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We propose a hierarchical full Bayesian model for radial basis networks.
This model treats the model dimension (number of neurons), model pa-
rameters, regularization parameters, and noise parameters as unknown
random variables. We develop a reversible-jump Markov chain Monte
Carlo (MCMC) method to perform the Bayesian computation. We find
that the results obtained using this method are not only better than the
ones reported previously, but also appear to be robust with respect to
the prior specification. In addition, we propose a novel and computation-
ally efficient reversible-jump MCMC simulated annealing algorithm to
optimize neural networks. This algorithm enables us to maximize the
joint posterior distribution of the network parameters and the number
of basis function. It performs a global search in the joint space of the pa-
rameters and number of parameters, thereby surmounting the problem
of local minima to a large extent. We show that by calibrating the full
hierarchical Bayesian prior, we can obtain the classical Akaike informa-
tion criterion, Bayesian information criterion, and minimum description
length model selection criteria within a penalized likelihood framework.
Finally, we present a geometric convergence theorem for the algorithm
with homogeneous transition kernel and a convergence theorem for the
reversible-jump MCMC simulated annealing method.

1 Introduction

Buntine and Weigend (1991) and Mackay (1992) showed that a principled
Bayesian learning approach to neural networks can lead to many improve-
ments. In particular, Mackay showed that by approximating the distribu-
tions of the weights with gaussians and adopting smoothing priors, it is
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possible to obtain estimates of the weights and output variances and to set
the regularization coefficients automatically.

Neal (1996) cast the net much further by introducing advanced Bayesian
simulation methods, specifically the hybrid Monte Carlo method (Brass,
Pendleton, Chen, & Robson, 1993), into the analysis of neural networks. The-
oretically, he also proved that certain classes of priors for neural networks,
whose number of hidden neurons tends to infinity, converge to gaussian
processes. Bayesian sequential Monte Carlo methods have also been shown
to provide good training results, especially in time-varying scenarios (de
Freitas, Niranjan, Gee, & Doucet, 2000).

An essential requirement of neural network training is the correct se-
lection of the number of neurons. There have been three main approaches
to this problem: penalized likelihood, predictive assessment, and grow-
ing and pruning techniques. In the penalized likelihood context, a penalty
term is added to the likelihood function so as to limit the number of neu-
rons, thereby avoiding overfitting. Classical examples of penalty terms in-
clude the well-known Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC) and minimum description length (MDL) (Akaike,
1974; Schwarz, 1985; Rissanen, 1987). Penalized likelihood has also been
used extensively to impose smoothing constraints by weight decay priors
(Hinton, 1987; Mackay, 1992) or functional regularizers that penalize for
high-frequency signal components (Girosi, Jones, & Poggio, 1995).

In the predictive assessment approach, the data are split into a training
set, a validation set, and possibly a test set. The key idea is to balance the
bias and variance of the predictor by choosing the number of neurons so
that the errors in each data set are of the same magnitude.

The problem with the previous approaches, known as the model ade-
quacy problem, is that they assume one knows which models to test. To
overcome this difficulty, various authors have proposed model selection
methods whereby the number of neurons is set by growing and pruning al-
gorithms. Examples of this class of algorithms include the upstart algorithm
(Frean, 1990), cascade correlation (Fahlman & Lebiere, 1988), optimal brain
damage (Le Cun, Denker, & Solla, 1990) and the resource allocating network
(RAN) (Platt, 1991). A major shortcoming of these methods is that they lack
robustness in that the results depend on several heuristically set thresholds.
For argument’s sake, let us consider the case of the RAN algorithm. A new
radial basis function is added to the hidden layer each time an input in a
novel region of the input space is found. Unfortunately, novelty is assessed
in terms of two heuristically set thresholds. The center of the gaussian basis
function is then placed at the location of the novel input, while its width
depends on the distance between the novel input and the stored patterns.
For improved efficiency, the amplitudes of the gaussians may be estimated
with an extended Kalman filter (Kadirkamanathan & Niranjan, 1993). Ying-
wei, Sundararajan, and Saratchandran (1997) have extended the approach
by proposing a simple pruning technique. Their strategy is to monitor the
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outputs of the gaussian basis functions continuously and compare them to a
threshold. If a particular output remains below the threshold over a number
of consecutive inputs, then the corresponding basis function is removed.

Recently, Rios Insua and Müller (1998), Marrs (1998), and Holmes and
Mallick (1998) have addressed the issue of selecting the number of hidden
neurons with growing and pruning algorithms from a Bayesian perspective.
In particular, they apply the reversible-jump Markov chain Monte Carlo
(MCMC) algorithm of Green (1995; Richardson & Green, 1997) to feedfor-
ward sigmoidal networks and radial basis function (RBF) networks to obtain
joint estimates of the number of neurons and weights. Once again, their re-
sults indicate that it is advantageous to adopt the Bayesian framework and
MCMC methods to perform model order selection. In this article, we also
apply the reversible-jump MCMC simulation algorithm to RBF networks so
as to compute the joint posterior distribution of the radial basis parameters
and the number of basis functions. We advance this area of research in three
important directions:

• We propose a hierarchical prior for RBF networks. That is, we adopt
a full Bayesian model, which accounts for model order uncertainty
and regularization, and show that the results appear to be robust with
respect to the prior specification.

• We propose an automated growing and pruning reversible-jump
MCMC optimization algorithm to choose the model order using the
classical AIC, BIC, and MDL criteria. This algorithm estimates the max-
imum of the joint likelihood function of the radial basis parameters and
the number of bases using a reversible-jump MCMC simulated an-
nealing approach. It has the advantage of being more computationally
efficient than the reversible-jump MCMC algorithm used to perform
the integrations with the hierarchical full Bayesian model.

• We derive a geometric convergence theorem for the homogeneous
reversible-jump MCMC algorithm and a convergence theorem for the
annealed reversible-jump MCMC algorithm.

In Section 1, we present the approximation model. In section 2, we for-
malize the Bayesian model and specify the prior distributions. Section 3 is
devoted to Bayesian computation. We first propose an MCMC sampler to
perform Bayesian inference when the number of basis functions is given.
Subsequently, a reversible-jump MCMC algorithm is derived to deal with
the case where the number of basis functions is unknown. A reversible-jump
MCMC simulated annealing algorithm to perform stochastic optimization
using the AIC, BIC, and MDL criteria is proposed in section 5. The con-
vergence of the algorithms is established in section 6. The performance of
the proposed algorithms is illustrated by computer simulations in section 7.
Finally, some conclusions are drawn in section 8. Appendix A defines the
notation used, and the proofs of convergence are given in appendix B.
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2 Problem Statement

Many physical processes may be described by the following nonlinear, mul-
tivariate input-output mapping:

yt = f(xt)+ nt,

where xt ∈ Rd corresponds to a group of input variables, yt ∈ Rc to the tar-
get variables, nt ∈ Rc to an unknown noise process, and t = {1, 2, . . .} is an
index variable over the data. In this context, the learning problem involves
computing an approximation to the function f and estimating the charac-
teristics of the noise process given a set of N input-output observations
O = {x1, x2, . . . , xN, y1, y2, . . . , yN}. Typical examples include regression,
where y1:N,1:c

1 is continuous; classification, where y corresponds to a group
of classes; and nonlinear dynamical system identification, where the inputs
and targets correspond to several delayed versions of the signals under
consideration.

When the exact nonlinear structure of the multivariate function f cannot
be established a priori, it may be synthesized as a combination of parame-
terized basis functions, that is,

f̂(x,θ) = Gk

θk;
· · ·∑

j

Gj

(
θj;

∑
i

Gi(θi; x)

)
· · ·

 , (2.1)

where Gi(x,θi) denotes a multivariate basis function. These multivariate ba-
sis functions may be generated from univariate basis functions using radial
basis, tensor product, or ridge construction methods. This type of modeling
is often referred to as non-parametric regression because the number of basis
functions is typically very large. Equation 2.1 encompasses a large number
of nonlinear estimation methods, including projection pursuit regression,
Volterra series, fuzzy inference systems, multivariate adaptive regression
splines (MARS), and many artificial neural network paradigms such as
functional link networks, multilayer perceptrons (MLPs), RBF networks,
wavelet networks, and hinging hyperplanes (see, e.g., Cheng & Titterington,
1994; de Freitas, 1999; Denison, Mallick, & Smith, 1998; Holmes & Mallick,
2000).

