

Sequential Monte Carlo

Nando de Freitas \& Arnaud Doucet
University of British Columbia
December 2009

Tutorial overview

- Introduction Nando - 10min
- Part I Arnaud - 50min
- Monte Carlo
- Sequential Monte Carlo
- Theoretical convergence
- Improved particle filters
- Online Bayesian parameter estimation
- Particle MCMC
- Smoothing
- Gradient based online parameter estimation
- Break 15min
- Part II NdIF - 45 min
- Beyond state space models
- Eigenvalue problems
- Diffusion, protein folding \& stochastic control
- Time-varying Pitman-Yor Processes
- SMC for static distributions
- Boltzmann distributions \& ABC

Tutorial overview

- Introduction Nando - 10min
- Part I Arnaud - 50min
- Monte Carlo
- Sequential Monte Carlo
- Theoretical convergence
- Improved particle filters

$20^{\text {th }}$ century
- Online Bayesian parameter estimation
- Particle MCMC
- Smoothing
- Gradient based online parameter estimation
- Break 15min
- Part II NdIF - 45 min
- Beyond state space models
- Eigenvalue problems
- Diffusion, protein folding \& stochastic control
- Time-varying Pitman-Yor Processes
- SMC for static distributions
- Boltzmann distributions \& ABC

SMC in this community

Many researchers in the NIPS community have contributed to the field of Sequential Monte Carlo over the last decade.

- Michael Isard and Andrew Blake popularized the method with their Condensation algorithm for image tracking.
- Soon after, Daphne Koller, Stuart Russell, Kevin Murphy, Sebastian Thrun, Dieter Fox and Frank Dellaert and their colleagues demonstrated the method in AI and robotics.
- Tom Griffiths and colleagues have studied SMC methods in cognitive psychology.

The $20^{\text {th }}$ century - Tracking

[Michael Isard \& Andrew Blake (1996)]

\square Approximation
Samples $\left\{\mathbf{x}_{t-1}^{(i)}, w_{t-1}^{(i)}\right\}$

The $20^{\text {th }}$ century - Tracking

[Boosted particle filter of Kenji Okuma, Jim Little \& David Lowe]

The $20^{\text {th }}$ century - State estimation

[Dieter Fox]
http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/

The $20^{\text {th }}$ century - State estimation

[Dieter Fox]
http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/

The $20^{\text {th }}$ century - State estimation

The $20^{\text {th }}$ century - The birth

[Metropolis and Ulam, 1949]

Tutorial overview

- Introduction Nando - 10min
- Part I Armaud - 50min
- Monte Carlo
- Sequential Monte Carlo
- Theoretical convergence
- Improved particle filters
- Online Bayesian parameter estimation
- Particle MCMC
- Smoothing
- Gradient based online parameter estimation
- Break 15min
- Part II NdF - 45 min
- Beyond state space models
- Eigenvalue problems
- Diffusion, protein folding \& stochastic control
- Time-varying Pitman-Yor Processes
- SMC for static distributions
- Boltzmann distributions \& ABC

Arnaud's slides will go here

Tutorial overview

- Introduction Nando - 10min
- Part I Arnaud - 50min
- Monte Carlo
- Sequential Monte Carlo
- Theoretical convergence
- Improved particle filters
- Online Bayesian parameter estimation
- Particle MCMC
- Smoothing
- Gradient based online parameter estimation
- Break 15min
- Part II NdIF - 45 min
- Beyond state space models
- Eigenvalue problems
- Diffusion, protein folding \& stochastic control
- Time-varying Pitman-Yor Processes
- SMC for static distributions
- Boltzmann distributions \& ABC

Sequential Monte Carlo (recap)

$P\left(X_{0}\right) P\left(X_{1} \mid X_{0}\right) P\left(Y_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(Y_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(Y_{3} \mid X_{3}\right) \propto P\left(X_{0: 3} \mid Y_{1: 3}\right)$

Sequences of distributions

- SMC methods can be used to sample approximately from any sequence of growing distributions $\left\{\pi_{n}\right\}_{n \geq 1}$

$$
\pi_{n}\left(x_{1: n}\right)=\frac{f_{n}\left(x_{1: n}\right)}{Z_{n}}
$$

where
$-f_{n}: \mathcal{X}^{n} \rightarrow \mathbb{R}^{+}$is known point-wise.
$-Z_{n}=\int f_{n}\left(x_{1: n}\right) d x_{1: n}$

