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We discuss a novel strategy for training neural networks using sequen-
tial Monte Carlo algorithms and propose a new hybrid gradient descent/
sampling importance resampling algorithm (HySIR). In terms of com-
putational time and accuracy, the hybrid SIR is a clear improvement
over conventional sequential Monte Carlo techniques. The new algo-
rithm may be viewed as a global optimization strategy that allows us
to learn the probability distributions of the network weights and out-
puts in a sequential framework. It is well suited to applications involv-
ing on-line, nonlinear, and nongaussian signal processing. We show how
the new algorithm outperforms extended Kalman filter training on sev-
eral problems. In particular, we address the problem of pricing option
contracts, traded in financial markets. In this context, we are able to es-
timate the one-step-ahead probability density functions of the options
prices.

1 Introduction

Probabilistic modelling coupled with nonlinear function approximators is
a powerful tool in solving many real-world problems. In the engineering
community, there are many examples of problems involving large data sets
that have been tackled with nonlinear function approximators such as the
multilayer perceptron (MLP) or radial basis functions. Much of the em-
phasis here is on performance, in the form of accuracy of prediction on
unseen data. The tricks required to estimate parameters of very large mod-
els and the handling of very large data sets become interesting challenges
too. Tools such as cross validation to deal with overfitting and bootstrap
to deal with model uncertainty have proved to be very effective. Neural
networks applied to speech recognition (Robinson, 1994) and handwrit-
ten digit recognition (Le Cun et al., 1989) are examples. Such work has
demonstrated that many interesting and hard inference tasks, involving
thousands of free parameters, can indeed be solved at a desirable level
of performance. On the other hand, in the statistics community, we see
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that the emphasis is on rigorous mathematical analysis of algorithms, care-
ful model formulation, and model criticism. This work has led to a rich
paradigm to handle various inference problems in which a good collec-
tion of powerful algorithms exist. Sampling techniques applied to neural
networks, starting from the work of Radford Neal, is a classic example
where both the above features are exploited (Neal, 1996). He shows that
nonlinear function approximators in the form of MLPs can be trained, and
their performance evaluated, in a Bayesian framework. This formulation
leads to probability distributions that are difficult to handle analytically.
Markov chain Monte Carlo (MCMC) sampling methods are used to make
inferences in the Bayesian framework. While sampling methods tend to be
much richer in exploring the probability distributions, approximate meth-
ods, such as gaussian approximation, have also attracted interest (Bishop,
1995; Mackay, 1992).

Many problems, such as time-series analysis, are characterized by data
that arrive sequentially. In such problems one has the task of performing
model estimation, model validation, and inference sequentially, on the ar-
rival of each item of data. By the very nature of such real-time tasks, or
if we suspect the source of the data to be time varying, we may wish to
adopt a sequential strategy in which each item of data is used only once
and then discarded. In this case, deciding what information we should be
propagating on a sample-by-sample basis becomes an interesting topic. In
the classic state-space model estimation by a Kalman filter setting, one de-
fines a gaussian probability density over the parameters to be estimated.
The mean and covariance matrix are propagated using recursive update
equations each time new data are received. Use of the matrix inversion
lemma allows an elegant update of the inverse covariance matrix without
actually having to invert a matrix at each sample. This is a widely studied
topic, optimal in the case of linear gaussian models. For nonlinear models,
the common trick is Taylor series expansion around the operating point,
leading to the extended Kalman filter (EKF). The derivation of the Kalman
filter starting from a Bayesian setting is of much interest. This allows for
tuning of the noise levels as well as running multiple models in parallel to
evaluate model likelihoods. Jazwinski (1970) and Bar-Shalom and Li (1993)
are classic textbooks dealing with these aspects. Our earlier work reviews
these concepts and shows them applied in a neural network context (de
Freitas, Niranjan, & Gee, 1997, 1998a).

Taylor series approximation leading to the EKF makes gross simplifica-
tion of the probabilistic specification of the model. With nonlinear models,
the probability distributions of interest tend to be multimodal. Gaussian
approximation in such cases could miss the rich structure brought in by the
nonlinear model. Sequential sampling techniques provide a class of algo-
rithms to address this issue. A good application of these ideas is tracking
in computer vision (Isard & Blake, 1996), where the Kalman filter approx-
imation is shown to fail to capture the multimodalities. Sequential sam-
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pling algorithms, under the names of particle filters, sequential sampling-
importance resampling (SIR), bootstrap filters, and condensation trackers
have also been applied to a wide range of problems, including target track-
ing (Gordon, Salmond, & Smith, 1993), financial analysis (Müller, 1992; Pitt
& Shephard, 1997), diagnostic measures of fit (Pitt & Shephard, 1997), se-
quential imputation in missing data problems (Kong, Liu, & Wong, 1994),
blind deconvolution (Liu & Chen, 1995) and medical prognosis (Berzuini,
Best, Gilks, & Larizza, 1997).

In this article we focus on neural networks, constraining ourselves to
sequential training and predictions. We use sampling techniques in a state-
space setting to show how an MLP may be trained in environments where
data arrive one at a time. We consider sequential importance sampling and
resampling algorithms and illustrate their performance on some simple
problems. Further, we introduce a hybrid algorithm in which each sam-
pling step is supplemented by a gradient-type update step. This could be a
straightforward gradient descent on all the samples propagated or even an
EKF type update of the samples. We do not deal here with the problem of
choosing the network architecture.

We target this work primarily at the neural networks community. We
believe that many signal processing applications addressed by this com-
munity will fall into this category. Part of the article is written in a tutorial
form to introduce the concepts. We also believe the real-life example we
include and the experience gained in applying sequential sampling tech-
niques with a highly nonlinear function approximator will be of benefit to
the statistics community. In particular, we improve the existing sequential
sampling methods by incorporating gradient information. This results in a
hybrid optimization scheme (HySIR), whereby each sampling trajectory of
the sampling algorithm is updated with an EKF. The HySIR may therefore
be interpreted as an efficient dynamic mixture of EKFs, whose accuracy
improves as the number of filters increases. We show that the HySIR algo-
rithm outperforms conventional sequential sampling methods in terms of
computational speed and accuracy.

In section 2, we formulate the problem of training neural networks in
terms of a state-space representation. A theoretical Bayesian solution is
subsequently proposed in section 3. Owing to the practical difficulties that
arise when computing the Bayesian solution, three approximate methods
(numerical integration, gaussian approximation, and Monte Carlo simula-
tion) are discussed in section 4. In sections 5 and 6, we derive a generic
sequential importance sampling methodology and point out some of the
limitations of conventional sampling methods. In section 7, we introduce
the HySIR algorithm. Finally, in section 8, we test the algorithms on sev-
eral problems, including the pricing of options on the Financial Times Stock
Exchange 100-Share (FTSE-100) index.
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2 State-Space Neural Network Modeling

As in our previous work (de Freitas et al., 1997), we start from a state-
space representation to model the neural network’s evolution in time. A
transition equation describes the evolution of the network weights, and a
measurements equation describes the nonlinear relation between the inputs
and outputs of a particular physical process, as follows:

wk+1 = wk + dk (2.1)

yk = g(wk, xk)+ vk, (2.2)

where (yk ∈ <o) denotes the output measurements, (xk ∈ <d) the input mea-
surements, and (wk ∈ <m) the neural network weights. The measurements
nonlinear mapping g(.) is approximated by an MLP. This neural model ex-
hibits the capacity to approximate any continuous function, to an arbitrary
precision, as long as it is not restricted in size (Cybenko, 1989). Yet our work
may be extended easily to encompass recurrent networks, radial basis net-
works, and many other approximation techniques. The measurements are
assumed to be corrupted by noise vk. In the sequential Monte Carlo frame-
work, the probability distribution of the noise is specified by the user. In
our examples we shall choose a zero mean gaussian distribution with co-
variance R. The measurement noise is assumed to be uncorrelated with the
network weights and initial conditions.

