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SMC in this community

Many researchers in the NIPS community have contributed to the 
field of Sequential Monte Carlo over the last decade.

• Michael Isard and Andrew Blake popularized the method with their 
Condensation algorithm for image tracking.Condensation algorithm for image tracking. 

• Soon after, Daphne Koller, Stuart Russell, Kevin Murphy, Sebastian Thrun, 
Dieter Fox and Frank Dellaert and their colleagues demonstrated the method 
in AI and robotics.in AI and robotics.

• Tom Griffiths and colleagues have studied SMC methods in cognitive 
psychology.



The 20th century - TrackingThe 20th century - Tracking

[Michael Isard & Andrew Blake (1996)]



The 20th century - TrackingThe 20th century - Tracking

[Boosted particle filter of Kenji Okuma, Jim Little & David Lowe]



The 20th century – State estimationThe 20th century – State estimation

http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/
[Dieter Fox]
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The 20th century – The birthThe 20th century – The birth

[Metropolis and Ulam, 1949]
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Sequential Monte Carlo (recap)

X0 X1
X3X21 2

y1Y1 Y2 Y3

P (X0) P (X2|X1)P (Y2|X2)P (X1|X0)P (Y1|X1) P (X3|X2)P (Y3|X3) ∝ P (X0:3|Y1:3)



Sequences of distributions
• SMC methods can be used to sample approximately from any sequence of
growing distributions {πn}n≥1

f (x )
πn (x1:n) =

fn (x1:n)

Zn

where

— fn : Xn → R+ is known point-wise.
— Zn =

R
fn (x1:n)dx1:n

• We introduce a proposal distribution qn (x1:n) to approzimate Zn:

Zn =

Z
fn (x1:n)

qn (x1:n)
qn (x1:n)dx1:n =

Z
Wn (x1:n) qn (x1:n)dx1:n



Importance weights
• Let us construct the proposal sequentially: Introduce qn (xn|x1:n−1) to
sample component Xn given X1:n−1 = x1:n−1.

• Then the importance weight becomes:

Wn =Wn−1
fn (x1:n)

fn−1 (x1:n−1)qn (xn| x1:n−1)



SMC algorithm
1. Initialize at time n = 11. Initialize at time n 1

2. At time n ≥ 2

S l X
(i)

³
|X(i)

´
d t X

(i)
³
X
(i)

X
(i)
´

• Sample X( )

n ∼ qn
³
xn|X(i)

1:n−1
´
and augment X

( )

1:n =
³
X
(i)
1:n−1, X

( )

n

´
• Compute the sequential weight

W (i)
n ∝

fn

³
X
(i)

1:n

´
fn−1

³
X
(i)

1:n−1
´
qn

³
X
(i)

n

¯̄̄
X
(i)

1:n−1
´ .³ ´ ³ ¯ ´

Then the target approximation is:

Neπn (x1:n) = NX
i=1

W (i)
n δ

X
(i)
1:n

(x1:n)

• Resample X(i)
1:n ∼ eπn (x1:n) to obtain bπn (x1:n) = 1

N

PN
i=1 δX(i)

1:n
(x1:n).



Example 1: Bayesian filtering
f (x ) = p (x y ) π (x ) = p (x | y ) Z = p (y )fn (x1:n) = p (x1:n, y1:n), πn (x1:n) = p (x1:n| y1:n) , Zn = p (y1:n),

qn (xn|x1:n−1) = f (xn|x1:n−1).



Example 2: Eigen-particles

Computing eigen-pairs of exponentially large matrices and operators is 
an important problem in science. I will give two motivating examples: 

i. Diffusion equation & Schrodinger’s equation in quantum physics

ii. Transfer matrices for estimating the partition function of 
Boltzmann machines

Both problems are of enormous importance in physics and learning.



Quantum Monte Carlo

We can map this multivariable differential equation to an eigenvalue problem:p q g pZ
ψ(r)K(s|r)dr = λψ(s)

In the discrete case, this is the largest eigenpair of the M ×M matrix A:

A λ
MX

( ) ( ) λ ( ) 1 2 MAx = λx ≡
X
i=1

x(r)a(r, s) = λx(s) , s = 1, 2, . . . ,M

where a(r, s) is the entry of A at row r and column s.( , ) y

[JB Anderson, 1975, I Kosztin et al, 1997]



Transfer matrices of Boltzmann Machines
μi,jμi,j ∈ {−1, 1}

n
Ã

m m
!

