresponds to a possible worldknoWn (true) set of colours by randomly picking Smarties
which is obtained by extending each object type and inter-from the box and observing t_he|r colours. After a certain
preting each function symbol. Objects can either be uguar_number of draws, you would like to answer questions such

anteed”, meaning the extension of a type is fixed, or theypS: How many different coloursoare in the box? Do two
can be generated from a distribution. For example, in theomarties have the same colour? What is the probability

aircraft tracking domain [11] the times and radar blips areth@t the first candy you select from a new box is a colour

known, and the number of unknown aircraft may vary inYOU have never seen before?

possible worlds. BLOG as a case study provides a stron@he graphical representation of the BLOG model is shown
argument for Bayesian hierarchical methodology as a basis Fig. 1a. The number of Smarties of different colours,
for probabilistic first-order logic. n(Smartie), is chosen from a Poisson distribution with
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it is unreasonable to expect a domain expert to implement
nonparametrics considering the degree of effort required
to grasp these abstract notions. We show that Bayesian
nonparametrics lead to sophisticated representatioris tha
can beeasierto implement than their parametric counter-

parts. We formulate a language that allows one to specify
nonparametric models in an intuitive manner, while hiding

complicated implementation details from the user. Sec. 3
formalizes our proposed language extension as a set of

rules that map code to a nonparametric generative process.
We emphasize that NP-BLOG is an extension to the BLOG
language, so it retains all the functionality specified ih][1

Q'Smartie HcolourDist

We focus on an important class of nonparametric methods,
the Dirichlet process (DP), because it handles distrilstio
over unbounded sets of objects as long as the objects them-
selves are infinitely exchangeable, a notion formalized in
Sec. 3.4. The nonparametric nature of DPs makes them
__________________________________________________________ suitable for solving model selection problems that arise

Figure 1:(a) The BLOG andb) NP-BLOG graphical mod- in the face of identity uncertainty and unknown numbers
els for counting Smarties. The latter implements a Dirichle ©f Objects. Understanding the Dirichlet process is inte-
process mixture. The shaded nodes are observations. ~ 9ral to understanding NP-BLOG, so we devote a section

to it. Sec. 3.5 shows how DPs can characterize collec-

tions of objects. Models based on DPs have been shown
to be capable of solving a variety of difficult tasks, such
as topic-document retrieval [2, 21]. Provided the necegssar
expert knowledge, our approach can attack these applica-
noisy colour of each draw conditioned 0Bmartiedrawn|d] tions,_and others. We con(_juct a citation matching experi-
ment in Sec. 4, demonstrating accurate and efficient proba-

and the true colours of the Smarties. o )
o _ bilistic inference in a real-world problem.
The NP-BLOG model for the same setting is shown in

Fig. 1b. The true colours of an infinite sequence of Smar2 Dirichlet processes

ties s are sampled fromH cojourdist:  Tsmartie IS @ distri- A Dirichlet process? | a, H ~ DP(«, H), with parameter
bution over the choice of coloured Smarties, and is samg and base measuié, is the unique probability measure
pled from a uniform Dirichlet distribution with parameter definedG on the space of all probability measurds B),
asmartie- ONce the Smarties and their colours are generwhered is the sample space, satisfying

ated, the true Smartie for draiy represented by the indi-

cator zsmartiedrawn [d] = s, is sampled from the distribution (G(51), ..., G(8k)) ~ Dirichlet(aH (51), ..., «H(Bk)) (1)

of Smartiesrsmarie- The last step is to sample the observed

colour, which remains the same as in the BLOG model. for every measurable partitiof, . .. , 3k of ®. The base
One advantage of the NP-BLOG model is that it determineg]e""s’ureﬂ.defmeS the expectation of ee_lch partition, and

a posterior over the number of Smarties colours without> & Precision param_eter. Or_1e can _consujer_the DPasagen-
having to Specify a prior oven(Smartie). This is impor- eralization of the Dirichlet distribution to infinite space

tant since this prior is difficult to specify in many domains. In Sec. 3.4, we formalize exchangeability of unknown ob-
A more significant advantage is that NP-BLOG explicitly jects. In order to explain the connection between exchange-
models a distribution over the collection of Smarties. Thisability and the DP, it is instructive to construct DPs with
is not an improvement in expressiveness — one can alway&e Folya urn scheme [5]. Consider an urn with balls of
reverse engineer a parametric model given a target nonpards possible colours, in which the probability of the first
metric model in a specific setting. Rather, nonparametric®all being colourk is given by H,. We draw a ball
facilitate the resolution of queries on unbounded setd) sucfrom the urn, observe its colouf;, then return it to the
as the colours of Smarties. This plays a key role in makurn along with another ball of the same colour. We then
ing inference tractable in sophisticated models with abjecmake another draw, observing its colour with probability
properties that are themselves unbounded collections-of o (¢2 = k|¢1) = (aHy+6 (a1 =k)) /(a+1). After N obser-
jects. This is the case with the citation matching model invations, the colour of the next ball is distributed as
Sec. 3.1, in which publications have collections of authors N

aHy + 21:1 5(¢i :k)