- We introduce a proposal distribution $q_{n}\left(x_{1: n}\right)$ to approzimate Z_{n} :

$$
Z_{n}=\int \frac{f_{n}\left(x_{1: n}\right)}{q_{n}\left(x_{1: n}\right)} q_{n}\left(x_{1: n}\right) d x_{1: n}=\int W_{n}\left(x_{1: n}\right) q_{n}\left(x_{1: n}\right) d x_{1: n}
$$

Importance weights

- Let us construct the proposal sequentially: Introduce $q_{n}\left(x_{n} \mid x_{1: n-1}\right)$ to sample component X_{n} given $X_{1: n-1}=x_{1: n-1}$.
- Then the importance weight becomes: $\quad q_{n}\left(x_{\text {in }}\right)=q\left(x_{n} \mid x_{(n, n)}\right) q\left(x_{\left(x_{n-1}\right)}\right)$

$$
W_{n}=W_{n-1} \frac{f_{n}\left(x_{1: n}\right)}{f_{n-1}\left(x_{1: n}-1\right) q_{n}\left(x_{n} \mid x_{1: n}-1\right)}
$$

$$
\begin{aligned}
w_{n} & =\frac{f_{n}\left(x_{1: n}\right)}{q_{n}\left(x_{i: n}\right)} \frac{w_{n-1}}{w_{n-1}} \\
& =\frac{f_{n}\left(x_{1: n}\right)}{f_{n-1}\left(x_{1: n-1}\right)} \frac{q_{n-1}\left(x_{1: n-1}\right)}{q_{n}\left(x_{1: n}\right)} w_{n-1} \\
& =
\end{aligned}
$$

SMC algorithm

1. Initialize at time $n=1$
2. At time $n \geq 2$

- Sample $\bar{X}_{n}^{(i)} \sim q_{n}\left(x_{n} \mid X_{1: n-1}^{(i)}\right)$ and augment $\bar{X}_{1: n}^{(i)}=\left(X_{1: n-1}^{(i)}, \bar{X}_{n}^{(i)}\right)$
- Compute the sequential weight

$$
W_{n}^{(i)} \propto \frac{f_{n}\left(\bar{X}_{1: n}^{(i)}\right)}{f_{n-1}\left(\bar{X}_{1: n-1}^{(i)}\right) q_{n}\left(\bar{X}_{n}^{(i)} \mid \bar{X}_{1: n-1}^{(i)}\right)} .
$$

Then the target approximation is:

$$
\widetilde{\pi}_{n}\left(x_{1: n}\right)=\sum_{i=1}^{N} W_{n}^{(i)} \delta_{\bar{X}_{1: n}^{(i)}}\left(x_{1: n}\right)
$$

- Resample $X_{1: n}^{(i)} \sim \widetilde{\pi}_{n}\left(x_{1: n}\right)$ to obtain $\widehat{\pi}_{n}\left(x_{1: n}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1: n}^{(i)}}\left(x_{1: n}\right)$.

Example 1: Bayesian filtering

$$
\begin{aligned}
& f_{n}\left(x_{1: n}\right)=p\left(x_{1: n}, y_{1: n}\right), \pi_{n}\left(x_{1: n}\right)=p\left(x_{1: n} \mid y_{1: n}\right), z_{n}=p\left(y_{1: n}\right), \\
& q_{n}\left(x_{n} \mid x_{1: n-1}\right)=f\left(x_{n} \mid x_{1: n-1}\right) . \\
& P\left(f_{n}\left(x_{1: n}\right)\right.=P\left(x_{1: n}, y_{1: n}\right)=\prod_{k=1} P\left(x_{k} \mid x_{k-1}\right) P\left(y_{k} \mid x_{k}\right) \\
& P\left(x_{1: n}\right)=\frac{P\left(x_{1: n}, y_{1: n}\right)}{P\left(y_{1: n}\right)} \\
& \omega_{n}=\omega_{n-1} \frac{f_{n}\left(x_{1: n}\right)}{f_{n-1}\left(x_{1: n-1}\right)} \frac{1}{P\left(x_{n} \mid x_{n-1}\right)} \\
&=\omega_{n-1} P\left(y_{n} \mid x_{n}\right)
\end{aligned}
$$

Example 2: Eigen-particles

Computing eigen-pairs of exponentially large matrices and operators is an important problem in science. I will give two motivating examples:
i. Diffusion equation \& Schrodinger's equation in quantum physics
ii. Transfer matrices for estimating the partition function of Boltzmann machines

Both problems are of enormous importance in physics and learning.