We model the evolution of the network weights by assuming that they
depend on the previous value wk and a stochastic component dk. The pro-
cess noise dk may represent our uncertainty in how the parameters evolve,
modeling errors or unknown inputs such as maneuvers in tracking applica-
tions (Bar-Shalom & Li, 1993). We assume the process noise to be a zero mean
gaussian process with covariance Q; however, other distributions can also
be adopted. This choice of distributions for the network weights requires
further research. The process noise is also assumed to be uncorrelated with
the network weights. In section 8, we propose that this random walk model
can be improved by replacing it with the following gradient descent model,

wk+1 = wk + α(yk − ĝ(wk, xk))
∂ĝ(wk, xk)

∂wk
+ dk, (2.3)

where α is a learning-rate parameter and ĝ(wk, xk) is the model prediction at
time k. The gradient descent model allows for directed steps when searching
for optimal locations in parameter space.

The noise terms are assumed to be uncorrelated with the network weights
and the initial conditions. The evolution of the states (network weights) cor-
responds to a Markov process with initial probability p(w0) and transition
probability p(wk|wk−1). The observations are assumed to be conditionally
independent given the states. These are standard assumptions in a large
class of tracking and time series problems (Harvey, 1970).
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Typically, the task is to estimate the network weights ŵk and the noise
parameters R and Q given the measurements Yk = {y1,y2, . . . ,yk}. To sim-
plify the exposition, we do not treat the problem of estimating the noise
covariances and the initial probabilities. (To understand how these vari-
ables may be estimated by hierarchical Bayesian models or expectation-
maximization (EM) learning, see de Freitas et al., 1997, 1998a.) We shall,
however, analyze the roles played by R and Q in sequential Monte Carlo
simulation.

3 The Bayesian Solution

The posterior density p(Wk|Yk), where Yk = {y1,y2, . . . ,yk} and Wk =
{w1,w2, . . . ,wk}, constitutes the complete solution to the sequential esti-
mation problem. In many applications, such as tracking, it is of interest to
estimate one of its marginals, the filtering density p(wk|Yk). By comput-
ing the filtering density recursively, we do not need to keep track of the
complete history of the weights. Thus, from a storage point of view, the
filtering density turns out to be more parsimonious than the full posterior
density function. If we know the filtering density of the network weights,
we can easily derive various estimates of the network weights, including
centroids, modes, medians, and confidence intervals. In sections 5 and 6,
we show how the filtering density may be approximated using sequential
importance sampling techniques.

The filtering density is estimated recursively in two stages: prediction
and update, as illustrated in Figure 1. In the prediction step, the filtering
density p(wk−1|Yk−1) is propagated into the future by the transition density
p(wk|wk−1) as follows:

p(wk|Yk−1) =
∫

p(wk|wk−1)p(wk−1|Yk−1)dwk−1. (3.1)

The transition density is defined in terms of the probabilistic model govern-
ing the states’ evolution (see equation 2.1) and the process noise statistics,
that is:

p(wk|wk−1) =
∫

p(wk|dk−1,wk−1)p(dk−1|wk−1)ddk−1

=
∫
δ(wk − dk−1 −wk−1)p(dk−1)ddk−1,

where the Dirac delta function δ(.) indicates that wk can be computed via
a purely deterministic relation when wk−1 and dk−1 are known. Note that
p(dk−1|wk−1) = p(dk−1) because the process and measurement noise terms
have been assumed to be independent of past and present values of the
states.
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Figure 1: Prediction and update stages in the recursive computation of the fil-
tering density.

The update stage involves the application of Bayes’ rule when new data
are observed:

p(wk|Yk) =
p(yk|wk)p(wk|Yk−1)

p(yk|Yk−1)
. (3.2)

The likelihood density function is defined in terms of the measurements
model (see equation 2.2), as follows:

p(yk|wk) =
∫
δ(yk − g(wk, xk)− vk)p(vk)dvk.
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The normalizing denominator of equation 3.2 is often referred to as the ev-
idence density function. It plays a key role in optimization schemes that
exploit gaussian approximation (de Freitas et al., 1997; Jazwinski, 1969;
Mackay, 1992; Sibisi, 1989). It is given by:

p(yk|Yk−1) =
∫

p(yk|wk)p(wk|Yk−1)dwk.

In this formulation, the question of how to choose the prior p(w0) arises
immediately. This is a central issue in Bayesian inference. The problem is,
however, much more general. It is related to the ill-posed nature of the
inference and learning task. A finite set of data admits many possible ex-
planations, unless some form of a priori knowledge is used to constrain
the solution space. Assuming that the data conform to a specific degree of
smoothness is certainly the most fundamental and widely applied type of
a priori knowledge. This assumption is particularly suited to applications
involving noisy data. Nonetheless, the Bayesian approach admits more gen-
eral forms of a priori knowledge within a probabilistic formulation. It would
be interesting to devise methods for mapping experts’ knowledge, available
in many formats, into the Bayesian probabilistic representation.

4 Practical Solutions

The prediction and update strategy given by equations 3.1 and 3.2 pro-
vides an optimal solution to the inference problem, but unfortunately, it
involves multidimensional integrations, the source of most of the practical
difficulties inherent in the Bayesian methodology. In most applications, ana-
lytical solutions are not possible. This is why we need to resort to alternative
approaches, such as direct numerical integration, gaussian approximation,
and Monte Carlo simulation methods.

4.1 Direct Numerical Integration. The direct numerical integration
method relies on approximating the distribution of interest by a discrete
distribution on a finite grid of points. The location of the grid is a nontriv-
ial design issue. Once the distribution is computed at the grid points, an
interpolation procedure is used to approximate it in the remainder of the
space. Kitagawa (1987) used this method to replace the filtering integrals by
finite sums over a large set of equally spaced grid points. He chose a piece-
wise linear interpolation strategy. Kramer and Sorenson (1988) adhered to
the same methodology, but opted for a constant interpolating function. Pole
and West (1990) have attempted to reduce the problem of choosing the grid’s
location by implementing a dynamic grid allocation method.

When the grid points are spaced “closely enough” and encompass the
region of high probability, the method works well. However, the method
is very difficult to implement in high-dimensional multivariate problems
such as neural network modeling. Here, computing at every point in a dense
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multidimensional grid becomes prohibitively expensive (Gelman, Carlin,
Stern, & Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996).

4.2 Gaussian Approximation. Until recently, the popular approach to
sequential estimation has been gaussian approximation (Bar-Shalom & Li,
1993). In the linear gaussian estimation problem, the Kalman filter provides
an optimal recursive algorithm for propagating and updating the mean
and covariance of the hidden states. In nonlinear scenarios, the EKF is a
computationally efficient natural extension of the Kalman filter. The EKF
is obtained by approximating the transition and measurements equations
with Taylor expansion about the last predicted state. Typically, first-order
expansions, which lead to a gaussian approximation of the posterior den-
sity function, are employed. The mean and covariance are propagated and
updated by a simple set of equations, similar to the Kalman filter equations.
As the number of terms in the Taylor expansion increases, the complexity
of the algorithm also increases due to the computation of derivatives of in-
creasing order. For example, a linear expansion requires the computation of
the Jacobian, while a quadratic expansion involves computing the Hessian
matrix.