The skeptic might still say, despite these advantages, that P(¢y,1=Fk|d1.n) = N N
« (0%

(bTrueCoIour [3]
s=1,... oo

(b)

ZSmartieDrawn [d} T ObsColour [d]

mean ysmariie- A colour for each Smarties is drawn
from the distributionHcoourpist- Then, for every drawd,
ZSmartieDrawn|d] 1S drawn uniformly from the set of Smar-
ties{1,...,n(Smartie)}. Finally, we sample the observed,

)



The marginalP(¢;.n) of this process, obtained by apply- wherez; = k indicates that sample; belongs to compo-
ing the chain rule to successive predictive distributi@as, nentk. The Smarties model (Fig. 1b) is in fact an example
be shown to satisfy the infinite mixture representation of a DP mixture, where the unbounded set of coloums.is
p By grounding on the support of the observations, the true
SN S(di=k) number of coloursK is finite. At the same time, the DP
P(¢rn) :/M(@)<H Tk )DPQvH(d”)’ ®) mixture is open about seeing new colours as new Smarties
h=1 are drawn. In NP-BLOG, the unknown objects are the mix-

where ther, are multinomial success rates of each colourture components.

k. This result, a manifestation of de Finetti's theorem, est\\p-BLOG semantics (Sec. 3) define arbitrary hierarchies
tablishes the existence and uniqueness of the DP prior st Dirichlet process mixtures. By the stick-breaking con-
the Rolya urn scheme [5]. In theda urn setting, obser-  stryction (4), every random variabte has a countable set

vations ¢; are infinitely exchangeable and independentlyof ancestors (the unknown objects), hence DP mixtures pre-
distributed given the measufe. Thus, what we have es- gerve the well-definedness of BLOG models.

tablished here in a somewhat cursory fashion is the appr
priateness of the DP for the case when the observatipns
are infinitely exchangeable.

OTo infer the hidden variables of our models, we employ
the efficient blocked Gibbs sampling algorithm developed
_ o in [7] as one of the steps in the overall Gibbs sampler. One
Analogously, if the urn allows for infinitely many colours, complication in inference stems from the fact that a product
then for any measurable intervabof ¢ we have of Dirichlets is difficult to simulate. Tebt al.[21] provide
a solution using an auxiliary variable sampling scheme.

aH(f) R 5 _

pon1 € Blonn) = v+ oy 2 0@ €8). 3 Syntax and semantics
=t This section formalizes the NP-BLOG language by speci-

The first term in this expansion corresponds to prior knowl-fying a procedure that takes a set of stateméhtsn the
edge and the second term corresponds to the empirical disanguage and returns a model A model comprises a set
tribution. Larger values ofv indicate more confidence of types, function symbols, and a distribution over pogsibl
in the prior H. Note that, asV increases, most of the worldsw € Q¢. We underline that our language retains all
colours will be repeated. Asymptotically, one ends up samthe functionality of BLOG. Unknown objects must be in-
pling colours from a possibly large but finite set of colours, finitely exchangeable, but this trivially the case in BLOG.
achieving a clustering effect. Nonetheless, there is awaySec. 3.4 elaborates on this.

some probability of generating a new cluster. We illustrate the concepts introduced in this section with
DPs are essential building blocks in our formulation of non-an application to citation matching. Even though our cita-
parametric first-order logic. In the literature, these kfoc tion matching model doesn'’t touch upon all the interesting
are used to construct more flexible models, such as DP mixaspects of NP-BLOG, the reader will hopefully find it in-
tures and hierarchical or nested DPs [2, 21]. Since observatrumental in understanding the semantics.

tions are provably discrete, DP mixtures add an addltlonag_1 Citation matching

layerx; ~ P(x;|¢;) in order to model continuous draws ) ) . .
from discrete mixture components. On_e of the main challenges in developmg an autqmated Ci-
o tation matching system is the resolution of identity uncer-
In the Folya urn scheme/ is integrated outand th&'sare  (4inty: for each citation, we would like to recover its true
sampled directly from/. Most algorithms for sampling +itje and authors. For instance, the following citatioranr

DPs are based on this scheme [2, 13, 21]. In the hierarchigfe citeSeer database probably refer to the same paper:

constructed by our language, however, we rely on an ex-

plicit representation of the measuggsince it is not clear foz'\iﬂerok’ R%bilq’ 3”? Mags, Patté‘?’ ALefaLninlggggelrface Agentl
: . or Meeting Scheduling, Proceedings of the nternational

we can'always mtggrate it out, even when th.e measu,reSWorkshop on Intelligent user Interfaces, ACM Press, NY.