For the purposes of this article, we adopt the approximation scheme of
Holmes and Mallick (1998), consisting of a mixture of k RBFs and a linear

1 y1:N,1:c is an N × c matrix, where N is the number of data and c the number of
outputs. We adopt the notation y1:N,j , (y1,j, y2,j, . . . , yN,j)

′ to denote all the observations
corresponding to the jth output (jth column of y). To simplify the notation, yt is equivalent
to yt,1:c. That is, if one index does not appear, it is implied that we are referring to all of
its possible values. Similarly, y is equivalent to y1:N,1:c. We favor the shorter notation but
invoke the longer notation to avoid ambiguities and emphasize certain dependencies.
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Figure 1: Approximation model with three RBFs, two inputs, and two outputs.
The solid lines indicate weighted connections.

regression term. However, the work can be straightforwardly extended to
other regression models. More precisely, our modelM is:

M0: yt = b+ β′xt + nt k = 0

Mk: yt =
∑k

j=1 ajφ(‖xt −µj‖)+ b+ β′xt + nt k ≥ 1,

where ‖ · ‖ denotes a distance metric (usually Euclidean or Mahalanobis),
µj ∈ Rd denotes the jth RBF center for a model with k RBFs, aj ∈ Rc the
jth RBF amplitude, and b ∈ Rc and β ∈ Rd × Rc the linear regression
parameters. The noise sequence nt ∈ Rc is assumed to be zero-mean white
gaussian. Although we have not explicitly indicated the dependency of b,β,
and nt on k, these parameters are indeed affected by the value of k. Figure 1
depicts the approximation model for k = 3, c = 2, and d = 2 (c is the
number of outputs, d is the number of inputs, and k is the number of basis
functions). Depending on our a priori knowledge about the smoothness of
the mapping, we can choose different types of basis functions (Girosi et al.,
1995). The most common choices are:

Linear: φ(%) = %

Cubic: φ(%) = %3

Thin plate spline: φ(%) = %2 ln(%)

Multiquadric: φ(%) = (
%2 + λ2)1/2

Gaussian: φ(%) = exp
(−λ%2)
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For the last two choices of basis functions, we treat λ as a user set parameter.
For convenience, we express our approximation model in vector-matrix
form:

y = D
(
µ1:k,1:d, x1:N,1:d

)
α1:1+d+k,1:c + nt, (2.2)

that is:

y1,1 · · ·y1,c
y2,1 · · ·y2,c

...

yN,1 · · ·yN,c


=



1 x1,1 · · · x1,d φ(x1,µ1) · · ·φ(x1,µk)

1 x2,1 · · · x2,d φ(x2,µ1) · · ·φ(x2,µk)

...
...

...

1 xN,1 · · · xN,d φ(xN,µ1) · · ·φ(xN,µk)



×



b1 · · · bc
β1,1 · · ·β1,c

...

βd,1 · · ·βd,c
a1,1 · · · a1,c

...

ak,1 · · · ak,c


+ n1:N,

where the noise process is assumed to be normally distributed as follows:

nt ∼ N
(

0c×1, diag
(
σ2

1, . . . ,σ
2
c

))
.

Once again, we stress that σ2 depends implicitly on the model order k.
We assume here that the number k of basis functions and their parameters
θ , {α1:m,1:c,µ1:k,1:d,σ

2
1:c}, with m = 1+d+k, are unknown. Given the data

set {x, y}, our objective is to estimate k and θ ∈Θk.

3 Bayesian Model and Aims

We follow a Bayesian approach where the unknowns k andθ are regarded as
being drawn from appropriate prior distributions. These priors reflect our
degree of belief on the relevant values of these quantities (Bernardo & Smith,
1994). Furthermore, we adopt a hierarchical prior structure that enables us to
treat the priors’ parameters (hyperparameters) as random variables drawn
from suitable distributions (hyperpriors). That is, instead of fixing the hy-
perparameters arbitrarily, we acknowledge that there is an inherent uncer-
tainty in what we think their values should be. By devising probabilistic
models that deal with this uncertainty, we are able to implement estimation
techniques that are robust to the specification of the hyperpriors.
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The remainder of the section is organized as follows. First, we propose
a hierarchical model prior that defines a probability distribution over the
space of possible structures of the data. Subsequently, we specify the esti-
mation and inference aims. Finally, we exploit the analytical properties of
the model to obtain an expression, up to a normalizing constant, of the joint
posterior distribution of the basis centers and their number.

3.1 Prior Distributions. The overall parameter space Θ×Ψ can be writ-
ten as a finite union of subspaces Θ × Ψ = (∪kmax

k=0 {k} × Θk) × Ψ where
Θ0 , (Rd+1)c×(R+)c and Θk , (Rd+1+k)c×(R+)c×Ωk for k ∈ {1, . . . , kmax}.
That is, α ∈ (Rd+1+k)c, σ ∈ (R+)c, and µ ∈ Ωk. The hyperparameter space
Ψ , (R+)c+1, with elements ψ , {3, δ2}, will be discussed at the end of
this section.

The space of the radial basis centers Ωk is defined as a compact set that en-
compasses the input data: Ωk , {µ;µ1:k,i ∈ [min(x1:N,i)− ι4i, max(x1:N,i)+
ι4i]k for i = 1, . . . , d with µj,i 6= µl,i for j 6= l}. 4i = ‖max(x1:N,i) −
min(x1:N,i)‖ denotes the Euclidean distance for the ith dimension of the
input, and ι is a user-specified parameter that we need to consider only if
we wish to place basis functions outside the region where the input data lie.
That is, we allow Ωk to include the space of the input data and extend it by
a factor proportional to the spread of the input data. Typically, researchers
either set ι to zero and choose the basis centers from the input data (Holmes
& Mallick, 1998; Kadirkamanathan & Niranjan, 1993) or compute the basis
centers using clustering algorithms (Moody & Darken, 1988). This strat-
egy is also exploited within the support vector paradigm (Vapnik, 1995).
The premise here is that it is better to place the basis functions where the
data are dense, not in regions of extrapolation. Moreover, if the input space
is very large, then placing basis functions where the data lie reduces the
space over which one has to sample the basis locations. However, when one
adopts global basis functions, it is no longer clear that this is the case. In
fact, if there are outliers, it might be a bad strategy to place basis functions
where the data lie. After some experimentation and taking these trade-offs
into consideration, we chose to sample the basis centers from the space Ωk,
whose hypervolume is =k , (

∏d
i=1(1 + 2ι)4i)

k. Figure 2 shows this space
for a two-dimensional input.

The maximum number of basis functions is defined as kmax , (N −
(d + 1)).2 We also define Ω , ∪kmax

k=0 {k} × Ωk with Ω0 , ∅. There is a
natural hierarchical structure to this setup (Richardson & Green, 1997),
which we formalize by modeling the joint distribution of all variables as

2 The constraint k ≤ N− (d+ 1) is added because otherwise the columns of D(µ1:k, x)

are linearly dependent and the parameters θ may not be uniquely estimated from the data
(see equation 2.2).
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Figure 2: RBF centers space Ω for a two-dimensional input. The circles represent
the input data.

p(k,θ,ψ, y | x) = p(y | k,θ,ψ, x)p(θ | k,ψ, x)p(k,ψ | x), where p(k,ψ | x)

is the joint model order and hyperparameters’ probability, p(θ | k,ψ, x)

is the parameters’ prior, and p(y | k,θ,ψ, x) is the likelihood. Under the
assumption of independent outputs given (k,θ), the likelihood for the ap-
proximation model described in the previous section is:

p(y | k,θ,ψ, x) =
c∏

i=1

p(y1:N,i | k,α1:m,i,µ1:k,σ
2
i , x)

=
c∏

i=1

(2πσ2
i )
−N/2 exp

(
− 1

2σ2
i

(
y1:N,i −D(µ1:k, x)α1:m,i

)′
× (

y1:N,i −D(µ1:k, x)α1:m,i
))

.

We assume the following structure for the prior distribution:

p(k,θ,ψ)

= p(α1:m | k,µ1:k,σ
2, 3, δ2)p(µ1:k | k,σ2, 3, δ2)

× p(k | σ2, 3, δ2
)p(σ2 | 3, δ2

)p(3, δ2
)

= p(α1:m | k,µ1:k,σ
2, δ2)p(µ1:k | k)p(k | 3)p(σ2)p(3)p(δ2), (3.1)

where the scale parameters σ2
i , i = 1, . . . , c are assumed to be independent

of the hyperparameters (i.e., p(σ2 | 3, δ2) = p(σ2)), independent of each
other (p(σ2) =∏c

i=1 p(σ2
i )), and distributed according to conjugate inverse-

gamma prior distributions σ2
i ∼ IG( υ0

2 ,
γ0
2 ). When υ0 = 0 and γ0 = 0,
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we obtain Jeffreys’s uninformative prior p(σ2
i ) ∝ 1/σ2

i (Bernardo & Smith,
1994). Given σ2, we introduce the following prior distribution:

p(k,α1:m,µ1:k | σ2, 3, δ2
) = p(α1:m | k,µ1:k,σ

2, δ2
)p(µ1:k | k)p(k | 3)

=
[

c∏
i=1

|2πσ2
i Σi|−1/2exp

(
− 1

2σ2
i
α′1:m,iΣ

−1
i α1:m,i

)]

×
[ IΩ(k,µ1:k)

=k

]  3k/k!∑kmax
j=0 3j/j!