Quantum Monte Carlo

$$
\left(-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)+\frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{\left(\mathbf{r i}_{i}-\mathbf{r}_{j}\right)}\right) \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)
$$

We can map this multivariable-differential equation to an eigenvalue problem:

$$
\int \psi(\mathbf{r}) K(\mathbf{s} \mid \mathbf{r}) d \mathbf{r}=\lambda \psi(\mathbf{s})
$$

In the discrete case, this is the largest eigenpair of the $M \times M$ matrix A :

where $a(r, s)$ is the entry of A at row r and column s.

Transfer matrices of Boltzmann Machines

$\mu_{i, j} \in\{-1,1\}$

$$
\begin{aligned}
Z & =\sum_{\{\boldsymbol{\mu}\}} \prod_{j=1}^{n} \exp \left(\nu \sum_{i=1}^{m} \mu_{i, j} \mu_{i+1, j}+\nu \sum_{i=1}^{m} \mu_{i, j} \mu_{i, j+1}\right) \\
& =\sum_{\left\{\boldsymbol{\sigma}_{1}, \ldots, \boldsymbol{\sigma}_{n}\right\}} \prod_{j=1}^{n} A\left(\boldsymbol{\sigma}_{j}, \boldsymbol{\sigma}_{j}+1\right)=\sum_{k=1}^{2^{m}} \lambda_{k}^{n}
\end{aligned}
$$

$$
\underbrace{\left(\boldsymbol{\sigma}_{j}=\left(\mu_{1, j}, \ldots, \mu_{m, j}\right)\right)}_{\text {nsager, Nimalan Mahendran] }}
$$

Power method
Let A have M linearly independent eigenvectors, then any rector \mathbf{v} may be represented as a linear combination of the eigenvectors of $A: \mathbf{v}=\sum_{i} c_{i} \mathbf{x}_{i}$, where c is a constant. Consequently, for sufficiently large n, $A^{n} \mathbf{v} \approx c_{1} \lambda_{1}^{n} \mathbf{x}_{1}$

$$
\begin{aligned}
\& \quad A v & =\sum_{i} c_{i} A x_{i}=\sum_{i} c_{i} \lambda x_{i} \\
A^{n} v & =\sum_{i} c_{i} \lambda_{i}^{n} x_{i}
\end{aligned}
$$

Particle power method

Succesive matrix-vector multiplication maps to Kernel-function multiplication (a path integral) in the continuous case:

$$
\int \cdots \int v\left(\mathbf{x}_{1}\right) \prod_{k=2}^{n} K\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) d \underline{\mathbf{x}_{1: n-1}} \approx x_{1} \lambda_{n}^{n} \psi\left(\mathbf{x}_{n}\right)
$$

The particle method is obtained by defining

$$
f\left(\mathbf{x}_{1: n}\right)=v\left(\mathbf{x}_{1}\right) \prod_{k=2}^{n} K\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)
$$

Consequently $c \lambda_{1}^{n} \longrightarrow Z_{n}$ and $\psi\left(\mathbf{x}_{n}\right) \longrightarrow \pi\left(\mathbf{x}_{n}\right)$. The largest eigenvalue λ_{1} of K is given by the ratio of successive partition functions:

$$
\lambda_{1}=\frac{Z_{n}}{Z_{n-1}}
$$

The importance weights are

$$
W_{n}=W_{n-1} \frac{v\left(\mathbf{x}_{1}\right) \prod_{k=2}^{n} K\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)}{Q\left(\mathbf{x}_{n} \mid \mathbf{x}_{1: n}\right) v\left(\mathbf{x}_{1}\right) \prod_{k=2}^{n-1} K\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)}=W_{n-1} \frac{K\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)}{Q\left(\mathbf{x}_{n} \mid \mathbf{x}_{1: n}\right)}
$$

Example 3: Particle diffusion

- A particle $\left\{X_{n}\right\}_{n \geq 1}$ evolves in a random medium

$$
X_{1} \sim \mu(\cdot), \quad X_{n+1} \mid X_{n}=x \sim p(\cdot \mid x) .
$$

- At time n, the probability of it being killed is $1-g\left(X_{n}\right)$ with $0 \leq g(x) \leq 1$.
- One wants to approximate $\operatorname{Pr}(T>n)$.