are conjugate. This compels us to use the stick-breaking

construction [19], which establishes thatd. sequences R. Kozierok and P. Maes. A learning interface agent for

wy ~ Beta(l,a) and¢, ~ H can be used to construct scheduling meetings. In W. D. Gray, W. E. Heey, and D. Mur-

the equivalent empirical distributio = "3, mx0 (%), ray, editors, Proc. of the Internation al Workshop on Intelligent

. . . L_1 User Interfaces, Orlando FL, New York, 1993. ACM Press.
where the stick-breaking weights, = wy, [[;—; (1 — w;)
and can be shown to sum to unity. We abbreviate the sanEven after assuming the title and author strings have been
pling of the weights ag;, ~ Stick(«). This shows tha€; ~ segmented into separate fields (an open research problem
is an infinite sum of discrete values. The DP mixture dueitself!), citation matching still exhibits serious challges:

to the stick-breaking construction is two different strings may refer to the same author (e.g.
) J.F.G. de Freitas and Nando de Freitas) and, conversely,
¢i| H~H | a ~ Stick(a) (4) the same string may refer to different authors (e.g. David

zi|m~m o x| di, 2 ~ p(Tilde,), Lowe in vision and David Lowe in quantum field theory).



01 type Author; type Pub; type Citation;

02 guaranteed Citation;

03 #Author ~ NumAuthorsDist();

04 #Pub ~ NumPubsDist();

05 Name(a) ~ NameDist();

06 Title(p) ~ TitleDist();

07 NumAuthors(p) ~ NumAuthorsDist();

08 RefAuthor(p, i) if Less(i, NumAuthors(p))
then ~ Uniform(Author a);

09 RefPub(c) ~ Uniform(Pub p);

10 CitedTitle(c) ~ TitleStrDist(Title(RefPub(c)));

11 CitedName(c, i) if Less(i, NumAuthors(RefPub(c)))
then ~ NameStrDist(Name(RefAuthor(RefPub(c), i)));

05 Title(p) ~ TitleDist{};
06 CitedTitle(c) ~ TitleStrDist{ Title(RefPub(c))};

Syntax

ZRefPublC] ~ Tpub PCitedTitle [€] ~ OTitlestrDist (PTitle[P])
S.t. p = ZrefPublc], forp=1,...,00, ¢ =1,...,n(Citation)

rocess

{ Tpub ~ Stick(apup)  PTite[P] ~ Pritte

Generative
p

O ZRefPublC] Om PTitleStrDist

¢=1,...,n(Citation) 3

Graphical model
/\\

Figure 2: BLOG model for citation matching [10]. R
Figure 4: Three representations of lines 5-6 in Fig. 3: as

01 type Author; type Pub; an NP-BLOG program, as a generative process, and as a
02 type Citation; type AuthorMention; graphical model. Darker, hatched nodes are fixed or gener-
03 guaranteed Citation; guaranteed AuthorMention; ated from other lines and shaded nodes are observed. Note
04 Name(a) ~ NameDist{}; the similarity between the graphical model and Fig. 1b.
05 Title(p) ~ TitleDist{}; Lines 5-6 describe a DP mixture (4) over the publications
06 CitedTitle(c) ~ TitleStrDist{ Title(RefPub(c))}; p, Where the base measuredigenist, 7Tite is the hidden
07 RefAuthor(u) ~ PubAuthorsDist(RefPub(CitedIn(u))); distribution over publication objects, the indicators tre
08 CitedName(u) ~ NameStrDist{Name(RefAuthor(u))}; true publicationsrespus[c] corresponding to the citatiors

Figure 3: NP-BLOG model for citation matching. and the continuous observations are the tilegdTitie[c]-

There are a number of different approaches to this problentage lies in the ability to capture sophisticated models of
Pasuleet al. incorporate unknown objects and identity un- unbounded sets of objects in a high-level fashion, and the
certainty into a probabilistic relational model [14]. Wedk  relative ease of conducting inference, since nonparacsetri
et al. resolve identity uncertainty by computing the opti- can deal gracefully with the problem of model selection.

mal graph partition in a conditional random field_[22]. We one can view a model such as the automatic citation
elaborate on the BLOG model presented in [10] in order 10y 5¢cher from three perspectives: it is a set of statements
contrast it with the one we propose. The BLOG model isiy the |anguage that comprise a program; from a statisti-
;hown in Flg. 2 with cosmetic modlflcatlons and the func- i35 point of view, the model is a process that samples
tion declaration statements omitted. the defined random variables; and from the perspective of
The BLOG model describes a generative sampling processnachine learning, it is a graphical model. Fig. 3 interprets