Z =
X
{μ}

Y
j=1

exp

Ã
ν
X
i=1

μi,jμi+1,j + ν
X
i=1

μi,jμi,j+1

!
n 2m

=
X

{σ1,...,σn}

Y
j=1

A(σj ,σj+1) =
X
k=1

λnk σj = (μ1,j , . . . ,μm,j)

[see e.g. Onsager, Nimalan Mahendran]



Power method
Let A have M linearly independent eigenvectors, then any vector v may be

A
P

represented as a linear combination of the eigenvectors of A: v =
P

i cixi,
where c is a constant. Consequently, for sufficiently large n,

An v ≈ c1λn x1A v ≈ c1λ1 x1



Particle power method
Succesive matrix-vector multiplication maps to Kernel-function multiplicationSuccesive matrix vector multiplication maps to Kernel function multiplication
(a path integral) in the continuous case:Z Z

(x )

nY
K(x |x )dx ≈ λnψ(x )

Z
· · ·
Z
v(x1)

Y
k=2

K(xk|xk−1)dx1:n−1 ≈ c1λn1ψ(xn)

The particle method is obtained by defining

f(x1:n) = v(x1)
nY
k=2

K(xk|xk−1)

Consequently cλn1 −→ Zn and ψ(xn) −→ π(xn). The largest eigenvalue λ1 of
K is given by the ratio of successive partition functions:

λ1 =
Zn
Zn−1

The importance weights are

Wn =Wn−1
v(x1)

Qn
k=2K(xk|xk−1)

Q(xn|x1:n)v(x1)
Qn−1
k=2 K(xk|xk−1)

=Wn−1
K(xn|xn−1)
Q(xn|x1:n)



Example 3: Particle diffusion
A i l {X } l i d di• A particle {Xn}n≥1 evolves in a random medium

X1 ∼ μ (·) , Xn+1|Xn = x ∼ p ( ·|x) .

• At time n, the probability of it being killed is 1−g (Xn) with 0 ≤ g (x) ≤ 1.

• One wants to approximate Pr (T > n).pp ( )

??



Example 3: Particle diffusion
• Again we obtain our familiar path integral:• Again, we obtain our familiar path integral:

Pr (T > n) = Eμ [Probability of not being killed at n given X1:n]Z Z n n

=

Z
· · ·
Z

μ (x1)
Y
k=2

p (xk|xk−1)
Y
k=1

g (xk)| {z }
Probability to survive at n

dx1:n

y

• Consider
n n

fn (x1:n) = μ (x1)
Y
k=2

p (xk|xk−1)
Y
k=1

g (xk)

( )
fn (x1:n)

h Z P (T > )πn (x1:n) =
f ( )

Zn
where Zn = Pr (T > n)

• SMC is then used to compute Zn, the probability of not being killed at
time n, and to approximate the distribution of the paths having survived
at time n.

[Del Moral & AD, 2004]



Example 4: SAWs
Goal: Compute the volume Zn of a self-avoiding random walk, with uniformGoal: Compute the volume Zn of a self avoiding random walk, with uniform
distribution on a lattice:

πn (x1:n) = Zn
−11Dn

(x1:n)

where

D = {x1 ∈ E such that xk ∼ xk+1 and xk 6= xi for k 6= i}

SAWs on lattices are often used to study polymers and protein folding.

Dn = {x1:n ∈ En such that xk ∼ xk+1 and xk 6= xi for k 6= i} ,
Zn = cardinality of Dn.

[See e.g. Peter Grassberger (PERM) & Alena Shmygelska; Rosenbluth Method]



Example 5: Stochastic control
• Consider a Fredholm equation of the 2nd kind (e.g. Bellman backup):( )

v(x0) = r(x0) +

Z
K(x0, x1)v(x1)dx1

• This expression can be easily transformed into a path integral (Von Neu-
mann series representation):

v(x0) = r(x0) +
∞X
n=1

Z
r(xn)

nY
k=1

K(xk−1, xk)dx1:n

• The SMC sampler again follows by choosing

f0 (x0) = r (x0)f0 (x0) r (x0)

fn (x0:n) = r (xn)

nY
k=1

K(xk−1, xk)

[AD & Vladislav Tadic, 2005]
• In this case we have a trans-dimensional distribution, so we do a little bit
more work when implementing the method.