Example 3: Particle diffusion

- Again, we obtain our familiar path integral:

$$
\begin{aligned}
\operatorname{Pr}(T>n) & =\mathbb{E}_{\mu}\left[\text { Probability of not being killed at } n \text { given } X_{1: n}\right] \\
& =\int \cdots \int \mu\left(x_{1}\right) \prod_{k=2}^{n} p\left(x_{k} \mid x_{k-1}\right) \underbrace{\prod_{k=1}^{n} g\left(x_{k}\right)}_{\text {Probability to survive at } n} d x_{1: n}
\end{aligned}
$$

- Consider

$$
\begin{aligned}
& f_{n}\left(x_{1: n}\right)=\mu\left(x_{1}\right) \prod_{k=2}^{n} p\left(x_{k} \mid x_{k-1}\right) \prod_{k=1}^{n} g\left(x_{k}\right) \\
& \pi_{n}\left(x_{1: n}\right)=\frac{f_{n}\left(x_{1: n}\right)}{Z_{n}} \text { where } Z_{n}=\operatorname{Pr}(T>n)
\end{aligned}
$$

- SMC is then used to compute Z_{n}, the probability of not being killed at time n, and to approximate the distribution of the paths having survived at time n.

Example 4: SAWs

Goal: Compute the volume Z_{n} of a self-avoiding random walk, with uniform distribution on a lattice:

$$
\pi_{n}\left(x_{1: n}\right)=Z_{n}^{-1} 1_{D_{n}}\left(x_{1: n}\right)
$$

where

$$
\begin{aligned}
D_{n} & =\left\{x_{1: n} \in E_{n} \text { such that } x_{k} \sim x_{k+1} \text { and } x_{k} \neq x_{i} \text { for } k \neq i\right\} \\
Z_{n} & =\text { cardinality of } D_{n}
\end{aligned}
$$

SAWs on lattices are often used to study polymers and protein folding.

[See e.g. Peter Grassberger (PERM) \& Alena Shmygelska; Rosenbluth Method]

Example 5: Stochastic control

- Consider a Fredholm equation of the 2nd kind (e.g. Bellman backup):

$$
v\left(x_{0}\right)=r\left(x_{0}\right)+\int K\left(x_{0}, x_{1}\right) v\left(x_{1}\right) d x_{1}
$$

- This expression can be easily transformed into a path integral (Von Neumann series representation):

$$
v\left(x_{0}\right)=r\left(x_{0}\right)+\sum_{n=1}^{\infty} \int r\left(x_{n}\right) \prod_{k=1}^{n} K\left(x_{k-1}, x_{k}\right) d x_{1: n}
$$

- The SMC sampler again follows by choosing

$$
\begin{aligned}
f_{0}\left(x_{0}\right) & =r\left(x_{0}\right) \\
f_{n}\left(x_{0: n}\right) & =r\left(x_{n}\right) \prod_{k=1}^{n} K\left(x_{k-1}, x_{k}\right)
\end{aligned}
$$

- In this case we have a trans-dimensional distribution, so we do a little bit more work when implementing the method.
[AD \& Vladislav Tadic, 2005]

Particle smoothing can be used in the E step of the EM algorithm for MDPs

MDP posterior
$\widetilde{p}_{\theta}\left(x_{0: k}, a_{0: k} \mid k, r_{k}\right)=\frac{r\left(x_{k}, a_{k}\right) p_{\theta}\left(x_{0: k}, a_{0: k} \mid k\right)}{\widetilde{p}_{\theta}\left(r_{k} \mid k\right)}$
[See e.g. Matt Hoffman et al, 2007]

Marginal likelihood

Example 6: Dynamic Dirichlet processes

[Francois Caron, Manuel Davy \& AD, 2007]

SMC for static models

- Let $\left\{\pi_{n}\right\}_{n \geq 1}$ be a sequence of probability distributions defined on \mathcal{X} such that each $\bar{\pi}_{n}(x)$ is known up to a normalizing constant, i.e.

$$
\pi_{n}(x)=\underbrace{Z_{n}^{-1}}_{\text {unknown }} \underbrace{f_{n}(x)}_{\text {known }}
$$

- We want to sample approximately from $\pi_{n}(x)$ and compute Z_{n} sequentially.
- This differs from the standard SMC, where $\pi_{n}\left(x_{1: n}\right)$ is defined on \mathcal{X}^{n}.

Static SMC applications

- Sequential Bayesian Inference: $\pi_{n}(x)=p\left(x \mid y_{1: n}\right)$.