Line 1 declares the object types, and line 2 declares thdines 5-6 of Fig. 4 in three different ways. The semantics,

the citations are guaranteed (hence are not generated byaa we will see, formally unify all three perspectives.

number statement). Lines 3 and 4 are number statementg ., BLOG and NP-BLOG can answer the following
and lines 5-11 are dependency statements; their COmbingyeries: Is the referring publication of citatierthe same
tion defines a generative process. The process starts Q¥ he referring publication of citatiof? How many au-
choosing a certain number of authors and publications fromy, o are there in the given citation database? What are
their respective prior distributions. Then it samples au+ne names of the authors of the publication referenced by
thor names, publication titles and the number of authorgiation ¢? How many publications contain the author

per publication. For each author strin@ a citation, We  \yhere, is one of the authors in the publication referenced
choose the referring author from the set of authors. Finally,y citationc? And what are the titles of those publications?
the properties of the citation objects are chosen. For examowever, only NP-BLOG can easily answer the following

ple, generating an interpretation@tedTitle(c) for citation query: what group of researchers do we expect to be au-
c requires values faRefPub(c) and estimates of publication ,4r<in a future. unseen publication?

titles. TitleStrDist(s) can be interpreted as a measure that . .

adds noise in the form of perturbations to input steng 3.2 Objects and function symbols

This section is largely devoted to defining notation so that
approach, the key differences being that it samples collecV® ¢an properly elaborate on NP-BLOG semantics in Sec-
tions of unknown objects from DPs, and it allows for un- tions 3.3 to 3.5. The notation as it appears in these sections
certainty in the order of authors in publications. But whatMakes the connection with both first-order logic and the
do we gain by implementing nonparametrics? The advanPirichlet process mixture presented in Sec. 2.

The NP-BLOG model in Fig. 3 follows a similar generative



The set of objects of a type is called theextensionof  function symbol refers to distributionover author objects.

7, and is denoted bjr]. In BLOG, extensions associated How the model chooses the success rate parameters for this
with unknown (non-guaranteed) types can vary over possimultinomial distribution, given that it is not on the lefdsi

ble worldsw, so we sometimes write]“. The size ofr|*  of any generating statement, is the subject of Sec. 3.5.

. o1 .
is denoted by:(7).” Note that objects may be unknown \p_g| OG integrates first-order logic with Bayesian non-
even if therells a fixed number of them. Guaranteed ObJeCtBarametric methods, but we have left out one piece of the
are present in all possible worlds. We den@ig to be the puzzle: how to specify distributions such l@smeDist, or

set of possible worlds for modé. classes of distributions. This is an important design deci-
A model introduces a set of function symbols indexed bysion, but an implementation level detail, so we postpone it
the objects. For conciseness, we treat predicates as Boole#o future work. For the time being, one can think of param-
functions and constants as zero-ary functions. For exameterizations as object classes in a programming language
ple, the citation matching model (Fig. 3) has the functionsuch as Java that generate samples of the appropriate type.
symbolsName and Cited Title, among others, so there is a We point out that there is already an established language
Name(a) for every authow andCitedTitle(c) for every ci-  for constructing hierarchical Bayesian models, BUGS [20].
tationc. By assigning numbers to objects as they are genefrne tryth of any first-order sentence is determined by a
ated, we can consider logical varl.ableandc to'be indices possible world in the corresponding language. A possible
on the set of natural numbers. Since BLOG is a typed lany,qq ., ¢ Qy consists of an extensidn| for each typer
guage, the range of interpretations of a function symbol 54 4 interpretation for each function symijolSec. 3.5

is specified by its type signature. For example, the interyeatails how NP-BLOG specifies a distribution oy
pretation ofRefAuthor(u), for eachu € [AuthorMention] =

{1,2,...,n(AuthorMention)}, takes a value on the range 3.3 Dependency statements for known objects

[Author]. Likewise, Title(p) ranges over the set of strings The dependency statement is the key ingredient in the spec-
[String]. Figures 2 and 3 omit function declaration state-ification of a generative process. We have already seen sev-
ments, which specify type signatures. Nonetheless, thigral examples of dependency statements, and we formalize
should not prevent the reader from deducing the type signahem here. It is well explained in [11], but we need to ex-
tures of the functions via the statements that generate.thertend the definition in the context of nonparametrics.