 ,

where Σ−1
i = δ−2

i D′(µ1:k, x)D(µ1:k, x) and IΩ(k,µ1:k) is the indicator func-
tion of the set Ω (1 if (k,µ1:k) ∈ Ω, 0 otherwise).

The prior model order distribution p(k | 3) is a truncated Poisson distri-
bution. Conditional on k, the RBF centers are uniformly distributed. Finally,
conditional on (k,µ1:k), the coefficients α1:m,i are assumed to be zero-mean
gaussian with variance σ2

i Σi. The terms δ2 ∈ (R+)c and 3 ∈ R+ can be
respectively interpreted as the expected signal-to-noise ratios and the ex-
pected number of radial basis. The prior for the coefficients has been previ-
ously advocated by various authors (George & Foster, 1997; Smith & Kohn,
1996). It corresponds to the popular g-prior distribution (Zellner, 1986) and
can be derived using a maximum entropy approach (Andrieu, 1998). An
important property of this prior is that it penalizes for basis functions being
too close as, in this situation, the determinant of Σ−1

i tends to zero.
We now turn our attention to the hyperparameters, which allow us to

accomplish our goal of designing robust model selection schemes. We as-
sume that they are independent of each other, that is, p(3, δ2) = p(3)p(δ2).
Moreover, p(δ2) =∏c

i=1 p(δ2
i ). As δ2 is a scale parameter, we ascribe a vague

conjugate prior density to it: δ2
i ∼ IG(αδ2 , βδ2) for i = 1, . . . , c, with αδ2 = 2

and βδ2 > 0. The variance of this hyperprior with αδ2 = 2 is infinite. We
apply the same method to 3 by setting an uninformative conjugate prior
(Bernardo & Smith, 1994): 3 ∼ Ga(1/2 + ε1, ε2) (εi ¿ 1 i = 1, 2). We can
visualize our hierarchical prior (see equation 3.1) with a directed acyclic
graphical model (DAG), as shown in Figure 3.

3.2 Estimation and Inference Aims. The Bayesian inference of k, θ, and
ψ is based on the joint posterior distribution p(k,θ,ψ | x, y) obtained from
Bayes’s theorem. Our aim is to estimate this joint distribution from which, by
standard probability marginalization and transformation techniques, one
can “theoretically” obtain all posterior features of interest. For instance, we
might wish to perform inference with the predictive density:

p(yN+1 | x1:N+1, y1:N)

=
∫
Θ×Ψ

p(yN+1 | k,θ,ψ, xN+1)p(k,θ,ψ | x1:N, y1:N) dk dθ dψ
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Figure 3: Directed acyclic graphical model for our prior.

and consequently make predictions, such as:

E(yN+1 | x1:N+1, y1:N)

=
∫
Θ×Ψ

D(µ1:k, xN+1)α1:mp(k,θ,ψ | x1:N, y1:N) dk dθ dψ.

We might also be interested in evaluating the posterior model probabilities
p(k | x, y), which can be used to perform model selection by selecting the
model order as arg maxk∈{0,...,kmax} p(k | x, y). In addition, it allows us to
perform parameter estimation by computing, for example, the conditional
expectation E(θ | k, x, y).

However, it is not possible to obtain these quantities analytically, as it re-
quires the evaluation of high-dimensional integrals of nonlinear functions
in the parameters, as we shall see in the following section. We propose here
to use an MCMC method to perform Bayesian computation. MCMC tech-
niques were introduced in the mid-1950s in statistical physics and started
appearing in the fields of applied statistics, signal processing, and neural
networks in the 1980s and 1990s (Holmes & Mallick, 1998; Neal, 1996; Rios
Insua & Müller, 1998; Robert & Casella, 1999; Tierney, 1994). The key idea
is to build an ergodic Markov chain (k(i),θ(i),ψ(i))i∈N whose equilibrium
distribution is the desired posterior distribution. Under weak additional
assumptions, the PÀ 1 samples generated by the Markov chain are asymp-
totically distributed according to the posterior distribution and thus allow
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easy evaluation of all posterior features of interest—for example:

p̂(k = j | x, y) = 1
P

P∑
i=1

I{j}(k(i))

and

Ê(θ | k = j, x, y) =
∑P

i=1 θ
(i)I{j}(k(i))∑P

i=1 I{j}(k(i))
. (3.2)

In addition, we can obtain predictions, such as:

Ê(yN+1 | x1:N+1, y1:N) = 1
P

P∑
i=1

D(µ(i)
1:k, xN+1)α

(i)
1:m.

3.3 Integration of the Nuisance Parameters. The proposed Bayesian
model allows for the integration of the so-called nuisance parameters,α1:m

and σ2, and subsequently to obtain an expression for p(k,µ1:k, 3, δ2 | x, y)

up to a normalizing constant. By applying Bayes’s theorem, multiplying the
exponential terms of the likelihood and coefficients prior, and completing
squares, we obtain the following expression for the full posterior distribu-
tion:

p(k,α1:m,µ1:k,σ
2, 3, δ2 | x, y)

∝
[

c∏
i=1

(2πσ2
i )
−N/2 exp

(
− 1

2σ2
i

y′1:N,iPi,ky1:N,i

)]

×
[

c∏
i=1

|2πσ2
i Σi|−1/2

× exp
(
− 1

2σ2
i

(
α1:m,i − hi,k

)′M−1
i,k

(
α1:m,i − hi,k

))]

×
[ IΩ(k,µ1:k)

=k

]  3k/k!∑kmax
j=0 3j/j!

 [
c∏

i=1

(σ2
i )
−(υ0/2+1) exp

(
− γ0

2σ2
i

)]

×
[

c∏
i=1

(δ2
i )
−(α

δ2+1) exp

(
−βδ2

δ2
i

)] [
(3)(ε1−1/2) exp (−ε23)

]
,

where

M−1
i,k = D′(µ1:k, x)D(µ1:k, x)+Σ−1

i , hi,k =Mi,kD′(µ1:k, x)y1:N,i

Pi,k = IN −D(µ1:k, x)Mi,kD′(µ1:k, x).
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We can now integrate with respect to α1:m (gaussian distribution) and σ2
i

(inverse gamma distribution) to obtain the following expression for the
posterior:

p(k,µ1:k, 3, δ2 | x, y)∝

 c∏
i=1

(
1+ δ2

i

)−m/2
(

γ0 + y′1:N,iPi,ky1:N,i

2

)(
− N+υ0

2

)
×

[ IΩ(k,µk)

=k

]  3k/k!∑kmax
j=0 3j/j!

 [
c∏

i=1

(δ2
i )
−(α

δ2+1) exp

(
−

βδ
2

δ2
i

)]

×
[
(3)(ε1−1/2) exp (−ε23)

]
. (3.3)

It is worth noticing that the posterior distribution is highly nonlinear in the
RBF centers µk and that an expression of p(k | x, y) cannot be obtained in
closed form.

4 Bayesian Computation

For clarity, we assume that k is given. After dealing with this fixed-dimension
scenario, we present an algorithm where k is treated as an unknown random
variable.

4.1 MCMC Sampler for Fixed Dimension. We propose the following
hybrid MCMC sampler, which combines Gibbs steps and Metropolis-Hast-
ings (MH) steps (Gilks, Richardson, & Spiegelhalter, 1996; Tierney, 1994):

Fixed-Dimension MCMC Algorithm

1. Initialization. Fix the value of k and set (θ(0), ψ(0)) and i = 1.

2. Iteration i

• For j = 1, . . . , k

— Sample u ∼ U[0,1].

— If u < $ , perform an MH step admitting p(µj,1:d | x, y, µ
(i)
−j,1:d)

as invariant distribution and q1(µ
?
j,1:d | µ

(i)
j,1:d) as proposal

distribution.

— Else perform an MH step using p(µj,1:d | x, y, µ
(i)
−j,1:d) as

invariant distribution and q2(µ
?
j,1:d | µ(i)

j,1:d) as proposal dis-
tribution.

End For.

• Sample the nuisance parameters (α
(i)
1:m, σ 2(i)) using equations 4.1

and 4.2.
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• Sample the hyperparameters (3(i), δ2(i)) using equations 4.3 and
4.4.

3. i← i+ 1 and go to 2.

The simulation parameter $ is a real number satisfying 0 < $ < 1. Its
value indicates our belief on which proposal distribution leads to faster
convergence. If we have no preference for a particular proposal, we can set
it to 0.5. The various steps of the algorithm are detailed in the following
sections. In order to simplify the notation, we drop the superscript ·(i) from
all variables at iteration i.