Gaussian approximation results in a simple and elegant framework that
is amenable to the design of inference and learning algorithms. Various au-
thors have studied the problem of approximating the distribution of neural
network weights with a gaussian function. One of the earliest implementa-
tions of EKF-trained MLPs is due to Singhal and Wu (1988). In their method,
the network weights are grouped into a single vector w that is updated in
accordance with the EKF equations. The entries of the Jacobian matrix (i.e.,
the derivative of the outputs with respect to the weights) are calculated by
backpropagating the output observations through the network.

The algorithm Singhal and Wu proposed requires considerable compu-
tational effort. The complexity is of the order om2 multiplications per es-
timation step, where m represents the number of weights and o the num-
ber of network outputs. Shah, Palmieri, and Datum (1992) and Puskorius
and Feldkamp (1991; Puskorius, Feldkamp, & Davis, 1996) have proposed
strategies for decoupling the global EKF estimation algorithm into local
EKF estimation subproblems. For example, they suggest that the weights of
each neuron could be updated independently. The assumption in the local
updating strategies is that the weights are decoupled, and, consequently,
the Kalman filter weights covariance is a block-diagonal matrix.

The EKF is an improvement over conventional neural network estima-
tion techniques, such as on-line backpropagation, in that it makes use of
second-order statistics (covariances). These statistics are essential for plac-
ing error bars on the predictions and combining separate networks into
committees of networks. The backpropagation algorithm is, in fact, a de-
generate form of the EKF algorithm (de Freitas et al., 1997; Ruck, Rogers,
Kabrisky, Maybeck, & Oxley, 1992). Previously we have shown that gaussian
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approximation, within a hierarchical Bayesian framework, leads to interest-
ing algorithms that exhibit adaptive memory and adaptive regularization
coefficients. These algorithms enabled us to learn the dynamics and mea-
surements noise statistics in slowly changing nonstationary environments
(de Freitas et al., 1997; de Freitas, Niranjan, & Gee, 1998c). In stationary en-
vironments, where the data are available in batches, we have also shown (de
Freitas et al., 1998a; de Freitas, Niranjan, & Gee, 1998b) that it is possible to
learn these statistics by means of the Rauch-Tung-Striebel smoother (Rauch,
Tung, & Striebel, 1965) and the EM algorithm (Dempster, Laird, & Rubin,
1977). There have been several attempts to implement the EM algorithm on-
line (Collings, Krishnamurthy, & Moore, 1994; Elliott, 1994; Krishnamurthy
& Moore, 1993). Unfortunately, these still rely on various heuristics and tend
to be computationally demanding.

A natural progression on sequential gaussian approximation is to employ
a mixture of gaussian densities (Kadirkamanathan & Kadirkamanathan,
1995; Li & Bar-Shalom, 1994; Sorenson & Alspach, 1971). These mixtures
can be either static or dynamic. In static mixtures, the gaussian models as-
sumed to be valid throughout the entire process are a subset of several
hypothesized models. That is, we start with a few models and compute
which of them describe the sequential process most accurately. The remain-
ing models are discarded. In dynamic model selection, one particular model
out of a set of r operating models is selected during each estimation step.
Dynamic mixtures of gaussian models are far more general than static mix-
tures of models. However, in stationary environments, static mixtures are
obviously more adequate. Dynamic mixtures are particularly suited to the
problem of noise estimation in rapidly changing environments, such as
tracking maneuvering targets. There each model corresponds to a different
hypothesis of the value of the noise covariances (Bar-Shalom & Li, 1993).

In summary, gaussian approximation, because of its simplicity and com-
putational efficiency, constitutes a good way of handling many problems
where the density of interest has a significant and predominant mode. Many
problems, however, do not fall into this category. Mixtures of gaussians pro-
vide a better solution when there are a few dominant modes. However, they
introduce extra computational requirements and complications, such as es-
timating the number of mixture components.

4.3 Monte Carlo Simulation. Many signal processing problems, such as
equalization of communication signals, financial time series, medical prog-
nosis, target tracking, and geophysical data analysis, involve elements of
nongaussianity, nonlinearity, and nonstationarity. Consequently, it is not
possible to derive exact closed-form estimators based on the standard cri-
teria of maximum likelihood, maximum a posteriori, or minimum mean-
squared error. Analytical approximations to the true distribution of the data
do not take into account all the salient statistical features of the processes
under consideration. Monte Carlo simulation methods, which provide a
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complete description of the probability distribution of the data, improve
the accuracy of the analysis.

The basic idea in Monte Carlo simulation is that a set of weighted samples,
drawn from the posterior density function of the neural network weights, is
used to map the integrations, involved in the inference process, to discrete
sums. More precisely, we make use of the following Monte Carlo approxi-
mation:

p̂(Wk|Yk) = 1
N

N∑
i=1

δ
(

Wk −W(i)
k

)
,

where W(i)
k represents the samples used to describe the posterior density

and, as before, δ(.) denotes the Dirac delta function. We carry the suffix k,
denoting time, to emphasize that the approximation is performed at the
arrival of each data point. Consequently, any expectations of the form

E[ fk(Wk)] =
∫

fk(Wk)p(Wk|Yk)dWk

may be approximated by the following estimate:

E[ fk(Wk)] ≈ 1
N

N∑
i=1

fk(W
(i)
k ),

where the samples W(i)
k are drawn from the posterior density function.

Monte Carlo sampling techniques are an improvement over direct numer-
ical approximation in that they automatically select samples in regions of
high probability.

In recent years, many researchers in the statistical and signal processing
communities have, almost simultaneously, proposed several variations of
sequential Monte Carlo algorithms. These algorithms have been applied to
a wide range of problems, including target tracking (Gordon et al., 1993; Is-
ard & Blake, 1996), financial analysis (Müller, 1992; Pitt & Shephard, 1997),
diagnostic measures of fit (Gelfand, Dey, & Chang, 1992; Pitt & Shephard,
1997), sequential imputation in missing data problems (Kong et al., 1994),
blind deconvolution (Liu & Chen, 1995) and medical prognosis (Berzuini
et al., 1997). Most of the current research has focused on statistical refine-
ments of this class of algorithm (Carpenter, Clifford, & Fearnhead, 1997; Liu
& Chen, 1998; Pitt & Shephard, 1997). The basic sequential Monte Carlo
methods had been introduced in the automatic control field in the late
sixties. For instance, Handschin and Mayne (1969) tackled the problem of
nonlinear filtering with a sequential importance sampling approach. They
combined analytical and numerical techniques, using the control variate
method (Hammersley & Handscomb, 1968), to reduce the variance of the
estimates. In the seventies, various researchers continued working on these
ideas (Akashi & Kumamoto, 1977; Handschin, 1970; Zaritskii, Svetnik, &
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Figure 2: Update and prediction stages in the sequential sampling process. In the
update stage, the likelihood of each sample is evaluated. The samples are then
propagated with their respective likelihood. The size of the black circles indicates
the likelihood of a particular sample. The samples with higher likelihood are
allowed to have more “children.” In the prediction stage, a process noise term
is added to the samples so as to increase the variety of the sample set. The
result is that the surviving samples provide a better weighted description of the
likelihood function.

Shimelevich, 1975). Zaritskii et al. (1975) is particularly interesting. The au-
thors treated the problems of continuous and discrete time filtering and
introduced several novel ideas. With the exception of Doucet (1998), most
authors have overlooked the Monte Carlo sampling ideas proposed in the
seventies.