Nonparametric priors define distributions over probapilit In BLOG, a dependency statement looks like
measures, so we need function symbols that uniformly re-

fer to them. LettingX and ) be object domains (e.g. fQ@i, . zn) ~g(ta, .. tn); (5)
X = [Author]), we defineMp (X' | Y) to be the set of con- . ) )
ditional probability densitiep(z € X |y € V) following ~ Where f is a function symbolzy, ...,z is a tuple of

the class of parameterizatiofis We can extend this logic, l0gical variables representing arguments to the function,
denotingMp (Mp(X | V) | Z) to be the set of probability 9 1S @ probability density conditioned on the arguments
measure(d € D |z € Z) over the choice of parameteri- ty, s ,tN_, which are term:_; or formulae in the language
zationsd € D, conditioned onZ. And so on. For peace of £ in which the logical variables,, ...,z may appear.
mind, we assume each class of distributiohis defined on ~ The dependency statement carries out a generative pro-
a measurable-field and the densities are integrable overCeSS. For an example, let's look at the dependency state-
the range of the sample space. Note fatr Z, but not ment on line 10 of Fig. 2. Following the rules of seman-
X, may be a Cartesian product over sets of objects. BLodics [11], line 10 generates assignments for random vari-
does not allow return types that are tuples of objects, sé‘b!e_s‘bCitedetle[CL fore =1,... ,n(Citation), from prob-

we restrict distributions of objects accordingly. One can@bility densityg conditioned on values fotgerus[c] and
extend the above reasoning to accommodate distributiorféTite[], for all p = 1,...,n(Pub). As in [11], we use
over multiple unknown objects by adopting slightly more Square brackets to index 'random vgnables, instead of the
general notation involving products of sets of objects. ~ Statistics convention of using subscripts.

We assign symbols to all the functions defined in the lan{" NP-BLOG, the probability density is itself a function
guagely. For instance, the range dhmeDist in Fig. 3  Symbol, and the dependency statement is given by

is M([String]) for some specified parameterization class. .
Since NameDist is not generated in another line, it must 4 @15+ ->%2) ~ gt tar) it - taren s (6)
be fixed over all possible worlds. For each publicatign

. ) , . ) where f and g are function symbols, ant, ..., typ4n
the ||nterpre:?t|on oi:;l/mb(ﬂubAuth:rthust(p)+sr]ats§|g?ﬁd are formulae of the language as in (5). For this to be a
a value on the spac&lauliinomial([Author]). Thatis, the iy statementy(ty, ..., t)r) must be defined on the range

'Even though the DP imposes a distribution over an infinite se{r\:’(j | y).’ thetLeX. IS tf;e range Of(ml.’thi ) ’tﬁL) anld)éls
of unknown objectsp® () is still finite since it refers to the es- € domain of the Input arguments within the curly braces.

timated number of objects in. n(r) corresponds to the random The firstA/ terms inside the parentheses are evaluated in
variables of the DP mixture, as explained in Sec. 3.5. possible worldw, and their resulting values determine the



choice of measurg. The terms inside the curly braces Definition 1. The random variableszy,...,zy are
are evaluated iw and the resulting values are passed to(finitely) exchangeable under probability density functio
distributiong(ty, ..., tar). When all the logical variables p if p satisfiesp(zy,...,2nx) = p(@r), ..., T(n)) fOr
x1,..., 2y, referto guaranteed objects, the semantics of thall permutationsr on{1,..., N} [1].

dependency statement are given by [11]. The curly brac?N

notation is used to disambiguate the two roles of input ar- Qi?gelfirf:nri{gi:?eelec\?annctespi;Zreex(():g;g?ee\?vzll:;yslSalrr;n:tlxgiI
gument variables. The arguments inside parentheses a]ué 9 o P are ey
ikely. The next definition extends exchangeability to un-

indices to function symbols (e.g. thein RefPub(c) in .
Fig. 3), whereas the arguments inside curly braces Ser\}%ounded sequences of random variables.

as input to probability densities (e.g. the term inside theDefinition 2. The random variables:;, z5, ... are in-
curly braces inTitleStrDist{Title(RefPub(c))}). This new finitely exchangeable if every finite subset is finitely ex-
notation is necessary when a distribution takes both type§hangeabl¢1].

of arguments. We don’t have such an example in citatiorgy changeability is useful for reasoning about distribogio
matching, so we borrow one from an NP-BLOG model in ey properties on sets of objects in BLOG. From Defini-

the aircraft tracking domaifi: tions 1 and 2, we have the following result.
Statle(av t)sitf 'i ?_0 thS’,‘ e '”igtite{}t o Proposition 1. It is possible to defing in the dependency
cise ~ Staterans 'S_(a){ N e(at-1k _ statementg5) and (6) such that the sequence of objects
The state of the aircrafi at timet is an R6Vector Ob]eCt T1,...,T IS ﬁnite|y exchangeab|e if and On|y if the terms
which stores the aircraft’s pOSitiOﬂ and velocity in space.tl’ ces b N do not contain any statements referring to a

Whent > 0, the state is generated from the transition dis-particular z;.

tribution of aircrafta given the state at the previous time o ]
step. StateTransDist(a) corresponds to a measure on the For example, the distribution of hair colours of two people,
spaceM ([R6Vector] | [R6Vector]). Eric and Mike, is not exchangeable given evidence that Eric

is the father of Mike. What about sequences of objects such
as time? As long as we do not set the predecessor function
Beforehand, any sequence is legally exchangeable.