4.1.1 Updating the RBF Centers. Sampling the RBF centers is difficult
because the distribution is nonlinear in these parameters. We have chosen
here to sample them one at a time using a mixture of MH steps. An MH step
of invariant distribution, say π(z), and proposal distribution, say q(z? | z),
involves sampling a candidate value z? given the current value z accord-
ing to q(z? | z). The Markov chain then moves toward z? with probability
A(z, z?) , min{1, (π(z)q(z? | z))−1π(z?) q(z | z?)}; otherwise, it remains
equal to z. This algorithm is very general, but to perform well in practice,
it is necessary to use “clever” proposal distributions to avoid rejecting too
many candidates.

According to equation 3.3, the target distribution is the full conditional
distribution of a basis center:

p(µj,1:d | x, y,µ−j,1:d)

∝

 c∏
i=1

(
γ0 + y′1:N,iPi,ky1:N,i

2

)(
− N+υ0

2

) IΩ(k,µ1:k),

where µ−j,1:d denotes {µ1,1:d,µ2,1:d, . . . ,µj−1,1:d,µj+1,1:d, . . . ,µk,1:d}.
With probability 0 < $ < 1, the proposal q1(µ?

j,1:d | µj,1:d) corresponds
to randomly sampling a basis center from the interval [min(x1:N,i) − ι4i,
max(x1:N,i)+ ι4i]k for i = 1, . . . , d. The motivation for using such a proposal
distribution is that the regions where the data are dense are reached quickly.
Subsequently, with probability 1−$ , we perform an MH step with proposal
distribution q2(µ?

j,1:d | µj,1:d):

µ?
j,1:d | µj,1:d ∼ N (µj,1:d, σ

2
RWId).

This proposal distribution yields a candidate µ?
j,1:d, which is a perturbation

of the current center. The perturbation is a zero-mean gaussian random
variable with variance σ 2

RWId. This random walk is introduced to perform a
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local exploration of the posterior distribution. In both cases, the acceptance
probability is given by:

A(µj,1:d,µ
?
j,1:d)

= min

1,

 c∏
i=1

(
γ0 + y′1:N,iPi,ky1:N,i

γ0 + y′1:N,iP
?
i,ky1:N,i

)( N+υ0
2

) IΩ(k,µ?
1:k)

 ,

where P?
i,k and M?

i,k are similar to Pi,k and Mi,k with µ1:k,1:d replaced by
{µ1,1:d,µ2,1:d, . . ., µj−1,1:d,µ

?
j,1:d,µj+1,1:d, . . . ,µk,1:d}. We have found that the

combination of these proposal distributions works well in practice.

4.1.2 Sampling the Nuisance Parameters. In section 3.3, we derived an
expression for p(k,µ1:k, 3, δ2 | x, y) from the full posterior distribution
p(k,α1:m, µ1:k, σ2, 3, δ2 | x, y) by performing some algebraic manipula-
tions and integrating with respect to α1:m (gaussian distribution) and σ2

(inverse gamma distribution). As a result, if we take into consideration that

p(k,α1:m,µ1:k,σ
2, 3, δ2 | x, y)

= p(α1:m | k,µ1:k,σ
2, 3, δ2

, x, y)p(k,µ1:k,σ
2, 3, δ2 | x, y)

= p(α1:m | k,µ1:k,σ
2, 3, δ2, x, y)p(σ2 | k,µ1:k, 3, δ2, x, y)

× p(k,µ1:k, 3, δ2 | x, y),

it follows that for i = 1, . . . , c, α1:m,i, and σ2
i are distributed according to:

σ2
i | (k,µ1:k, δ

2
, x, y) ∼ IG

(
υ0 +N

2
,
γ0 + y′1:N,iPi,ky1:N,i

2

)
(4.1)

α1:m,i | (k,µ1:k,σ
2, δ2, x, y) ∼ N (hi,k,σ

2
i Mi,k). (4.2)

4.1.3 Sampling the Hyperparameters. By considering p(k,α1:m, µ1:k, σ2,
3, δ2 | x, y), we can clearly see that the hyperparameters δi (for i = 1, . . . , c)
can be simulated from the full conditional distribution:

δ2
i | (k,α1:m,µ1:k,σ

2
i , x, y)

∼ IG
(

αδ2 + m
2

, βδ2 + 1
2σ2

i
α′1:m,iD

′(µ1:k, x)D(µ1:k, x)α1:m,i

)
. (4.3)

On the other hand, an expression for the posterior distribution of 3 is not so
straightforward because the prior for k is a truncated Poisson distribution. 3
can be simulated using the MH algorithm with a proposal corresponding to
the full conditional that would be obtained if the prior for k was an infinite
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Poisson distribution. That is, we can use the following gamma proposal
for 3,

q(3?) ∝ 3?(1/2+ε1+k) exp
(−(1+ ε2)3

?
)
, (4.4)

and subsequently perform an MH step with the full conditional distribution
p(3 | k,µ1:k, δ

2
, x, y) as invariant distribution.

4.2 MCMC Sampler for Unknown Dimension. Now let us consider the
case where k is unknown. Here, the Bayesian computation for the estimation
of the joint posterior distribution p(k,θ,ψ | x, y) is even more complex.
One obvious solution would consist of upper bounding k by, say, kmax and
running kmax + 1 independent MCMC samplers, each being associated to a
fixed number k = 0, . . . , kmax. However, this approach suffers from severe
drawbacks. First, it is computationally very expensive since kmax can be
large. Second, the same computational effort is attributed to each value
of k. In fact, some of these values are of no interest in practice because
they have a very weak posterior model probability p(k | x, y). Another
solution would be to construct an MCMC sampler that would be able to
sample directly from the joint distribution on Θ ×Ψ = (∪kmax

k=0 {k} ×Θk) ×
Ψ. Standard MCMC methods are not able to “jump” between subspaces
Θk of different dimensions. However, Green (1995) has introduced a new,
flexible class of MCMC samplers, the so-called reversible-jump MCMC,
that are capable of jumping between subspaces of different dimensions.
This is a general state-space MH algorithm (see Andrieu, Djurić, & Doucet,
in press, for an introduction). One proposes candidates according to a set of
proposal distributions. These candidates are randomly accepted according
to an acceptance ratio, which ensures reversibility and thus invariance of the
Markov chain with respect to the posterior distribution. Here, the chain must
move across subspaces of different dimensions, and therefore the proposal
distributions are more complex (see Green, 1995 and Richardson & Green,
1997, for details). For our problem, the following moves have been selected:

1. Birth of a new basis, that is, proposing a new basis function in the
interval [min(x1:N,i)− ι4i, max(x1:N,i)+ ι4i]k for i = 1, . . . , d.

2. Death of an existing basis, that is, removing a basis function chosen
randomly.

3. Merge a randomly chosen basis function and its closest neighbor into
a single basis function.

4. Split a randomly chosen basis function into two neighbor basis func-
tions, such that the distance between them is shorter than the distance
between the proposed basis function and any other existing basis func-
tion. This distance constraint ensures reversibility.

5. Update the RBF centers.
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These moves are defined by heuristic considerations, the only condition
to be fulfilled being to maintain the correct invariant distribution. A particu-
lar choice will have influence only on the convergence rate of the algorithm.
The birth and death moves allow the network to grow from k to k + 1 and
decrease from k to k − 1, respectively. The split and merge moves also per-
form dimension changes from k to k + 1 and k to k − 1. The merge move
serves to avoid the problem of placing too many basis functions in the same
neighborhood. That is, when amplitudes of many basis functions, in a close
neighborhood, add to the amplitude that would be obtained by using fewer
basis functions, the merge move combines some of these basis functions. On
the other hand, the split move is useful in regions of the data where there are
close components. Other moves may be proposed, but we have found that
the ones suggested here lead to satisfactory results. In particular, we started
with the update, birth, and death moves and noticed that by incorporating
split and merge moves, the estimation results improved.

The resulting transition kernel of the simulated Markov chain is then
a mixture of the different transition kernels associated with the moves
described above. This means that at each iteration, one of the candidate
moves—birth, death, merge, split, or update—is randomly chosen. The
probabilities for choosing these moves are bk, dk, mk, sk, and uk, respec-
tively, such that bk + dk + mk + sk + uk = 1 for all 0 ≤ k ≤ kmax. A move is
performed if the algorithm accepts it. For k = 0 the death, split, and merge
moves are impossible, so that d0 , 0, s0 , 0, and m0 , 0. The merge move
is also not permitted for k = 1, that is, m1 , 0. For k = kmax, the birth and
split moves are not allowed, and therefore bkmax , 0 and skmax , 0. Except in
the cases described above, we adopt the following probabilities:

bk , c? min

{
1,

p
(
k+ 1 | 3)
p

(
k | 3) }

,

dk+1 , c? min

{
1,

p
(
k | 3)

p
(
k+ 1 | 3)}

, (4.5)

where p(k | 3) is the prior probability of modelMk and c? is a parameter
that tunes the proportion of dimension and update moves. As Green (1995)
pointed out, this choice ensures that bkp(k | 3)[dk+1p(k+1 | 3)]−1 = 1, which
means that an MH algorithm in a single dimension, with no observations,
would have 1 as acceptance probability. We take c? = 0.25 and then bk+dk+
mk+ sk ∈ [0.25, 1] for all k (Green, 1995). In addition, we choose mk = dk and
sk = bk. We can now describe the main steps of the algorithm as follows:

Reversible-Jump MCMC Algorithm

1. Initialization: set (k(0), θ (0), ψ(0)) ∈Θ×Ψ.
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2. Iteration i.

• Sample u ∼ U[0,1].