Figure 2 illustrates the operation of a generic sequential Monte Carlo
method. It embraces the standard assumption that we can sample from the
prior p(wk|Yk−1) and evaluate the likelihood p(yk|w(i)

k ) of each sample. Only
the fittest samples, that is, the ones with the highest likelihood, survive after
the update stage. These then proceed to be multiplied, according to their
likelihood, in the prediction stage. The update and prediction stages are
governed by equations 3.2 and 3.1, respectively. It is instructive to approach
the problem from an optimization perspective. Figures 3 and 4 show the
windowed global descent in the error function that is typically observed.
The diagrams shed light on the roles played by the noise covariances R
and Q. Q dictates by how much the cloud of samples is expanded in the
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Figure 3: First and second steps of a one-dimensional sequential Monte Carlo
optimization problem. The size of the initial cloud of samples determines the
search region in parameter space. The goal is to find the best possible minimum
of the error function. It is clear that as the number of samples increases, the
chances of reaching lower minima increase. In the second step, the updated
clouds of samples are generated. The width of these clouds is obtained from the
intersection of the width of the prior cloud of samples, the error function, and
a threshold determined by the measurements noise covariance R. The updated
clouds of samples are denser than the prior cloud of samples. Next, the samples
are grouped in regions of higher likelihood in a resampling step. Finally, the
clouds of samples are expanded by a factor determined by the process noise
covariance Q. This expansion allows the clouds to reach regions of the parameter
function where the error function is lower.
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Figure 4: Third and fourth steps of a one-dimensional sequential Monte Carlo
optimization problem. To reach the global minimum on the right, the number
of samples has to be increased.

prediction stage. By increasing Q, the density of the cloud of samples is
reduced. Consequently, the algorithm will take longer to converge. A very
small Q, on the other hand, will not allow the algorithm to explore new re-
gions of the parameter space. Ideally, one needs to implement an algorithm
that adapts Q automatically. This is explored in section 7. R controls the
resolution of the update stage, as shown in Figure 5. A small value of R will
cause the likelihood to be too narrow. Consequently, only a few trajectories
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Figure 5: Role played by the measurements variance R. Small values of R result
in a narrow likelihood, with only a few trajectories being able to propagate to
the next time step. If R is too small, we might miss some of the important modes.
On the other hand, if R is too large, we are not giving preference to any of the
trajectories, and the algorithm might not converge.

will be able to propagate to the next time step. If R is too small, the opti-
mization scheme might fail to detect some of the important modes of the
likelihood function. By increasing R, we broaden the likelihood function,
thereby increasing the number of surviving trajectories. If we choose R to be
too large, all the trajectories become equally likely and the algorithm might
not converge. As shown in Figures 3 and 4, R gives rise to a threshold T(R)
in the error function, which determines the width of the updated clouds of
samples.

If we can sample from the prior and evaluate the likelihood up to propor-
tionality, three sampling strategies can be adopted to sample from the pos-
terior: acceptance-rejection sampling, Markov chain Monte Carlo (MCMC),
and sampling-importance resampling (SIR).

After sampling from the prior, rejection sampling dictates that one should
accept the samples with probability p(yk|w(i)

k )/
p(yk|w(i)

k−Max), where w(i)
k−Max =

arg maxwk
p(yk|wk). Unfortunately, the rejection sampler requires a random

number of iterations at each time step. This proves to be computationally
expensive in high-dimensional spaces (Doucet, 1998; Müller, 1991; Pitt &
Shephard, 1997).

The fundamental idea behind MCMC methods is to construct a Markov
chain whose asymptotic distribution tends to the required posterior density
(Gilks et al., 1996). Generally, it can take a large number of iterations before
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this happens. Moreover, it is difficult even to assess when the chain has
converged. For most real-time sequential processing applications, MCMC
methods can be too computationally demanding (Berzuini et al., 1997; Gor-
don & Whitby, 1995; Müller, 1992).

In our work, we favor the SIR sampling option. This approach is the
core of many successful sequential Bayesian tools, such as the well-known
bootstrap or particle filters (Avitzour, 1995; Beadle & Djuric, 1997; Berzuini et
al., 1997; Doucet, 1998; Gordon et al., 1993; Kitagawa, 1996; Liu & Chen, 1998;
Pitt & Shephard, 1997). In the following sections, we derive this algorithm
from an importance sampling perspective.

5 Importance Sampling

We can approximate the posterior density function with a function on a
finite discrete support. Consequently, it follows from the strong law of large
numbers that as the number or samples N increases, expectations can be
mapped into sums. Unfortunately, it is often impossible to sample directly
from the posterior density function. However, we can circumvent this diffi-
culty by sampling from a known, easy-to-sample, proposal density function
π(Wk|Yk) and making use of the following substitution:

E[ fk(Wk)] =
∫

fk(Wk)
p(Wk|Yk)

π(Wk|Yk)
π(Wk|Yk)dWk

=
∫

fk(Wk)
p(Yk|Wk)p(Wk)

p(Yk)π(Wk|Yk)
π(Wk|Yk)dWk

=
∫

fk(Wk)
qk(Wk)

p(Yk)
π(Wk|Yk)dWk,

where the variables qk(Wk) are known as the unnormalized importance
ratios:

qk =
p(Yk|Wk)p(Wk)

π(Wk|Yk)
. (5.1)

We can get rid of the unknown normalizing density p(Yk) as follows:

E[ fk(Wk)] = 1
p(Yk)

∫
fk(Wk)qk(Wk)π(Wk|Yk)dWk

=
∫

fk(Wk)qk(Wk)π(Wk|Yk)dWk∫
p(Yk|Wk)p(Wk)

π(Wk|Yk)
π(Wk|Yk)

dWk

=
∫

fk(Wk)qk(Wk)π(Wk|Yk)dWk∫
qk(Wk)π(Wk|Yk)dWk

= Eπ [qk(Wk) fk(Wk)]
Eπ [qk(Wk)]

.
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Hence, by drawing samples from the proposal function π(.), we can ap-
proximate the expectations of interest by the following estimate:

E[ fk(Wk)] ≈
1/N

∑N
i=1 fk(W

(i)
k )qk(W

(i)
k )

1/N
∑N

i=1 qk(W
(i)
k )

=
N∑

i=1

fk(W
(i)
k )q̃k(W

(i)
k ), (5.2)

where the normalized importance ratios q̃(i)k are given by

q̃(i)k =
q(i)k∑N

j=1 q(j)k

.

The estimate of equation 5.2 is valid if the W(i)
k correspond to a set of

independently and identically distributed samples drawn from the proposal
density function, the support of the proposal function includes the support
of the posterior function, and the expectations of f (.), q and qf 2(.) exist and
are finite (Geweke, 1989). Under these conditions and as N tends to infinity,
the posterior density function can be approximated arbitrarily well by the
estimate:

p̂(Wk|Yk) =
N∑

i=1

q̃(i)k δ(Wk −W(i)
k ).

6 Sequential Importance Sampling

In order to compute a sequential estimate of the posterior density function
at time k without modifying the previously simulated states Wk−1, we may
adopt the following proposal density:

π(Wk|Yk) = π(W0|Y0)

k∏
j=1

π(wj|Wj−1,Yj)

= π(Wk−1|Yk−1)π(wk|Wk−1,Yk). (6.1)

At this stage, we need to recall that we assumed that the states correspond to
a Markov process and that the observations are conditionally independent
given the states—that is:

p(Wk) = p(w0)

k∏
j=1

p(wj|wj−1) (6.2)
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and

p(Yk|Wk) =
k∏

j=1

p(yj|wj). (6.3)

By substituting equations 6.1–6.3 into equation 5.1, we can derive a re-
cursive estimate for the importance weights as follows:

qk =
p(Yk|Wk)p(Wk)

π(Wk−1|Yk−1)π(wk|Wk−1,Yk)

= qk−1
p(Yk|Wk)p(Wk)

p(Yk−1|Wk−1)p(Wk−1)

1
π(wk|Wk−1,Yk)

= qk−1
p(yk|wk)p(wk|wk−1)

π(wk|Wk−1,Yk)
. (6.4)