For example, in line 6 of Fig. 3, the citation objects are
guaranteed. Following the rules of semantics, line 6 define
a random variabl@ciwqTitie[c] COrresponding to the inter- ) R
pretation of function symbdlitedTitle(c) for every citation !N this paper, models are restricteditdinitely exchange-

c. Given assignments tOiesubist: ZRefPublc] (WE USEZ aple unknc_)wn objects. We can interpret th|:_s presupposmqn
to be consistent with the notation of the semantics used ifiS way: if we reorder a sequence of objects, then their
this paper, although it makes no difference in BLOG) andProbability remains the same. If we gdd another objch to
divelp] for all p € [Pub] — assignments that are either the sequence at some arbitrary position, both the original

observed or generated from other statements — the depefd Néw sequence with one more object are exchangeable.

dency statement defines the generative process We can then appeal to de Finetti's theorem (3), and hence
the Dirichlet process. Therefore, the order of unknown ob-
citedTitle[c] ~ PTitiestrDist (PTitie[P]) S:t. p = zRefPub|c]. jects is not important, and we can reason about set of ob-

BLOG allows for continaencies in dependenc state-jeCts rather than sequences. While there are many domains
ments.  These can beg subsumed Pth'n o ?’ formatn which one would like to infer the presence of objects
' ubsu withi u hat are not infinitely exchangeable, this constraint lsave

fzr:argt(a(\:/v;;k( ; by tdeflnl?gW:erg(?\(N) irsntehaes?r:gi((:gt(t))r fun:c us open to modeling a wide range of interesting domains.
7 i i\bi,15 03,25+ ) : -

tion, ¢; is the condition which must be satisfied in order to Unknown or non-guaranteed objects are assigredrigid
sample from the density;, c andt are the complete sets of designatorsa symbol in different possible worlds does not
terms and conditions, and the summation is over the numPecessarily refer to the same object, and so it does not
ber of clauses. Infinite contingencies and their connectiofnake sense to assign it a rigid label. This consideration

to graphical models are discussed in [12]. imposes a constraint: we can only refer to a publication
- ) p via a guaranteed object, such as a citatidihat refers
3.4 Exchangeability and unknown objects to it. While we cannot form a query that addresses a spe-

Unknown objects are precisely those which are not guareific unknown object, or a subset of unknown objects, we
anteed. In this section, we formalize some important propcan pose questions about publications using existentifl an
erties of generated objects in BLOG. We adopt the notioruniversal quantifiers (resolved using Skolemization, fier i

of exchangeability [1] to objects in probabilistic firstd@r  stance). We could ask, for instance, how many publications
logic. We start with some standard definitions. have three or more authors.

2In which aircraft in flight appear as blips on a radar screen,3.5 Dependency statements for unknown objects

and the objectives are to infer the number of aircraft and their, 32f lized th fi f t . df
flight paths and to resolve identity uncertainty, arising becausesec' -« lormalize € notion of type extensions and tunc-

a blip might not represent any aircraft or, conversely, an aircrafttion symbols in NP-BLOG programs. Sec. 3.3 served up
might produce multiple detections [10]. the preliminaries of syntax and semantics in dependency



statements. The remaining step to complete the full pre# an object type does not have any dependency or number
scription of the semantics as a mapping from the languagstatements, then no distribution over its extension i@intr
Ly to a distribution over possible worlds. This is accom-duced (e.g. strings in the citation matching model).

plished by c_onstructing a Bayesian hierarchical model ovef,o implementation of the DP brings about an important
random variableg ¢, n,~}, such that the set of random g hyety: if. takes on a possibly infinite different set of val-
vanables_qb isin ong-to-one corresponc!ence with the set Ofues, how do we recover the true number of objedts)?
function interpretationsy refers to the sizes of the type €x- e jdea is to introduce a bijection from the subset of pos-
tensions, aney is a set of auxiliary random variables such e natural numbers that consists onlyaaftiveobjects to

that [ p(, n, y)dy=p(¢,n). One might wonder why We yhe setf1, ... n(r)}. An object is active in possible world

don't dispense of function symbols entirely and instead de, i anq only if at least one random variable is assigned to

scribe everything using random variables, as in [18]. They,,¢ object inw. In the above exampley(Author) is the
principal reason is to establish the connection with first-, ,per of author objects that are mentioned in the cita-
order logic. Also, we want to make it clear that some ran+jons - of course, in practice we do not sample an infinite
dom variables do not map to any individual in the domain.qgries of random variableSiame[a).