• If (u ≤ bk(i) )

— then birth move (see section 4.2.1).

— else if (u ≤ bk(i)+dk(i) ) then death move (see section 4.2.1).

— else if (u ≤ bk(i) + dk(i) + sk(i) ) then split move (see section
4.2.2).

— else if (u ≤ bk(i) + dk(i) + sk(i) + mk(i) ) then merge move
(see section 4.2.2).

— else update the RBF centers (see section 4.2.3).

End If.

• Sample the nuisance parameters (σ
2(i)
k , α

(i)
k ) using equations 4.1

and 4.2.

• Simulate the hyperparameters (3(i), δ2(i)) using equations 4.3 and
4.4.

3. i← i+ 1 and go to 2.

We expand on these different moves in the following sections. Once again,
in order to simplify the notation, we drop the superscript ·(i) from all vari-
ables at iteration i.

4.2.1 Birth and Death Moves. Suppose that the current state of the Markov
chain is in {k} ×Θk ×Ψ. Then the algorithm for the birth and death moves
is as follows:

Birth Move

1. Propose a new basis location at random from the interval [min(x1:N,i)−ι4i,

max(x1:N,i)+ ι4i] for i = 1, . . . , d.

2. Evaluate Abirth (see equation 4.7), and sample u ∼ U[0,1].

3. If u ≤ Abirth, then the state of the Markov chain becomes (k + 1, µ1:k+1),
else it remains equal to (k, µ1:k).

Death move

1. Choose the basis center to be deleted, at random among the k existing
basis.

2. Evaluate Adeath (see equation 4.7), and sample u ∼ U[0,1].

3. If u ≤ Adeath then the state of the Markov chain becomes (k − 1, µ1:k−1),
else it remains equal to (k, µ1:k).



2376 C. Andrieu, N. de Freitas, and A. Doucet

The acceptance ratio for the proposed birth move is deduced from the
following expression (Green, 1995):

rbirth , (posterior distributions ratio)× (proposal ratio)× (Jacobian)

= p(k+ 1,µ1:k+1, 3, δ2 | x, y)

p(k,µ1:k, 3, δ2|x, y)
× dk+1/(k+ 1)

bk/=
×

∣∣∣∣ ∂(µ1:k+1)

∂(µ1:k,µ
?)

∣∣∣∣ .
Clearly, the Jacobian is equal to 1, and after simplifications we obtain:

rbirth =

 c∏
i=1

1

(1+ δ2
i )

1/2

(
γ0 + y′1:N,iPi,ky1:N,i

γ0 + y′1:N,iPi,k+1y1:N,i

)( N+υ0
2

) 1
(k+ 1)

.

Similarly, for the death move:

rdeath =
p(k− 1,µ1:k−1, 3, δ2|x, y)

p(k,µ1:k, 3, δ2|x, y)
× bk−1/=

dk/k
×

∣∣∣∣∂(µ1:k−1,µ
?)

∂(µ1:k)

∣∣∣∣
=

 c∏
i=1

(1+ δ2
i )

1/2

(
γ0 + y′1:N,iPi,ky1:N,i

γ0 + y′1:N,iPi,k−1y1:N,i

)( N+υ0
2

) k. (4.6)

The acceptance probabilities corresponding to the described moves are:

Abirth = min {1, rbirth} , Adeath = min {1, rdeath} (4.7)

4.2.2 Split and Merge Moves. The merge move involves randomly se-
lecting a basis function (µ1) and then combining it with its closest neighbor
(µ2) into a single basis function µ, whose new location is

µ = µ1 +µ2

2
. (4.8)

The corresponding split move that guarantees reversibility is

µ1 = µ− umsς
?

µ2 = µ+ umsς
?, (4.9)

where ς? is a simulation parameter and ums ∼ U[0,1]. To ensure reversibility,
we perform the merge move only if ‖µ1−µ2‖ < 2ς?. Suppose now that the
current state of the Markov chain is in {k}×Θk×Ψ. Then the algorithm for
the split and merge moves is as follows:

Split Move
1. Randomly choose an existing RBF center.
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2. Substitute it for two neighbor basis functions, whose centers are obtained
using equation 4.9. The new centers must be bound to lie in the space Ωk,
and the distance (typically Euclidean) between them has to be shorter than
the distance between the proposed basis function and any other existing
basis function.

3. Evaluate Asplit (see equation 4.10), and sample u ∼ U[0,1].

4. If u ≤ Asplit then the state of the Markov chain becomes (k + 1, µ1:k+1),
else it remains equal to (k, µ1:k).

Merge Move

1. Choose a basis center at random among the k existing basis. Then find
the closest basis function to it applying some distance metric, for example,
Euclidean.

2. If ‖µ1 − µ2‖ < 2ς?, substitute the two basis functions for a single basis
function in accordance with equation 4.8.

3. Evaluate Amerge (see equation 4.10), and sample u ∼ U[0,1].

4. If u ≤ Amerge, then the state of the Markov chain becomes (k − 1, µ1:k−1),
else it remains equal to (k, µ1:k).

The acceptance ratio for the proposed split move is given by:

rsplit =
p(k+ 1,µ1:k+1, 3, δ2|x, y)

p(k,µ1:k, k, 3, δ2|x, y)
× mk+1/(k+ 1)

p(ums)sk/k
×

∣∣∣∣∂(µ1,µ2)

∂(µ, ums)

∣∣∣∣ .
In this case, the Jacobian is equal to:

Jsplit =
∣∣∣∣∂(µ1,µ2)

∂(µ, ums)

∣∣∣∣ = ∣∣∣∣ 1 1
−ς? ς?

∣∣∣∣ = 2ς?,

and, after simplifications, we obtain:

rsplit =

 c∏
i=1

1

(1+ δ2
i )

1/2

(
γ0 + y′1:N,iPi,ky1:N,i

γ0 + y′1:N,iPi,k+1y1:N,i

)( N+υ0
2

) kς?

=(k+ 1)
.

Similarly, for the merge move:

rmerge = p(k− 1,µ1:k−1, 3, δ2|x, y)

p(k,µ1:k, 3, δ2|x, y)
× sk−1/(k− 1)

mk/k
×

∣∣∣∣ ∂(µ, ums)

∂(µ1,µ2)

∣∣∣∣ ,
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and, since Jmerge = 1/2ς?, it follows that

rmerge =

 c∏
i=1

(1+ δ2
i )

1/2

(
γ0 + y′1:N,iPi,ky1:N,i

γ0 + y′1:N,iPi,k−1y1:N,i

)( N+υ0
2

) k=
ς?(k− 1)

.

The acceptance probabilities for the split and merge moves are:

Asplit = min
{
1, rsplit

}
, Amerge = min

{
1, rmerge

}
. (4.10)

4.2.3 Update Move. The update move does not involve changing the di-
mension of the model. It requires an iteration of the fixed dimension MCMC
sampler presented in section 4.1.1.

The method presented so far can be very accurate, yet it can be compu-
tationally demanding. In the following section, we present a method that
requires optimization instead of integration to obtain estimates of the pa-
rameters and model dimension. This method, although less accurate, as
shown in section 7, is less computationally demanding. The choice of one
method over the other should ultimately depend on the modeling con-
straints and specifications.

5 Reversible-Jump Simulated Annealing

In this section, we show that traditional model selection criteria within a
penalized likelihood framework, such as AIC, BIC, and MDL (Akaike, 1974;
Schwarz, 1985; Rissanen, 1987), can be shown to correspond to particular hy-
perparameter choices in our hierarchical Bayesian formulation. (As pointed
out by one of the reviewers, AIC is not restricted to the situation where the
true model belongs to the set of model candidates.) That is, we can calibrate
the prior choices so that the problem of model selection within the penalized
likelihood context can be mapped exactly to a problem of model selection
via posterior probabilities. This technique has been previously applied to
the problem of variable selection (George & Foster, 1997).