Particle smoothing can be used in the E 
step of the EM algorithm for MDPsstep of the EM algorithm for MDPs

x1 x2 x3

a1 a2 a3

rr

Likelihood PriorLikelihood Prior
MDP posterior

Marginal likelihood[See e.g. Matt Hoffman et al, 2007]



Example 6: Dynamic Dirichlet processes

[Francois Caron, Manuel Davy & AD, 2007]



SMC for static models
• Let {πn}n≥1 be a sequence of probability distributions defined on X such{ }n≥1 y
that each πn (x) is known up to a normalizing constant, i.e.

πn (x) = Zn
−1 fn (x)n ( ) n| {z }

unknown

fn ( )| {z }
known

• We want to sample approximately from πn (x) and compute Zn sequen-
tially.

• This differs from the standard SMC, where πn (x1:n) is defined on Xn.

X2X1X2X1 X2X1

πn(x) = Z
−1e

P
i

P
j xiwijxj

X2X1

π3(x)π2(x)π1(x)

2

X3

1

X4 X5

X2

X3

X1

X4 X5

X2

X3

X1

X4 X5

X2

X3

X1

X4 X5 …



Static SMC applications
• Sequential Bayesian Inference: πn (x) = p (x| y1:n)• Sequential Bayesian Inference: πn (x) p (x| y1:n) .

X

Y1 Y2 YnY3
…

• Global optimization: πn (x) ∝ [π (x)]ηn with {ηn} increasing sequence
such that ηn →∞.

• Sampling from a fixed target πn (x) ∝ [μ1 (x)]ηn [π (x)]1−ηn where μ1p g g n ( ) [μ1 ( )] [ ( )] μ1
is easy to sample from. Use sequence η1 = 1 > ηn−1 > ηn > ηfinal = 0.
Then π1(x) ∝ μ(x) and πfinal(x) ∝ π(x)

• Rare event simulation π (A) ¿ 1: πn (x) ∝ π (x) 1E (x) with Z1• Rare event simulation π (A) ¿ 1: πn (x) ∝ π (x) 1En (x) with Z1
known. Use sequence E1 = X ⊃ En−1 ⊃ En ⊃ Efinal = A. Then
Zfinal = π (A) .

Cl i l CS bl SAT t i t ti f ti ti l• Classical CS problems: SAT, constraint satisfaction, computing vol-
umes in high dimensions, matrix permanents and so on.



Static SMC derivation
• Construct an artificial distribution that is the product of the target dis-

b h l f d b k d k ltribution that we want to sample from and a backward kernel L:

eπn (x1:n) = Zn−1fn (x1:n), where fn (x1:n) = fn (xn)
n−1Y

Lk (xk|xk+1)n ( 1:n) n fn ( 1:n), fn ( 1:n) fn ( n)| {z }
target

Y
k=1

k ( k| k+1)| {z }
artificial backward transitions

h h ( )
R e ( ) dsuch that πn (xn) =
R eπn (x1:n) dx1:n.

• The importance weights become:

f (x ) K (x ) f (x )
Wn =

fn(x1:n)

Kn(x1:n)
= Wn−1

Kn−1(x1:n−1)
fn−1(x1:n−1)

fn(x1:n)

Kn(x1:n)

= Wn−1
fn(xn)Ln−1(xn−1|xn)
f ( )K ( | )

n 1
fn−1 (xn−1)Kn(xn|xn−1)

• For the proposal K(.), we can use any MCMC kernel.

[Pierre Del Moral, AD, Ajay Jasra, 2006]

• We only care about πn (xn) = Z−1fn (xn) so no degeneracy problem.



Static SMC algorithm
1 I i i li i 11. Initialize at time n = 1

2. At time n ≥ 2

(a) SampleX
(i)

n ∼ Kn

³
xn|X(i)

n−1
´
and augmentX

(i)

n−1:n =
³
X
(i)
n−1, X

(i)

n

´
(b) Compute the importance weights

W (i)
n = W

(i)
n−1

fn

³
X
(i)

n

´
Ln−1

³
X
(i)

n−1
¯̄̄
X
(i)

n

´
fn−1

³
X
(i)

n 1

´
Kn

³
X
(i)

n

¯̄̄
X
(i)

n 1

´ .
fn 1

³
n−1

´
n

³
n
¯̄

n−1
´

Then the weighted approximation is

Neπn (xn) = NX
i=1

W (i)
n δ

X
(i)
n

(xn)

(c) Resample X
(i)
n ∼ eπn (xn) to obtain bπn (xn) = 1

N

PN
i=1 δX(i)

n
(xn).