Equation 6.4 gives a mechanism to update the importance ratios sequen-
tially. Since we can sample from the proposal function and evaluate the
likelihood and transition probabilities (see equations 2.1 and 2.2), all we
need to do is generate a prior set of samples and iteratively compute the
importance ratios. This procedure allows us to obtain the following type of
estimates:

E[ fk(Wk)] ≈
N∑

i=1

q̃(i)k fk(W
(i)
k ). (6.5)

In section 6.4 we give a more detailed description of a generic sequential
importance sampling algorithm. We need to delay this presentation because
the SIS algorithm discussed so far has a serious limitation that requires
immediate attention: the variance of the ratio (p(Wk|Yk)/π(Wk|Yk)) increases
over time when the observations are regarded as random (Kong et al., 1994).
To understand why the variance increase poses a problem, suppose that we
want to sample from the posterior. In that case, we want the proposal density
to be very close to the posterior density. When this happens, we obtain the
following results for the mean and variance:

Eπ

[p(Wk|Yk)

π(Wk|Yk)

]
= 1

and

varπ

[p(Wk|Yk)

π(Wk|Yk)

]
= Eπ

[(p(Wk|Yk)

π(Wk|Yk)
− 1

)2
]
= 0.

In other words, we expect the variance to be close to zero in order to obtain
reasonable estimates. Therefore, a variance increase has a harmful effect on
the accuracy of the simulations. In practice, the degeneracy caused by the
variance increase can be observed by monitoring the importance ratios. Typ-
ically what we observe is that after a few iterations, one of the normalized
importance ratios tends to 1, while the remaining ratios tend to zero.
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Figure 6: Resampling process, whereby a random measure {w(i)
k , q̃(i)k } is mapped

into an equally weighted random measure {w(j)
k ,N−1}. The index i is drawn from

a uniform distribution.

6.1 Resampling. To avoid the degeneracy of the SIS simulation method,
a resampling stage may be used to eliminate samples with low importance
ratios and multiply samples with high importance ratios. It is possible to
see an analogy to the steps in genetic algorithms. Many of the ideas on
resampling have stemmed from the work of Efron (1982), Rubin (1988),
and Smith and Gelfand (1992). Various authors have described efficient
algorithms for accomplishing this task in O(N) operations (Doucet, 1998;
Pitt & Shephard, 1997).

Resampling involves mapping the measure {w(i)
k , q̃(i)k } into an equally

weighted random measure {w(j)
k ,N−1}. This is accomplished by sampling

uniformly from the discrete set {w(i)
k }Ni=1 with probabilities {q̃(i)k }Ni=1. A math-

ematical proof of this can be found in Gordon (1994, pp. 111–112). Figure 6
shows a way of sampling from this discrete set. After constructing the cu-
mulative distribution of the discrete set, a uniformly drawn sampling index
i is projected onto the distribution range and then onto the distribution do-
main. The intersection with the domain constitutes the new sample index
j. That is, the vector w(j)

k is accepted as the new sample. Clearly, the vectors
with the larger sampling ratios will end up with more copies after the re-
sampling process. In the subsequent prediction stage, random disturbances
are added to the samples, thereby adding variety to the dominant samples,
as was shown in Figure 2.

Liu and Chen (1995, 1998) have argued that when all the importance
ratios are nearly equal, resampling only reduces the number of distinctive
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streams and introduces extra variation in the simulations. Using a result
from Kong et al. (1994), they suggest that resampling should be performed
only when the effective sample size Nef f is below a fixed heuristic threshold.
The effective sample size is defined as

Nef f = 1∑N
i=1

(
q̃(i)k

)2 .

We have so far explained how to compute the importance ratios sequen-
tially and how to improve the sample set by resampling. After discussing
the choices of likelihood and proposal density functions, we shall be able to
present a complete and detailed algorithm description.

6.2 Likelihood Function. The likelihood density function is defined in
terms of the measurements equation. In our work, we adopted the following
gaussian form:

p(yk|wk) ∝ exp−1
2

(
(yk − ĝ(wk, xk))

TR−1(yk − ĝ(wk, xk))
)
.

We also studied the effect of adding a weight decay term to the likelihood
function to penalize for large network weights. This did not seem to improve
the results in the experiments that we performed. In addition, it introduced
an extra tuning parameter. If it is suspected that the data set may contain
several outliers, likelihood functions with heavy tails should be employed.

6.3 Choosing the Proposal Function. The choice of proposal function
is one of the most critical design issues in importance sampling algorithms.
Doucet (1997) has shown that the proposal function:

π(wk|Wk−1,Yk) = p(wk|wk−1,yk) (6.6)

minimizes the variance of the importance ratios conditional on Wk−1 and
Yk. This choice of proposal function has also been advocated by other re-
searchers (Kong et al., 1994; Liu & Chen, 1995; Zaritskii et al., 1975). Nonethe-
less, the density:

π(wk|Wk−1,Yk) = p(wk|wk−1) (6.7)

is the most popular choice of proposal function (Avitzour, 1995; Beadle &
Djuric, 1997; Gordon et al., 1993; Isard & Blake, 1996; Kitagawa, 1996). Al-
though it results in higher Monte Carlo variation than the optimal proposal
(see equation 6.6), as a result of its’ not incorporating the most recent ob-
servations, it is usually easier to implement (Berzuini et al., 1997; Doucet,
1998; Liu & Chen, 1998).
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In section 7, we describe an algorithm that allows us to update each
sampling trajectory, with an extended Kalman filter, before the resampling
stage. This Kalman update effectively constitutes a strategy for sampling
from the prior of equation 6.6.

6.4 Algorithm Pseudocode. The essential structure of a sequential Monte
Carlo algorithm to train neural networks with two layers, using the proposal
of function of equation 6.7, involves the following steps:

1. INITIALISE NETWORK WEIGHTS ( k = 0):
For i = 1, . . . ,N

• Draw the weights w(i)
0 from the first layer prior

p1(w0) and the second layer prior p2(w0).

• Evaluate the importance ratios:

q(i)0 = p(y0|w(i)
0 )

• Normalize the importance ratios:

q̃(i)0 =
q(i)0∑N

j=1 q(j)0

2. For k = 1, . . . ,L

(a) SAMPLING STAGE:
For i = 1, . . . ,N

• Predict via the dynamics equation:

ŵ(i)
k+1 = w(i)

k + d(i)k

where d(i)k is a sample from p(dk) ( N (0,Q)
in our case).

• Evaluate the importance ratios:

q(i)k+1 = q(i)k
p(yk+1|ŵ(i)

k+1)

• Normalize the importance ratios:

q̃(i)k+1 =
q(i)k+1∑N
j=1 q(j)k+1

(b) RESAMPLING STAGE:
For i = 1, . . . ,N
If Nef f ≥ Threshold:

• w(i)
k+1 = ŵ(i)

k+1
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Else

• Resample new index j from the discrete

set {ŵ(i)
k+1, q̃(i)k+1}

• w(i)
k+1 = ŵ(j)

k+1

• q(i)k+1 = 1
N

An order N algorithm to perform the resampling stage is described in
pseudocode by Carpenter et al. (1997). The generic sequential sampling al-
gorithm is rather straightforward to implement using a gaussian likelihood
function.1 We make use of a different prior for each layer because the func-
tional form of the neurons varies with layer (Müller & Rios Insua, 1998).
In addition, we can select the prior hyperparameters for each layer in ac-
cordance with the magnitude of the input and output signals. Statistical
estimates such as mean values and confidence intervals can be computed
using equation 6.5.