After resolving the calibration problem, we perform maximum like-
lihood estimation, with the model selection criteria, by maximizing the
calibrated posterior distribution. To accomplish this goal, we adopt an
MCMC simulated annealing algorithm, which makes use of the homo-
geneous reversible-jump MCMC kernel as proposal distribution. This ap-
proach has the advantage that we can start with an arbitrary model order,
and the algorithm will perform dimension jumps until it finds the “true”
model order. That is, we do not have to resort to the more expensive task
of running a fixed-dimension algorithm for each possible model order and
subsequently select the best model.
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5.1 Penalized Likelihood Model Selection. Traditionally, penalized like-
lihood model order selection strategies, based on standard information cri-
teria, require the evaluation of the maximum likelihood (ML) estimates for
each model order. The number of required evaluations can be prohibitively
expensive unless appropriate heuristics are available. Subsequently, a par-
ticular modelMs is selected if it is the one that minimizes the sum of the
the log-likelihood and a penalty term that depends on the model dimension
(Djurić, 1998; Gelfand & Dey, 1997). In mathematical terms, this estimate is
given by:

Ms = arg min
Mk: k∈{0,...,kmax}

{
− log(p(y | k, θ̂, x))+ P

}
, (5.1)

where θ̂ = (α̂1:m, µ̂1:k, σ̂
2
k) is the ML estimate of θ for model Mk. P is a

penalty term that depends on the model order. Examples of ML penalties
include the well-known AIC, BIC, or MDL information criteria (Akaike,
1974; Schwarz, 1985; Rissanen, 1987). The expressions for these in the case
of gaussian observation noise are

PAIC = ξ and PBIC = PMDL = ξ

2
log(N),

where ξ denotes the number of model parameters (k(c+1)+ c(1+d)) in the
case of an RBF network). These criteria are motivated by different factors:
AIC is based on expected information, BIC is an asymptotic Bayes factor, and
MDL involves evaluating the minimum information required to transmit
some data and a model, which describes the data, over a communications
channel.

Using the conventional estimate of the variance for gaussian distribu-
tions,

σ̂2
i =

1
N

(
y1:N,i −D(µ̂1:k, x)α̂1:m,i

)′ (y1:N,i −D(µ̂1:k, x)α̂1:m,i
)

= 1
N

y′1:N,iP
∗
i,ky1:N,i,

where P∗i,k is the least-squares orthogonal projection matrix,

P∗i,k = IN −D(µ̂1:k, x)
[
D′(µ̂1:k, x)D(µ̂1:k, x)

]−1 D′(µ̂1:k, x),

we can expand equation 5.1 as follows:

Ms = arg min
Mk:k∈{0,...,kmax}

{
− log

[
c∏

i=1

(2πσ̂2
i )
−N/2
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× exp

(
− 1

2σ̂2
i

(
y1:N,i −D(µ̂1:k, x)α̂1:m,i

)′
× (

y1:N,i −D(µ̂1:k, x)α̂1:m,i
) )]
+ P

}

= arg max
Mk :k∈{0,...,kmax}

{[
c∏

i=1

(y′1:N,iP
∗
i,ky1:N,i)

−N/2

]
exp(−P)

}
. (5.2)

In the following section, we show that calibrating the priors in our hierar-
chical Bayes model will lead to the expression given by equation 5.2.

5.2 Calibration. It is useful and elucidating to impose some restrictions
on the Bayesian hierarchical prior (see equation 3.3) to obtain the AIC and
MDL criteria. We begin by assuming that the hyperparameter δ is fixed to
a particular value, say δ, and that we no longer have a definite expression
for the model prior p(k), so that

p(k,µ1:k | x, y)

∝

 c∏
i=1

(1+ δ2
i )
−m/2

(
γ0 + y′1:N,iPi,ky1:N,i

2

)(
− N+υ0

2

) [ IΩ(k,µk)

=k

]
p(k).

Furthermore, we set υ0 = 0 and γ0 = 0 to obtain Jeffreys’s uninformative
prior p(σ2

i ) ∝ 1/σ2
i . Consequently, we obtain the following expression:

p(k,µ1:k | x, y)

∝
[

c∏
i=1

(
1+ δ2

i

)−k/2 (
y′1:N,iPi,ky1:N,i

)− N
2

] [ IΩ(k,µk)

=k

]
p(k),

where M−1
i,k = (1+δ−2

i )D′(µ1:k, x)D(µ1:k, x), hi,k =Mi,kD′(µ1:k, x)y1:N,i, and

Pi,k = IN −D(µ1:k, x)Mi,kD′(µ1:k, x). Finally, we can select δ
2
i and p(k) such

that [
c∏

i=1

(
1+ δ2

i

)−k/2
] [ IΩ(k,µk)

=k

]
p(k) = exp(−P) ∝ exp(−Ck),

thereby ensuring that the expression for the calibrated posterior distribu-
tion p(k,µ1:k | x, y) corresponds to the term that needs to be maximized
in the penalized likelihood framework (see equation 5.2). Note that for the
purposes of optimization, we only need the proportionality condition with
C = c + 1 for the AIC criterion and C = (c + 1) log(N)/2 for the MDL and
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BIC criteria. We could, for example, satisfy the proportionality by remain-
ing in the compact set Ω and choosing the prior p(k) = 3k∑kmax

j=0
3j

, with the

following fixed value for 3:

3 =
[

c∏
i=1

(
1+ δ2

i

) 1
2

]
= exp (−C) . (5.3)

In addition, we have to let δ→∞ so that Pi,k → P∗i,k.
We have thus shown that by calibrating the priors in the hierarchical

Bayesian formulation, in particular by treating 3 and δ2 as fixed quantities
instead of as random variables, letting δ → ∞, choosing an uninforma-
tive Jeffreys’s prior for σ2 and setting 3 as in equation 5.3, we can obtain
the expression that needs to be maximized in the classical penalized likeli-
hood formulation with AIC, MDL, and BIC model selection criteria. Conse-
quently, we can interpret the penalized likelihood framework as a problem
of maximizing the joint posterior distribution p(k,µ1:k | x, y). Effectively,
we can obtain this MAP estimate as follows:

(k,µ1:k)MAP = arg max
k,µ1:k∈Ω

p(k,µ1:k | x, y)

= arg max
k,µ1:k∈Ω

{[
c∏

i=1

(y′1:N,iP
∗
i,ky1:N,i)

−N/2

]
exp(−P)

}
.

The sufficient conditions that need to be satisfied so that the distribution
p(k,µ1:k | x, y) is proper are not overly restrictive. First, Ω has to be a
compact set, which is not a problem in our setting. Second, y′1:N,iP

∗
i,ky1:N,i

has to be larger than zero for i = 1, . . . , c. In appendix B, lemma 1, we show
that this is the case unless y1:N,i spans the space of the columns of D(µ1:k, x),
in which case y′1:N,iP

∗
i,ky1:N,i = 0. This event has probability zero.

5.3 Reversible-Jump Simulated Annealing. From an MCMC perspec-
tive, we can solve the stochastic optimization problem posed in the previous
section by adopting a simulated annealing strategy (Geman & Geman, 1984;
Van Laarhoven & Arts, 1987). The simulated annealing method involves
simulating a nonhomogeneous Markov chain whose invariant distribution
at iteration i is no longer equal to π(z), but to πi(z) ∝ π1/Ti(z), where Ti is a
decreasing cooling schedule with limi→+∞ Ti = 0. The reason for doing this
is that under weak regularity assumptions on π(z), π∞(z) is a probability
density that concentrates itself on the set of global maxima of π(z).

As with the MH method, the simulated annealing method with distribu-
tion π(z) and proposal distribution q(z? | z) involves sampling a candidate
value z? given the current value z according to q(z? | z). The Markov chain
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moves toward the candidate z? with probabilityASA (z, z?)= min{1, (π1/Ti

(z)q(z? | z))−1π1/Ti(z?)q(z | z?)}; otherwise, it remains equal to z. If we
choose the homogeneous transition kernel K(z, z?) of the reversible-jump
algorithm as the proposal distribution and use the reversibility property,

π(z?)K(z?, z) = π(z)K(z, z?),

it follows that

ARJSA = min
{

1,
π(1/Ti−1)(z?)

π(1/Ti−1)(z)

}
. (5.4)

Consequently, the following algorithm, with bk = dk = mk = sk = uk = 0.2,
can find the joint MAP estimate of µ1:k and k:

Reversible-Jump Simulated Annealing

1. Initialization: set (k(0), θ (0)) ∈Θ.

2. Iteration i.

• Sample u ∼ U[0,1], and set the temperature according to the cooling
schedule.

• If (u ≤ bk(i) )

— then birth move (see equation 5.6).

— else if (u ≤ bk(i)+dk(i) ) then death move (see equation 5.6).

— else if (u ≤ bk(i) + dk(i) + sk(i) ) then split move (see equa-
tion 5.7).

— else if (u ≤ bk(i) + dk(i) + sk(i) +mk(i) ) then merge move (see
equation 5.7).

— else update the RBF centers (see equation 5.5).

End If.

• Perform an MH step with the annealed acceptance ratio (see equa-
tion 5.4).

3. i← i+ 1 and go to 2.

4. Compute the coefficients α1:m by least squares (optimal in this case):

α̂1:m,i = [D′(µ1:k, x)D(µ1:k, x)]−1D′(µ1:k, x)y1:N,i.