What follows is aproceduraldefinition of the semantics. °me

We now define distributions over the random variables, andf We declare a function symbgiwith a return typer rang-
their mapping to the symbols of the first-order logic. ing over a set of unknown objects, then there exists the de-

, i fault generating process
In order to define the rules of semantics, we collect de-

pendency and number statements according to their input zf[x] ~ 7, (10)

argument types. If the collection of statements include . .
a number statement, then the rules of semantics are givéNe usez[x] instead ofp; [] to show that the random vari

in [11]. Otherwise, we describe how the objects and theirébles are the indicators of the DP mixture (4). For example,

properties are implicitly drawn from a DP. Consider a set ofﬁaﬁ?iﬁefpéﬁ’ [i}ri:)n 'iimﬁ 6f|n FbII? Si[ilsnlndepe\;]vdentlz (\j/iravv\\//n

K dependency statements such that the generated functiopg € distribution o publicalionsp,,. We can vie

f fx allrequire a single input of type, and[v]* can ine 6 as constructing a portion of the hierarchical model,
Tyevey y . . . . .

vary over possible worlds. We denoter to be the logical as shown in Fig. 4. The number of publ!catlou(fub) IS

variable that ranges ovér]. (The output types of thé,'s set to the number of different values assignedd@r,[c].

are notimportant.) Th& dependency statements look like NP-BLOG allows for the definition of a symbgithat cor-

responds to a multinomial distribution ovet, so its range

f@ gttt b is Mauttinomial ([7]). It exhibits the default prior

(@)

T (@)~ gre (R 1y ot MU R Mt s s LR Mgt N @ylr] ~ Dirichlet(a,-). ()
analogous to (10)c is a user-defined scalar. We define
n¢[z] to be the true number of objects associated with col-
lection f(x). This is useful for modeling collections of ob-
jects such as the authors of a publication. Applying rules

(8,9,11) to the statements in Fig. 3 involving publication

where M, and N, are the number of input arguments to
gr(+) andgi{-}, respectively, andy, ; is a formula in the
language in whiclh: may appear. As in BLOG, eacfy ()

is associated with a random varialalg, [z]. The random

variablesgy,, . .., ¢4, , including all those |mpl|c§ted in objects, we arrive at the generative process
the terms, must have been generated by other lines or are
observed. Overloading the notation, we define the terms Tpub ~ Stick(apyp)

tr,; to be random variables that depend deterministically
on other generated or observed random variables. The set
of statements (7) defines the generative process

GTitle[P] ~ GTiveDist, forp=1,...,n(Pub)

¢PubAuthorsDist [P} ~ DiriChlet(aPubAuthorsDistﬂAuthor) .

®) Most of the corresponding graphical model is shown in
Fig. 4. Only the ¢pupauthorsbist[p]’s are missing, and
Pfil] ~ Ggulthrs s tiand (T psias s tianani)s () they are shown in Fig. 5. The true number of authors
for k=1,...,K, x = 1,...,00, Wherea, is the user- PubAuthorsDist[P] IN publicationp comes from the support
defined DP concentration parameter andis a multino-  ©f all random variables that refer to it, andPub) is deter-
mial distribution such that each success rate parameter ~ Mined bynpupauthorspist- While this paper focuses on the
determines the probability of choosing a particular objectPirichlet process, our framework allows for other classes
2. NP-BLOG infers a distributionr over objects of type Of nonparametric distributions. One example can be found
v following the condition of infinite exchangeability. For in the aircraft tracking domain from Sec. 3.2, in which the

example, applying rules (8,9) to line 4 of Fig. 3, we get ~ generation of aircraft transition tables might be specified
with the statemeritateTransDist(a) ~ StateTransPrior{}.

In both cases (10) and (11), one can override the defaults
PName[a] ~ ONameDist; fora =1,..., 00 by including appropriate dependency statementsffan

oy ~ Stick(ay,)

T Author ™~ St'/iCk(aAuthor)



Face Reinforce. Reason. Constraint
Num. citationg 349 406 514 295
Num. papers 246 149 301 204

§ QAuthor

d)NameDist T Author TPub
e S Phrase matching0.94  0.79 0.86 0.89
! Onamela] P ZRefPublc] ‘ RPM+MCMC| 0.97 0.94 0.96 0.93
: a=1,...,00 3 3 e, 00 3 % c=1,..., n,(Citation)i CRF_SeqN = 9) 0.97 0.94 0.94 0.95
””””””””””””””””””””””””””””””””””” NP-BLOG| 0.93 0.84 0.89 0.86

Table 1: Citation matching results for the Phrase Match-
ing [9], RPM [14], CRF-Seg [22] and NP-BLOG models.