6.5 Problems with Sequential SIR Simulation. The discreteness of the
resampling stage (see Figure 6) implies that any particular sample with a
high importance ratio will be duplicated many times. As a result, the cloud
of samples may eventually collapse to a single sample. This degeneracy will
limit the ability of the algorithm to search for lower minima in other regions
of the error surface. In addition, the number of samples used to describe the
posterior density function will become too small and inadequate. Gordon
(1994) discusses various strategies to overcome this problem. He suggests
that the sample set can be boosted by ensuring that the number of elements
in the discrete distribution exceeds the posterior samples by a factor of at
least 10. In addition, he proposes smoothing the discrete distribution with
a kernel interpolator. Gordon et al. (1993) propose a roughening procedure,
whereby an independent jitter, with zero mean and standard deviation σ ,
is added to each sample drawn in the resampling stage. The standard devi-
ation of the jitter is given by:

σ = KIN−1/m, (6.8)

where I denotes the length of the interval between the maximum and min-
imum samples of each specific component, K is a tuning parameter, and,
as before, m represents the number of weights. Large values of K blur the
distribution, and very small values produce tight clusters of points around
the original samples. We have found in our simulations that this technique
works very well and that tuning K requires little effort.

1 We have made the software for the implementation of the SIR algorithm available
online at the following Web site: http://www.cs.berkeley.edu/∼jfgf/.
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Another serious problem arises when the likelihood function is much
narrower than the prior. In this scenario, very few samples are accepted in
the resampling stage. The problem is exacerbated when the regions of high
likelihood are located in the tails of the prior density. This difficulty may
be surmounted by the brute force method of increasing the sample size.
Alternatively, one should select the prior variances and likelihood variance
with great care, after an exploratory data analysis stage.

In our neural networks framework, we adopt different informative priors
for each layer, whose variances depend on the magnitude of the input and
output signals. Moreover, the covariance matrix of the network weights for
each sampling trajectory is propagated and updated with an EKF. This leads
to an improved annealed sampling algorithm, whereby the variance of each
sampling trajectory decreases with time. That is, we start searching over a
large region of the error surface, and as time progresses, we concentrate
on the regions of lower error. This technique is described in the following
section.

7 HySIR

The Monte Carlo conception of optimization relies solely on probing the
error surface at several points, as shown in Figures 3 and 4. It fails to make
use of all the information implicit in the error surface. For instance, the
method could be enhanced by evaluating the gradient and other higher
derivatives of the error surface. This is evident in Figure 7. By allowing the
samples to follow the gradient after the first prediction stage, the algorithm
can reach a better minimum.

In order to improve existing sequential Monte Carlo simulation algo-
rithms, we propose a new hybrid gradient descent/SIR method. The main
feature of the algorithm is that the samples are updated by a gradient de-
scent step in the prediction stage, as follows:

wk+1 = wk − α2
∂

∂wk
(yk − ĝ(wk, xk))

2

= wk + α(yk − ĝ(wk, xk))
∂ĝ(wk, xk)

∂wk
. (7.1)

The term ∂ĝ(wk, xk)/∂wk is the Jacobian. It can be easily computed by back-
propagating derivatives through the network as explained in appendix B
of de Freitas et al. (1997). The gradient descent learning rate α is a tuning
parameter that controls how fast we should descend. Too large a parame-
ter would cause the trajectory in the error surface to overfluctuate, thereby
never converging. A very small value, on the other hand, would not con-
tribute toward speeding the SIR algorithm’s convergence.

The plain gradient descent algorithm can get trapped at shallow local
minima. One way of overcoming this problem is to define the error sur-
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Figure 7: HySIR algorithm. By following the gradient after the prediction stage,
it is possible to reach better minima.

face in terms of a Hamiltonian that accounts for the approximation errors
and the momentum of each trajectory. This is the basis of the hybrid Monte
Carlo algorithm (Brass, Pendleton, Chen, & Robson, 1993; Duane, Kennedy,
Pendleton, & Roweth, 1987). In this algorithm, each trajectory is updated
by approximating the Hamiltonian differential equations by a leapfrog dis-
cretization scheme. The discretization, however, may introduce biases. In
our work, we favor a stochastic gradient descent approach based on the EKF.
This technique avoids shallow local minima by adaptively adding noise to
the network weights. This is shown in Figure 8.

The EKF equations are given by:

wk+1|k = wk

Pk+1|k = PT
k +Q∗Imm

Kk+1 = Pk+1|kGk+1[R∗Ioo + GT
k+1Pk+1|kGk+1]−1

wk+1 = wk+1|K + Kk+1(yk+1 − g(xk,wk+1|k))

Pk+1 = Pk+1|k − Kk+1GT
k+1Pk+1|k,

where Kk+1 is known as the Kalman gain matrix, Imm denotes the identity
matrix of size m × m, and R∗ and Q∗ are two tuning parameters, whose
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Figure 8: HySIR with EKF updating. By adding noise to the network weights
and adapting the weights covariance, it is possible to reach better minima with
the EKF than with plain gradient descent techniques.

roles are explained in detail in de Freitas et al. (1997). Here, it suffices to
say that they control the rate of convergence of the EKF algorithm and the
generalization performance of the neural network. In the general multiple
input, multiple output (MIMO) case, g ∈ <o is a vector function and G
represents the Jacobian matrix:

G = ∂g
∂w

∣∣∣∣
(w=ŵ)

=


∂g1
∂w1

∂g2
∂w1

· · · ∂go
∂w1

∂g1
∂w2
...

...
∂g1
∂wm

· · · ∂go
∂wm


T

.

Since the EKF is a suboptimal estimator based on linearization of a nonlinear
mapping, strictly speaking, Pk is an approximation to the covariance matrix.
In mathematical terms:

Pk ≈ E[(wk − ŵk)
T(wk − ŵk)|Yk].
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The Kalman filter step, before the update stage, allows us to incorporate
the latest measurements into the prior. As a result, we can sample from
the prior p(wk|wk−1,yk) before the update stage. Another advantage of
this method is that the covariance of the weights changes over time. Be-
cause the EKF is a minimum variance estimator, the covariance of the
weights decreases with time. Consequently, as the tracking improves, the
variation of the network weights is reduced. This annealing process im-
proves the efficiency of the search for global minima in parameter space
and reduces the variance of the estimates. It should be pointed out that the
weights need to be resampled in conjunction with their respective covari-
ances. The pseudocode for the HySIR algorithm with EKF updating is as
follows:2

1. INITIALIZE NETWORK WEIGHTS ( k = 0):

2. For k = 1, . . . ,L

(a) SAMPLING STAGE:
For i = 1, . . . ,N

• Predict via the dynamics equation:

ŵ(i)
k+1 = w(i)

k + d(i)k

where d(i)k is a sample from p(dk) ( N (0,Q)
in our case).

• Update samples with the EKF equations.

• Evaluate the importance ratios:

q(i)k+1 = q(i)k
p(yk+1|ŵ(i)

k+1)

• Normalize the importance ratios:

q̃(i)k+1 =
q(i)k+1∑N
j=1 q(j)k+1

(b) RESAMPLING STAGE:
For i = 1, . . . ,N
If Nef f ≥ Threshold:

• w(i)
k+1 = ŵ(i)

k+1

• P(i)k+1 = P̂(i)k+1

2 We have made the software for the implementation of the HySIR algorithm available
online at the following web site: http://www.cs.berkeley.edu/∼jfgf/.
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Else

• Resample new index j from the discrete

set {ŵ(i)
k+1, q̃(i)k+1}

• w(i)
k+1 = ŵ(j)

k+1 and P(i)k+1 = P̂(j)k+1

• q(i)k+1 = 1
N

The HySIR with EKF updates may be interpreted as a dynamical mix-
ture of EKFs. That is, the estimates depend on a few modes of the pos-
terior density function. In addition to having to compute the normalized
importance ratios (O(N(oS2

1 + d2S1))) operations, where S1 is the number
of hidden neurons, N the number of samples, d the input dimension, and o
the number of outputs, and resampling (O(N) operations), the HySIR has
to perform the EKF updates (O(Nom2) operations, where m is the number
of network weights). That is, the computational complexity of the HySIR
increases approximately linearly with the number of EKFs in the mixture.
For problems with dominant modes, we need to use only a few trajecto-
ries, and, consequently, the HySIR provides accurate and computationally
efficient solutions.