We explain the simulated annealing moves in the following sections.
To simplify the notation, we drop the superscript ·(i) from all variables at
iteration i.
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5.4 Moves. We sample the radial basis centers in the same way as ex-
plained in section 4.1.1. However, the target distribution is given by

p(µj,1:d | x, y,µ−j,1:d) ∝
[

c∏
i=1

(y′1:N,iP
∗
i,ky1:N,i)

(
− N

2

)]
exp(−P),

and, consequently, the acceptance probability is

Aupdate(µj,1:d,µ
?
j,1:d) = min

1,

 c∏
i=1

(
y′1:N,iP

∗
i,ky1:N,i

y′1:N,iP
?
i,ky1:N,i

)(
N
2

)
 , (5.5)

where P?
i,k is similar to P∗i,k withµ1:k,1:d replaced by {µ1,1:d,µ2,1:d, . . . ,µj−1,1:d,

µ?
j,1:d,µj+1,1:d, . . . ,µk,1:d}. The birth and death moves are similar to the ones

proposed in section 4.2.1, except that the expressions for rbirth and rdeath (with
bk = dk = 0.2) become

rbirth =

 c∏
i=1

(
y′1:N,iP

∗
i,ky1:N,i

y′1:N,iP
∗
i,k+1y1:N,i

)(
N
2

) = exp(−C)
k+ 1

.

Similarly,

rdeath =

 c∏
i=1

(
y′1:N,iP

∗
i,ky1:N,i

y′1:N,iP
∗
i,k−1y1:N,i

)(
N
2

) k exp(C)
= .

Hence, the acceptance probabilities corresponding to the described moves
are

Abirth = min {1, rbirth} , Adeath = min {1, rdeath} . (5.6)

Similarly, the split and merge moves are analogous to the ones proposed
in section 4.2.2, except that the expressions for rsplit and rmerge (with mk =
sk = 0.2) become

rsplit =

 c∏
i=1

(
y′1:N,iP

∗
i,ky1:N,i

y′1:N,iP
∗
i,k+1y1:N,i

)(
N
2

) kς? exp(−C)
k+ 1



2384 C. Andrieu, N. de Freitas, and A. Doucet

and

rmerge =

 c∏
i=1

(
y′1:N,iP

∗
i,ky1:N,i

y′1:N,iP
∗
i,k−1y1:N,i

)(
N
2

) k exp(C)
ς?(k− 1)

.

The acceptance probabilities for these moves are

Asplit = min
{
1, rsplit

}
, Amerge = min

{
1, rmerge

}
. (5.7)

6 Convergence Results

It is easy to prove that the reversible-jump MCMC algorithm applied to
the full Bayesian model converges, in other words, that the Markov chain
(k(i),µ(i)

1:k, 3
(i), δ2(i))i∈N is ergodic. We prove here a stronger result by show-

ing that (k(i),µ(i)
1:k, 3

(i), δ2(i)
)i∈N converges to the required posterior distribu-

tion at a geometric rate. For the homogeneous kernel, we have the following
result:

Theorem 1. Let (k(i),µ(i)
1:k, 3

(i), δ2(i))i∈N be the Markov chain whose transition
kernel has been described in section 3. This Markov chain converges to the prob-
ability distribution p(k,µ1:k, 3, δ2 | x, y). Furthermore, this convergence occurs
at a geometric rate, that is, for p(k,µ1:k, 3, δ2 | x, y)-almost every initial point
(k(0),µ(0)

1:k, 3
(0), δ2(0)

) ∈ Ω×Ψ there exists a function C(k(0),µ(0)

1:k, 3
(0), δ2(0)

) >

0 and a constant ρ ∈ [0, 1) such that:∥∥∥p(i)
(

k,µ1:k, 3, δ2
)
− p

(
k,µ1:k, 3, δ2

∣∣∣ x, y
)∥∥∥

TV

≤ C
(

k(0),µ(0)

1:k, 3
(0), δ2(0)

)
ρbi/kmaxc (6.1)

where p(i)(k,µ1:k, 3, δ2) is the distribution of (k(i),µ(i)
1:k, 3

(i), δ2(i)) and ‖ · ‖TV is
the total variation norm (Tierney, 1994).

Proof. See appendix B.

Corollary 1. Since at each iteration i, one simulates the nuisance parameters
(α1:m,σ2

k), the distribution of the series (k(i),α(i)
1:m,µ(i)

1:k,σ
2(i)
k , 3(i), δ2(i)

)i∈N con-
verges geometrically toward p(k,α1:m,µ1:k,σ

2
k, 3, δ2 | x, y) at the same rate ρ.

In other words, the distribution of the Markov chain converges at least at
a geometric rate, dependent on the initial state, to the required equilibrium
distribution p(k,θ, ψ | x, y).
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Remark 1. In practice one cannot evaluate ρ, but theorem 1 proves its
existence. This type of convergence ensures that a central limit theorem for
ergodic averages is valid (Meyn & Tweedie, 1993; Tierney, 1994). Moreover,
in practice, there is empirical evidence that the Markov chain converges
quickly.

We have the following convergence theorem for the reversible-jump
MCMC simulated annealing algorithm:

Theorem 2. Under certain assumptions found in Andrieu, Breyer, and Doucet
(1999), the series of (θ(i)

, k(i)) converges in probability to the set of global maxima
(θmax

, kmax), that is, for any ε > 0, it follows that

lim
i→∞Pr

(
p(θ(i)

, k(i))

p(θmax, kmax)
≥ 1− ε

)
= 1.

Proof. If we follow the same steps as in proposition 1 of appendix B,
with δ2 and 3 fixed, it is easy to show that the transition kernels for each
temperature are uniformly geometrically ergodic. Hence, as a corollary of
Andrieu et al. (1999, theorem 1), the convergence result for the simulated
annealing MCMC algorithm follows.

7 Experiments

When implementing the reversible-jump MCMC algorithm discussed in
section 4, one might encounter problems of ill conditioning, in particular
for high-dimensional parameter spaces. There are two satisfactory ways
of overcoming this problem.3 First, we can introduce a ridge regression
component so that the expression for M−1

i,k in section 3.3 becomes

M−1
i,k = D′(µ1:k, x)D(µ1:k, x)+Σ−1

i + ~Im,

where ~ is a small number. Alternatively, we can introduce a slight modifi-
cation of the prior for α1:m:

p(α1:m | k,µ1:k,σ
2, 3, δ2

)

=
[

c∏
i=1

|2πσ2
i δ

2
i Im|−1/2 exp

(
− 1

2σ2
i δ

2
i

α′1:m,iα1:m,i

)]
.

3 The software is available online at http://www.cs.berkeley.edu/∼jfgf.
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We have found that although both strategies can deal with the problem of
limited numerical precision, the second approach seems to be more stable.
In addition, the second approach does not oblige us to select a value for the
simulation parameter ~.

7.1 Experiment 1: Signal Detection. The problem of detecting signal
components in noisy signals has occupied the minds of many researchers for
a long time (Djurić, 1996). Here, we consider the rather simple toy problem of
detecting gaussian components in a noisy signal. Our aim is to compare the
performance of the hierarchical Bayesian model selection scheme and the
penalized likelihood model selection criteria (AIC, MDL) when the amount
of noise in the signal varies.

The data were generated from the following univariate function using
50 covariate points uniformly on [−2, 2]:

y = x+ 2 exp(−16x2)+ 2 exp(−16(x− 0.7)2)+ n,

where n ∼ N (0, σ 2). The data were then rescaled to make the input data lie
in the interval [0, 1]. We used the reversible-jump MCMC algorithm, for the
full Bayesian model, and the simulated annealing algorithms to estimate the
number of components in the signal for different levels of noise. We repeated
the experiment 100 times for each noise level. We chose gaussian radial basis
functions with the same variance as the gaussian signal components. For
the simulated annealing method, we adopted a linear cooling schedule:
Ti = a − bi, where a, b ∈ R+ and Ti > 0 for i = 1, 2, 3, . . . In particular, we
set the initial and final temperatures to 1 and 1 × 10−5. For the Bayesian
model, we selected diffuse priors (αδ2 = 2, βδ2 = 10 [see experiment 2],
υ0 = 0, γ0 = 0, ε1 = 0.001 and ε2 = 0.0001). Finally, we set the simulation
parameters kmax, ι, σ 2

RW , and ς? to 20, 0.1, 0.001, and 0.1.
Figure 4 shows the typical fits that were obtained for training and valida-

tion data sets. By varying the variance of the noise σ 2, we estimated the main
mode and fractions of unexplained variance. For the AIC and BIC/MDL
criteria, the main mode corresponds to the one for which the posterior is
maximized, while for the Bayesian approach, the main mode corresponds to
the MAP of the model order probabilities p̂(k | x, y), computed as suggested
in section 3.2.