- Global optimization: $\pi_{n}(x) \propto[\pi(x)]^{\eta_{n}}$ with $\left\{\eta_{n}\right\}$ increasing sequence such that $\eta_{n} \rightarrow \infty$.
- Sampling from a fixed target $\pi_{n}(x) \propto\left[\mu_{1}(x)\right]^{\eta_{n}}[\pi(x)]^{1-\eta_{n}}$ where μ_{1} is easy to sample from. Use sequence $\eta_{1}=1>\eta_{n-1}>\eta_{n}>\eta_{\text {final }}=0$. Then $\pi_{1}(x) \propto \mu(x)$ and $\pi_{\text {final }}(x) \propto \pi(x)$
- Rare event simulation $\pi(A) \ll 1: \pi_{n}(x) \propto \pi(x) 1_{E_{n}}(x)$ with Z_{1} known. Use sequence $E_{1}=\mathcal{X} \supset E_{n-1} \supset E_{n} \supset E_{\text {final }}=A$. Then $Z_{\text {final }}=\pi(A)$.
- Classical CS problems: SAT, constraint satisfaction, computing volumes in high dimensions, matrix permanents and so on.

Static SMC derivation

- Construct an artificial distribution that is the product of the target distribution that we want to sample from and a backward kernel L :
$\widetilde{\pi}_{n}\left(x_{1: n}\right)=Z_{n}^{-1} f_{n}\left(x_{1: n}\right)$, where $\quad f_{n}\left(x_{1: n}\right)=\underbrace{f_{n}\left(x_{n}\right)}_{\text {target }} \underbrace{\prod_{k=1}^{n-1} L_{k}\left(x_{k} \mid x_{k+1}\right)}_{\text {artificial backward transitions }}$
such that $\pi_{n}\left(x_{n}\right)=\int \widetilde{\pi}_{n}\left(x_{1: n}\right) d x_{1: n}$.
- The importance weights become:

$$
\begin{aligned}
W_{n}=\frac{f_{n}\left(x_{1: n}\right)}{K_{n}\left(x_{1: n}\right)} & =W_{n-1} \frac{K_{n-1}\left(x_{1: n-1}\right)}{f_{n-1}\left(x_{1: n-1}\right)} \frac{f_{n}\left(x_{1: n}\right)}{K_{n}\left(x_{1: n}\right)} \\
& =W_{n-1} \frac{f_{n}\left(x_{n}\right) L_{n-1}\left(x_{n-1} \mid x_{n}\right)}{f_{n-1}\left(x_{n-1}\right) K_{n}\left(x_{n} \mid x_{n-1}\right)}
\end{aligned}
$$

- For the proposal $K($.$) , we can use any MCMC kernel.$
- We only care about $\pi_{n}\left(x_{n}\right)=Z^{-1} f_{n}\left(x_{n}\right)$ so no degeneracy problem.

Static SMC algorithm

1. Initialize at time $n=1$
2. At time $n \geq 2$
(a) Sample $\bar{X}_{n}^{(i)} \sim K_{n}\left(x_{n} \mid X_{n-1}^{(i)}\right)$ and augment $\bar{X}_{n-1: n}^{(i)}=\left(X_{n-1}^{(i)}, \bar{X}_{n}^{(i)}\right)$
(b) Compute the importance weights

$$
W_{n}^{(i)}=W_{n-1}^{(i)} \frac{f_{n}\left(\bar{X}_{n}^{(i)}\right) L_{n-1}\left(\bar{X}_{n-1}^{(i)} \mid \bar{X}_{n}^{(i)}\right)}{f_{n-1}\left(\bar{X}_{n-1}^{(i)}\right) K_{n}\left(\bar{X}_{n}^{(i)} \mid \bar{X}_{n-1}^{(i)}\right)} .
$$

Then the weighted approximation is

$$
\widetilde{\pi}_{n}\left(x_{n}\right)=\sum_{i=1}^{N} W_{n}^{(i)} \delta_{\bar{X}_{n}^{(i)}}\left(x_{n}\right)
$$

(c) Resample $X_{n}^{(i)} \sim \widetilde{\pi}_{n}\left(x_{n}\right)$ to obtain $\widehat{\pi}_{n}\left(x_{n}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{n}^{(i)}}\left(x_{n}\right)$.