The HySIR approach makes use of the likelihood function twice per time
step. Consequently, if we make the noise distributions too narrow, the al-
gorithm will give only a representation of a narrow region of the posterior
density function. Typically, the algorithm will converge to a few modes of
the posterior density function. This is illustrated in section 8.2.

8 Simulations

In this section, we discuss two experiments, using synthetic data and a real
application involving the pricing financial options on the FTSE100 index.
The first experiment provides a comparison of the various algorithms dis-
cussed so far. It addresses the trade-off between accuracy and computational
efficiency. The second experiment shows how the HySIR algorithm can be
used to estimate time-varying latent variables. It also serves the purpose of
illustrating the effect of the process noise covariance Q on the simulations.

8.1 Experiment 1: Time-Varying Function Approximation. We gener-
ated input-output data using the following time-varying function:

y(x1(k), x2(k)) = 4 sin(x1(k)− 2)+ 2x2(k)2 + 5 cos(0.02k)+ 5+ ν,
where the inputs x1(k)and x2(k)were simulated from a gaussian distribution
with zero mean and unit variance. The noise ν was drawn from a gaussian
distribution with zero mean and variance equal to 0.1. Subsequently, we
approximated the data with an MLP with five hidden sigmoidal neurons
and a linear output neuron. The MLP was trained sequentially using the



Methods to Train Neural Network Models 981

Table 1: RMS Errors and Floating-Point Operations for the Algorithms Used in
the Function Approximation Problem.

EKF SIS SIR HySIR

RMS error 6.51 3.87 3.27 1.17
Mega flops 4.8 5.6 5.8 48.6
Time (seconds) 1.2 27.4 28.9 24.9

Notes: The RMS errors include the convergence period.
This explains why they are higher than the variance of the
additive noise.

HySIR, SIR, SIS, and EKF algorithms. The difference between the SIR and
the SIS algorithms is that SIR resamples every time, while SIS resamples
only if the effective sample set is below a threshold. We set our threshold to
N/3.

We set the number of samples (N) to 100 for the SIS and SIR methods and
to 10 for the HySIR method. We assigned the values 100 and 1 to the initial
variance of the weights and the diagonal entries of the weights covariance
matrix. The diagonal entries of R and Q were given the values 0.5 and 2,
respectively. Finally, the EKF noise hyperparameters R∗ and Q∗ were set to
2 and 0.01.

Table 1 shows the average one-step-ahead prediction errors obtained for
100 runs, of 200 time steps each, on a Silicon Graphics R10000 workstation.
On average, there was a 50% occurrence of resampling steps using the SIS
algorithm. It is clear from the results that avoiding the resampling stage
does not yield a great reduction in computational time. This is because
one needs to evaluate neural network mappings for each trajectory in the
sampling stage. As a result, the sampling stage tends to be much more
computationally expensive than the resampling stage.

The results also show that the HySIR performs much better than the
conventional SIR and EKF algorithms. It is, however, computationally more
expensive, as explained at the end of section 7.

It is interesting to note that the HySIR, despite requiring more floating-
point operations, is faster than the SIR algorithm. This shows that the com-
putational efficiency of sampling algorithms depends on the platform in
which they are implemented. The design of efficient software and hard-
ware platforms is an important avenue for further research.

Figure 9 shows two plots of the prediction errors for the EKF and HySIR.
The left plot shows the best and worst results obtained with the EKF out
of 100 trials, each trial involving a different initial weights vector. We then
used the 100 initial weights vectors to initialize the HySIR algorithm with
100 sampling trajectories. As shown in the right plot, the global search na-
ture of the HySIR algorithm allows it to converge much faster than the
EKF algorithm. This is a clear example that dynamic mixtures of models,
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Figure 9: Convergence of the EKF and HySIR algorithms for experiment 1.
The left plot shows the best and worst EKF convergence results out of 100
runs using different initial conditions. The initial conditions for each EKF were
used to initialize the EKF filters within the HySIR algorithm. At each time step,
the HySIR evaluates a weighted combination of several EKFs. By performing
this type of dynamic model selection, it is able to search over large regions
of parameter space and, hence, converge much faster than the standard EKF
algorithm.

with model selection at each time step, perform better than static mixtures
(choosing the best EKF out of the 100 trials).

8.2 Experiment 2: Latent States Tracking. To assess the ability of the
hybrid algorithm to estimate time-varying hidden parameters, we gener-
ated input-output data from a logistic function followed by a linear scaling
and a displacement, as shown in Figure 10. We applied two gaussian input
sequences to the model. This simple model is equivalent to an MLP with
one hidden neuron and an output linear neuron. We then trained a second
model with the same structure using the input-output data generated by
the first model.

In the training phase, of 200 time steps, we allowed the model weights to
vary with time. During this phase, the HySIR algorithm was used to track
the input-output training data and estimate the latent model weights. After
the 200th time step, we fixed the values of the weights and generated another
200 input-output data test sets from the original model. The input test data
were then fed to the trained model, using the weights values estimated
at the 200th time step. Subsequently, the output prediction of the trained
model was compared to the output data from the original model so as to
assess the generalization performance of the training process.
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Figure 10: Logistic function with linear scaling and displacement used in ex-
periment 2. The weights were chosen as follows: w1(k) = 1 + k/100, w2(k) =
sin(0.06k)− 2, w3(k) = 0.1, w4(k) = 1, w5(k) = −0.5.

We repeated the experiment using two different values of Q, as shown in
Figures 11 and 12. With a very small value of Q (0.0001), the algorithm was
able to estimate the time-varying latent weights. After 100 time steps, the
algorithm became very confident, as indicated by the narrow error bars. By
increasing Q to 0.01, we found that the algorithm becomes less confident.
Yet it is able to explore wider regions of parameter space, as shown in the
histogram of Figure 13.

The variance (Q) of the noise added in the prediction stage implies a trade-
off between the algorithm’s confidence and the size of the search region in
parameter space. Too large a value of Q will allow the algorithm to explore
a large region of the space, but will never allow the algorithm to converge to
specific error minimum. A very small value, on the other hand, will cause all
the sampling trajectories to converge to a very narrow region. The problem
with the latter is that if the process generating the data changes with time,
we want to keep the search region large enough so as to find the new minima
quickly and efficiently. To address this problem, we have employed a very
simple heuristic. Specifically, when we add gaussian noise in the prediction
stage, we select a small set of the trajectories randomly and then add to them
gaussian noise with a covariance much larger than Q. In theory, this should
allow the algorithm to converge and yet allow it to keep exploring other
regions of parameter space. From an evolutionary computing perspective,
we can think of these few randomly selected trajectories as mutations. The
results of applying this idea to our problem are shown in Figure 13. They
suggest that our heuristic reduces the trade-off between the algorithms’
confidence and the size of the search region. Yet we believe that further
research on algorithms for adapting Q is necessary.