Static SMC: Choice of L

• A default (easiest) choice consists of using a πn-invariant MCMC kernel
Kn and the corresponding reversed kernel Ln−1:

Ln−1 (xn−1|xn) =
πn (xn−1)Kn (xn|xn−1)

πn (xn)

• In this case, the weights simplify to:

W (i) W
(i)

fn

³
X
(i)
n−1

´
W (i)
n =W

( )
n−1

³ ´
fn−1

³
X
(i)
n−1

´
Thi ti l h i d i d d tl i h i d t ti ti• This particular choice appeared independently in physics and statistics
(Jarzynski, 1997; Crooks, 1998; Gilks & Berzuini, 2001; Neal, 2001). In
machine learning, it’s often referred to as annealed importance sampling.

• Smarter choices of L can be sometimes implemented in practice.



Example 1: Deep Boltzmann machines

πn(x) = Z
−1Y

i,j

φ(xi, xj)π3(x)π2(x)π1(x)

X2

X3

X1

X4 X5

X2

X3

X1

X4 X5

X2

X3

X1

X4 X5

X2

X3

X1

X4 X5 … 3 X4 X5X3 X4 X5 X3 X4 X5 X3 X4 X5 …
W

(i)
2 ∝ φ(X

(i)
2,3, X

(i)
2,2) W

(i)
3 ∝ φ(X

(i)
3,1, X

(i)
3,5)

[Firas Hamze, Hot coupling, 2005] [Peter Carbonetto, 2007, 2009]



Some results for undirected graphsSome results for undirected graphs



Example 2: ABC
C id B i d l i h i (θ) d lik lih d L ( | θ) f d• Consider a Bayesian model with prior p (θ) and likelihood L (y| θ) for data
y. The likelihood is assumed to be intractable but we can sample from it.

• ABC algorithm:• ABC algorithm:

1. Sample θ(i) ∼ p (θ)
2. Hallucinate data Z(i) ∼ L

¡
z| θ(i)

¢¡
|

¢
3. Accept samples if hallucinations look like the data – if d

¡
y, Z(i)

¢
≤ ε,

where d : Y × Y → R+ is a metric.

• The samples are approximately distributed according to:

πε (θ, x| y) ∝ p (θ)L (x| θ) 1d(y,z)≤ε

The hope is that πε (θ| y) ≈ π (θ| y) for very small ε.

• Inefficient for ε small !
[Beaumont, 2002]



SMC samplers for ABC

• Define a sequence of artificial targets {πεn (θ| y)}n=1,...,P where

ε1 =∞ ≥ ε2 ≥ · · · ≥ εP = ε.

• We can use SMC to sample from {πεn (θ| y)}n=1,...,P by adopting a Metropolis-
Hastings proposal kernelKn ((θn, zn)| (θn−1, zn−1)), with importance weights(( )| ( ))

W (i)
n =W

(i)
n−1

1
d
³
y,Z

(i)
n−1

´
≤εn

1
d
³

Z
(i)

´
≤d

³
y,Z

(i)
n−1

´
≤εn−1

• Smarter algorithms have been proposed, which for example, compute the
parameters ε and of K adaptivelyparameters εn and of Kn adaptively.

[Pierre Del Moral, AD, Ajay Jasra, 2009]



Final remarks

SMC i l d fl ibl t t f li f• SMC is a general, easy and flexible strategy for sampling from any 
arbitrary sequence of targets and for computing their normalizing 
constants.

• SMC is benefiting from the advent of GPUs.

• SMC remains limited to moderately high-dimensional problems.

Thank you!

Nando de Freitas & Arnaud Doucet



Naïve SMC for static models
• At time n− 1 you have particles X(i)

1 ∼ πn 1 (xn 1)• At time n 1, you have particles Xn−1 ∼ πn−1 (xn−1).

• Move the particles according to a transition kernel

(i)
³

| (i)
´

X(i)
n ∼ Kn

³
xn|X(i)

n−1
´

hence marginally

X(i)
n ∼ μn (xn) where μn (xn) =

Z
πn−1 (xn−1)Kn (xn|xn−1) dxn−1.

• Our target is πn (xn) so the importance weight is

(i)
πn

³
X
(i)
n

´
W (i)
n ∝

³ ´
μn

³
X
(i)
n

´ .
• Problem: μn (xn) does not admit an analytical expression in general
cases.