Static SMC: Choice of L

- A default (easiest) choice consists of using a π_{n}-invariant MCMC kernel K_{n} and the corresponding reversed kernel L_{n-1} :

$$
L_{n-1}\left(x_{n-1} \mid x_{n}\right)=\frac{\pi_{n}\left(x_{n-1}\right) K_{n}\left(x_{n} \mid x_{n-1}\right)}{\pi_{n}\left(x_{n}\right)}
$$

- In this case, the weights simplify to:

$$
W_{n}^{(i)}=W_{n-1}^{(i)} \frac{f_{n}\left(X_{n-1}^{(i)}\right)}{f_{n-1}\left(X_{n-1}^{(i)}\right)}
$$

- This particular choice appeared independently in physics and statistics (Jarzynski, 1997; Crooks, 1998; Gilks \& Berzuini, 2001; Neal, 2001). In machine learning, it's often referred to as annealed importance sampling.
- Smarter choices of L can be sometimes implemented in practice.

Example 1: Deep Boltzmann machines

[Firas Hamze, Hot coupling, 2005] [Peter Carbonetto, 2007, 2009]

Some results for undirected graphs

Example 2: ABC

- Consider a Bayesian model with prior $p(\theta)$ and likelihood $L(y \mid \theta)$ for data y. The likelihood is assumed to be intractable but we can sample from it.
- ABC algorithm:

1. Sample $\theta^{(i)} \sim p(\theta)$
2. Hallucinate data $Z^{(i)} \sim L\left(z \mid \theta^{(i)}\right)$
3. Accept samples if hallucinations look like the data - if $d\left(y, Z^{(i)}\right) \leq \varepsilon$, where $d: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$is a metric.

- The samples are approximately distributed according to:

$$
\pi_{\varepsilon}(\theta, x \mid y) \propto p(\theta) L(x \mid \theta) 1_{d(y, z) \leq \varepsilon}
$$

The hope is that $\pi_{\varepsilon}(\theta \mid y) \approx \pi(\theta \mid y)$ for very small ε.

- Inefficient for ε small!

SMC samplers for ABC

- Define a sequence of artificial targets $\left\{\pi_{\varepsilon_{n}}(\theta \mid y)\right\}_{n=1, \ldots, P}$ where

$$
\varepsilon_{1}=\infty \geq \varepsilon_{2} \geq \cdots \geq \varepsilon_{P}=\varepsilon
$$

- We can use SMC to sample from $\left\{\pi_{\varepsilon_{n}}(\theta \mid y)\right\}_{n=1, \ldots, P}$ by adopting a MetropolisHastings proposal kernel $K_{n}\left(\left(\theta_{n}, z_{n}\right) \mid\left(\theta_{n-1}, z_{n-1}\right)\right)$, with importance weights

$$
W_{n}^{(i)}=W_{n-1}^{(i)} \frac{1_{d\left(y, Z_{n-1}^{(i)}\right) \leq \varepsilon_{n}}}{1_{d\left(y, Z_{n-1}^{(i)}\right) \leq \varepsilon_{n-1}}}
$$

- Smarter algorithms have been proposed, which for example, compute the parameters ε_{n} and of K_{n} adaptively.

Final remarks

- SMC is a general, easy and flexible strategy for sampling from any arbitrary sequence of targets and for computing their normalizing constants.
- SMC is benefiting from the advent of GPUs. Anthony lee Oxfard
- SMC remains limited to moderately high-dimensional problems.

Thank you!

Nando de Freitas \& Arnaud Doucet

Naïve SMC for static models

- At time $n-1$, you have particles $X_{n-1}^{(i)} \sim \pi_{n-1}\left(x_{n-1}\right)$.
- Move the particles according to a transition kernel

$$
X_{n}^{(i)} \sim K_{n}\left(x_{n} \mid X_{n-1}^{(i)}\right)
$$

hence marginally

$$
X_{n}^{(i)} \sim \mu_{n}\left(x_{n}\right) \text { where } \mu_{n}\left(x_{n}\right)=\int \pi_{n-1}\left(x_{n-1}\right) K_{n}\left(x_{n} \mid x_{n-1}\right) d x_{n-1}
$$

- Our target is $\pi_{n}\left(x_{n}\right)$ so the importance weight is

$$
W_{n}^{(i)} \propto \frac{\pi_{n}\left(X_{n}^{(i)}\right)}{\mu_{n}\left(X_{n}^{(i)}\right)}
$$

- Problem: $\mu_{n}\left(x_{n}\right)$ does not admit an analytical expression in general cases.