8.3 Example with Real Data. An interesting source of inference prob-
lems requiring nonlinear modeling in a time-varying environment is finan-
cial data analysis. Many applications ranging from time-series prediction
to stock selection have been attempted using neural networks. Hutchinson,
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Figure 11: Weights tracking with Q = 0.0001. (Top left) One-step-ahead predic-
tion errors in the training set. (Top right) Prediction errors on validation data,
assuming that after the 200th time step, the weights stop varying with time.
(Middle) Histogram of w2. (Bottom) Tracking of the weights with the posterior
mean estimate computed by the HySIR and the one standard deviation error
bars of the estimator. For this particular value of Q, the estimator becomes very
confident after 100 iterations, and, consequently, the histogram for w2 converges
to a narrow gaussian distribution.

Lo, and Poggio (1994) and Niranjan (1996) look at the problem of pricing
options contracts in a data-driven manner. The relationship between the
price of an options contract and the parameters relating to the option, such
as the price of the underlying asset and the time to maturity, is known to
be nonlinear. Hutchinson et al. show that a neural network can form a very
good approximation to the price of the options contract as a function of
variables relating to this. This relationship is also likely to change over the
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Figure 12: Weights tracking with Q = 0.01. (Top left) One-step-ahead predic-
tion errors in the training set. (Top right) Prediction errors on validation data,
assuming that after the 200th time step, the weights stop varying with time.
(Middle) Histogram of w2. (Bottom) Tracking of the weights with the posterior
mean estimate computed by the HySIR and the one standard deviation error
bars of the estimator. For this value of Q, the search region is particularly large
(wide histograms), but the algorithm lacks confidence (wide error bars).

lifetime of the option. Hence, one would expect that a sequential approach
for tracking the price of the options contract might be a more natural way
to handle the nonstationarity. Niranjan addresses this by means of an EKF.
We extend on the above work, using the data in Niranjan (1996) consisting
of daily FTSE100 options during the February 93–December 93 period. We
compare the approximation and convergence capabilities of a number of
algorithms discussed in earlier sections. The models considered are:

Trivial Uses the current value of the option as the next prediction.
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Figure 13: Weights tracking with Q = 0.0001 and two random mutations per
time step with Q = 0.1. (Top left) One-step-ahead prediction errors in the train-
ing set. (Top right) Prediction errors on validation data, assuming that after the
200th time step, the weights stop varying with time. (Middle) Histogram of w2.
(Bottom) Tracking of the weights with the posterior mean estimate computed
by the HySIR and the one standard deviation error bars of the estimator. The
histogram shows that the mutations expand the search region considerably.

RBF-EKF. Represents a regularized radial basis function network with four
hidden neurons, which was originally proposed in Hutchinson et al.
(1994). The output weights are estimated with a Kalman filter, while the
means of the radial functions correspond to random subsets of the data
and their covariance is set to the identity matrix, as in Niranjan (1996).

BS. Corresponds to a conventional Black-Scholes model with two outputs
(normalised call and put prices) and two parameters (risk-free interest
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rate and volatility). The risk-free interest rate was set to 0.06, while the
volatility was estimated over a moving window (of 50 time steps), as
described in Hull (1997).

MLP-EKF. A multilayer perceptron with six sigmoidal hidden units and a
linear output neuron, trained with the EKF algorithm (de Freitas et al.,
1997). The noise covariances R and Q and the states covariance P were set
to diagonal matrices with entries equal to 10−6, 10−7, and 10, respectively.
The weights prior corresponded to a zero-mean gaussian density with
covariance equal to 1.

MLP-EKFE. Represents an MLP, with six sigmoidal hidden units and a lin-
ear output neuron, trained with a hierarchical Bayesian model, whereby
the weights are estimated with the EKF algorithm and the noise statistics
are computed by maximizing the evidence density function (de Freitas
et al., 1997). The states covariance P was given by a diagonal matrix
with entries equal to 10. The weights prior corresponded to a zero mean
gaussian density with covariance equal to 1.

MLP-SIR. Corresponds to an MLP, with six sigmoidal hidden units and
a linear output neuron, trained with the SIR algorithm. One thousand
samples were employed in each simulation. The noise covariances R and
Q were set to diagonal matrices with entries equal to 10−4 and 10−5,
respectively. The prior samples for each layer were drawn from a zero-
mean gaussian density with covariance equal to 1.

MLP-HySIR. Corresponds to an MLP, with six sigmoidal hidden units and
a linear output neuron, trained with the Kalman HySIR algorithm. Each
simulation made use of 10 samples. The noise covariances R and Q were
set to diagonal matrices with entries equal to 1 and 10−6, respectively.
The prior samples for each layer were drawn from a zero-mean gaussian
density with covariance equal to 1. The Kalman filter parameters R∗, Q∗
and P were set to diagonal matrices with entries equal to 10−4, 10−5, and
1000, respectively.

Table 2 shows the mean squared error between the actual value of the
options contracts and the one-step-ahead prediction from the various al-
gorithms. Although the differences are small, one sees that sequential al-
gorithms produce lower prediction errors and that the HySIR algorithm
produces even lower errors than the Kalman filter. These errors are com-
puted on data corresponding to the last 100 days, to allow for convergence
of the algorithms. Note that in the on-line setting considered here, all of
these errors are computed on unseen data.

Figure 14 shows the approximations of the MLP-HySIR algorithm on the
call and put option prices at the same strike price (3325). The algorithm
exhibits fast convergence and accurate tracking. In Figure 15, we plot the
probability density function over the network’s one-step-ahead prediction,
computed through 100 samples propagated by the HySIR approach.
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Figure 14: Tracking call and put option prices with the MLP-HSIR method.
Estimated values [—] and actual values [- -].
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Figure 15: Probability density function of the neural networks’ one-step-ahead
prediction of the call price for the FTSE option with a strike price of 3325.
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Table 2: One-Step-Ahead Prediction Errors on Call Options.

Strike Price 2925 3025 3125 3225 3325

Trivial 0.0783 0.0611 0.0524 0.0339 0.0205
RBF-EKF 0.0538 0.0445 0.0546 0.0360 0.0206
BS 0.0761 0.0598 0.0534 0.0377 0.0262
MLP-EKF 0.0414 0.0384 0.0427 0.0285 0.0145
MLP-EKFE 0.0404 0.0366 0.0394 0.0283 0.0150
MLP-SIR 0.0419 0.0405 0.0432 0.0314 0.0164
MLP-HySIR 0.0394 0.0362 0.0404 0.0273 0.0151

Typically the one-step-ahead predictions for a group of options on the
same cash product, but with different strike prices or duration to maturity,
can be used to determine whether one of the options is being mispriced.
Knowing the probability distribution of the network outputs allows us to
design more interesting pricing tools.

9 Conclusions

We have presented a sequential Monte Carlo approach for training neural
networks in a Bayesian setting. This approach enables accurate characteri-
zation of the probability distributions, which tend to be very complicated
for nonlinear models such as neural networks. Propagating a number of
samples in a state-space dynamical systems formulation of the problem is
the key idea in this framework.

Experimental illustrations presented here suggest that it is possible to
apply sampling methods effectively to tackle difficult problems involving
nonlinear and time-varying processes, typical of many sequential signal
processing problems.

A particular contribution is the HySIR algorithm, which combines gra-
dient information of the error function with probabilistic sampling infor-
mation. Simulations show that this combination performs better than EKF
and conventional SIR approaches. HySIR can be interpreted as a gaussian
mixture filter, in that only a few sampling trajectories need to be employed.
Yet as the number of trajectories increases, the computational requirements
increase only linearly. Therefore, the method is also suitable as a sampling
strategy for multimodal optimization.

Our experiment with financial data showed that the sequential sampling
approach, in addition to matching the one-step-ahead square errors of the
best available pricing methods, allowed us to obtain complete estimates
of the probability density functions of the one-step-ahead predictions. Fur-
ther avenues of research include the design of algorithms for adapting the
noise covariances R and Q, studying the effect of different noise models
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for the network weights, and improving the computational efficiency of the
algorithms.
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