Performance is measured by counting the number of publi-
77777777777777777777777777777777777777777777777777777777777777777777777777 cation clusters that are recovered perfectly. The NP-BLOG

Figure 5: The white nodes are the portion of the graphicaf:Olumn reports an average over 1000 samples.

model generated in lines 7 and 8 of Fig. 3. See Fig. 4 for. h . imolicit distributi f unk .
an explanation of the darkened nodes. The DP determines an implicit distribution of unknown, in-

finitely exchangeable objects according to their propgrtie
which case we get[z] ~ ¢4, following rule (9). For ex- Thqt Istt .tget DP S"Stmgu'sﬁﬁ? ann(:wr: obje(ats §0Ig||y by
ample, lines 7 and 8 in Fig. 3 specify the generative procesgw'.r attributes. However, this IS not always desirable —
. . or instance, despite being unable to differentiate the in-
for the author mention objects, L ) .
dividual pieces, we know a chess board always has eight
black pawns. This is precisely why we retain the original

§ (/)Na meStrDist

(DCitedName[u] @Citedln [u]

ZRefAuthor [U]

ZRefAuthor U] ~ PPubAuthorsDist 1]

(ZSCitedName[u] ~ ¢Name$trDist(¢Name[a])a
S.L.p = 2RefPublC], ¢ = Pcitedin[U], @ = ZRefauthor[U]-

Fig. 5 shows the equivalent graphical model.

number statement syntax of BLOG which allows the user
to specify a prior over the number of unknown objects, in-
dependent of their properties. In the future, we would like

to experiment with priors that straddle these two extremes.
The generative process (8,9) is a stick-breaking construcfhis could possibly be accomplished by setting a prior on
tion over the unknown objects and their attributes. Wherthe Dirichlet concentration parametet,

the objects: range over the set of natural numbers, (8,9) is

) o By tracing the rules of semantics, one should see that onl
equivalent to the Dirichlet process y g y

thing the citation matching model does not generate is val-
ues forCitedin(u). Therefore, they must be observed. We
can also provide observations from any number of object
attributes, such aSitedTitle(c) and CitedName(u), which
would result in unsupervised learning. By modifying the
fined byg,, conditioned on the terms, 1, ..., tx m,+nN, - set of evidence, one can also achieve supervised or semi-
Since BLOG is a typed, free language, we need to allowsupervised learning. Moreover, the language can cap-

for the null assignment to ;[] when it is implicitly drawn ~ ture both generative and discriminative models, depending
from 7, in (10). We permit the clause whether or not the observations are generated.

Gv ~ DP (a1)7H1),1 XKoo X HU,K)’ (12)
whereG, £ 370 | m, .0(dy, [x]) x -+ x §(dp[]), and
H, ; is the base measure over the assignmendstode-

(13) To summarize, the rules given by (7-11,13), combined
with the number statement [11], construct a distribution
which definesp ;s [z] ~ §(null)§(cond) + 7, (1 — d(cond)).  p(é,2,n,7) such that the set of auxiliary variables is
This statement is necessary to take care of the situationn = {7, a}, {¢, 2} is in one-to-one correspondence with
when an object’s source can be of different types, as in théhe interpretations of the function symbols, theare the
aircraft tracking domain with false alarms [10]. sizes of thgr], and an assignment {@, z, n} completely
_determines the possible worlde 2. The rules of seman-
tics assemble models that are arbitrary hierarchies of DPs.

f(x) ~ if cond then null;

Next, we briefly describe how to extend the rules of se
mantics to functions with multiple input arguments. Let's
consider the case of two inputs with an additional logicalg Experiment

variab_ley < [.V]' Handling an additional.input.argument The purpose of this experiment is to show that the NP-
associated with known (guaranteed) objects is easy. W%LOG language we have described realizes probabilistic

just duplicate (8'9) for every instgnce ofin the guaran- inference on a real-world problem. We simulate the cita-
teed type extension. This is equivalent to adding a flnltetion matching model in Fig. 3 on the CiteSeer data set [9],

series of plates in the _graphmal model: Otherwise, we 8Syhich consists of manually segmented citations from four
sume the unknown objects are drawn independently. Th%search areas in Al

IS, T(y,,) = Tu7,. Multiple unknown objects as input does ] )

cause some superficial complications with the interpretaVVe use Markov Chain Monte Carlo (MCMC) to simulate
tion of (8,9) as a DP, principally because we need to defin@®0Ssible worlds from the model posterior given evidence in
new notation for products of measures over different typesthe form of cited authors and titles. Sec. 2 briefly describes



Face database Reasoning database

14
©

There is much future work on this topic. An important di-

0.8
o6l 06 rection is the development of efficient, flexible and on-line
2 ol 2 o0 inference methods for hierarchies of Dirichlet processes.
s 8
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Figure 7: Estimated distribution of the hidden number of
authors for the Face and Reasoning data sets.