The fractions of unexplained variance (fv) were computed as follows:

fv = 1
100

100∑
i=1

∑50
t=1(yt,i − ŷt,i)

2∑50
t=1(yt,i − yi)

2
,

where ŷt,i denotes the tth prediction for the ith trial and yi is the estimated
mean of yi. The normalization in the fv error measure makes it independent
of the size of the data set. If the estimated mean was to be used as the
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Figure 4: Performance of the reversible-jump MCMC algorithm on the signal
detection problem. Despite the large noise variance, the estimates of the true
function and noise process are very accurate, thereby leading to good generali-
sation (no overfitting).

Table 1: Fraction of Unexplained Variance for Different Values of the Noise
Variance, Averaged over 100 Test Sets.

σ 2 AIC BIC/MDL Bayes

0.01 0.0070 0.0076 0.0069
0.1 0.0690 0.0732 0.0657
1 0.6083 0.4846 0.5105

predictor of the data, the fv would be equal to 1. The results obtained are
shown in Figure 5 and Table 1. The fv for each model selection approach are
very similar. This result is expected since the problem under consideration
is rather simple and the error variations could possibly be attributed to the
fact that we use only 100 realizations of the noise process for each σ 2. What
is important is that even in this scenario, it is clear that the full Bayesian
model provides more accurate estimates of the model order.
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Figure 5: Histograms of the main mode p̂(k | x, y) for 100 trials of each noise
level in experiment 1. The Bayes solution provides a better estimate of the true
number of basis (2) than the MDL/BIC and AIC criteria.

7.2 Experiment 2: Robot Arm Data. This data set is often used as a
benchmark to compare neural network algorithms.4 It involves implement-
ing a model to map the joint angle of a robot arm (x1, x2) to the position
of the end of the arm (y1, y2). The data were generated from the following
model:

y1 = 2.0 cos(x1)+ 1.3 cos(x1 + x2)+ ε1

y2 = 2.0 sin(x1)+ 1.3 sin(x1 + x2)+ ε2 (7.1)

where εi ∼ N (0, σ 2); σ = 0.05. We use the first 200 observations of the data
set to train our models and the last 200 observations to test them.

First, we assessed the performance of the reversible-jump algorithm with
the Bayesian model. In all the simulations, we chose to use cubic basis
functions. Figure 6 shows the three-dimensional plots of the training data
and the contours of the training and test data. The contour plots also include

4 The data set is available online at http://wol.ra.phy.cam.ac.uk/mackay/.
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Figure 6: (Top) Training data surfaces corresponding to each coordinate of the
robot arm’s position. (Middle, bottom) Training and validation data (solid lines)
and respective RBF network mappings (dotted lines).

the typical approximations that were obtained using the algorithm. To assess
convergence, we plotted the probabilities of each model order p̂(k | x, y) in
the chain (using equation 3.2) for 50,000 iterations, as shown in Figure 7. As
the model orders begin to stabilize after 30,000 iterations, we decided to run
the Markov chains for 50,000 iterations with a burn-in of 30,000 iterations. It
is possible to design more complex convergence diagnostic tools; however,
this topic is beyond the scope of this article.

We chose uninformative priors for all the parameters and hyperparam-
eters. In particular, we used the values shown in Table 2. To demonstrate
the robustness of our model, we chose different values for βδ2 (the only crit-
ical hyperparameter as it quantifies the mean of the spread δ of αk). The
obtained mean square errors (see Table 2) and probabilities for δ1, δ2, σ2

1,k,
σ2

2,k, and k, shown in Figure 8, clearly indicate that our model is robust with
respect to prior specification.

As shown in Table 3, our mean square errors are slightly better than the
ones reported by other researchers (Holmes & Mallick, 1998; Mackay, 1992;
Neal, 1996; Rios Insua & Müller, 1998). Yet the main point we are trying to
make is that our model exhibits the important quality of being robust to the
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Figure 7: Convergence of the reversible-jump MCMC algorithm for RBF net-
works. The plot shows the probability of each model order given the data. The
model orders begin to stabilize after 30,000 iterations.

Table 2: Simulation Parameters and Mean Square Errors for the Robot Arm
Data (Test Set) Using the Reversible-Jump MCMC Algorithm and the Bayesian
Model.

αδ2 βδ2 υ0 γ0 ε1 ε2 Mean Square Error

2 0.1 0 0 0.0001 0.0001 0.00505
2 10 0 0 0.0001 0.0001 0.00503
2 100 0 0 0.0001 0.0001 0.00502

prior specification and statistically significant. Moreover, it leads to more
parsimonious models than the ones previously reported.

We also tested the reversible-jump simulated annealing algorithms with
the AIC and MDL criteria on this problem. The results for the MDL criterion
are depicted in Figure 9. We note that the posterior increases stochastically
with the number of iterations and eventually converges to a maximum. The
figure also illustrates the convergence of the train and test set errors for each
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Figure 8: Histograms of smoothness constraints for each output (δ1 and δ2),
noise variances (σ 2

1,k and σ 2
2,k), and model order (k) for the robot arm data sim-

ulation using three different values for βδ2 . The plots confirm that the model is
robust to the setting of βδ2 .

network in the Markov chain. For the final network, we chose the one that
maximized the posterior (the MAP estimate). This network consisted of 12
basis functions and incurred an error of 0.00512 in the test set. Following
the same procedure, the AIC network consisted of 27 basis functions and
incurred an error of 0.00520 in the test set. These results indicate that the
full Bayesian model, with model averaging, provides more accurate results.
Moreover, it seems that the information criteria, in particular the AIC, can
lead to overfitting of the data.

These results confirm the well-known fact that suboptimal techniques,
such as the simulated annealing method with information criteria penalty
terms and a rapid cooling schedule, can allow for faster computation at the
expense of accuracy.
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Table 3: Mean Square Errors and Number of Basis Functions for the Robot Arm
Data.

Method Mean Square Error

Mackay’s (1992) gaussian approximation with highest evidence 0.00573
Mackay’s (1992) gaussian approximation with lowest test error 0.00557
Neal’s (1996) hybrid Monte Carlo 0.00554
Neal’s (1996) hybrid Monte Carlo with ARD 0.00549
Rios Insua and Müller’s (1998) MLP with reversible-jump MCMC 0.00620
Holmes and Mallick’s (1998) RBF with reversible-jump MCMC 0.00535
Reversible-jump MCMC with Bayesian model 0.00502
Reversible-jump MCMC with MDL 0.00512
Reversible-jump MCMC with AIC 0.00520
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Figure 9: Performance of the reversible-jump simulated annealing algorithm
for 200 iterations on the robot arm data, with the MDL criterion.

7.3 Experiment 3: Classification with Discriminants. Here we consider
an interesting nonlinear classification data set5 collected as part of a study to
identify patients with muscle tremor (Roberts, Penny, & Pillot, 1996; Spyers-

5 The data are available online at http://www.ee.ic.ac.uk/hp/staff/sroberts.html.



Robust Full Bayesian Learning for Radial Basis 2393

−0.5 0 0.5 1
−0.5

0

0.5

1

x 2

x
1

Figure 10: Classification boundaries (solid line) and confidence intervals
(dashed line) for the RBF classifier. The circles indicate patients, and the crosses
represent the control group.

Ashby, Bain, & Roberts, 1998). The data were gathered from a group of pa-
tients (nine with, primarily, Parkinson’s disease or multiple sclerosis) and
from a control group (not exhibiting the disease). Arm muscle tremor was
measured with a 3D mouse and a movement tracker in three linear and
three angular directions. The time series of the measurements were param-
eterized using a set of autoregressive models. The number of features was
then reduced to two (Roberts et al., 1996). Figure 10 shows a plot of these
features for patient and control groups. The figure also shows the classifi-
cation boundaries and confidence intervals obtained with our model, using
thin-plate spline hidden neurons and an output linear neuron. We should
point out, however, that having an output linear neuron leads to a classifi-
cation framework based on discriminants. An alternative approach, which
we do not pursue here, is to use a logistic output neuron so that the classifi-
cation scheme is based on probabilities of class membership. It is, however,
possible to extend our approach to this probabilistic classification setting
by adopting the generalized linear models framework with logistic, probit
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Figure 11: Receiver operating characteristic (ROC) of the classifier for the tremor
data. The solid line is the ROC curve for the posterior mean classifier, and the
dotted lines correspond to the curves obtained for various classifiers in the
Markov chain.

or softmax link functions (Gelman, Carlin, Stern, & Rubin, 1995; Holmes &
Mallick, 1999; Nabney, 1999).

The size of the confidence intervals for the decision boundary is given
by the noise variance (σ 2). These intervals are a measure of uncertainty on
the threshold that we apply to the linear output neuron. Our confidence
of correctly classifying a sample occurring within these intervals should
be very low. The receiver operating characteristic (ROC) curve, shown in
Figure 11, indicates that using the Neyman Pearson criterion, we can expect
to detect patients with a 69% confidence and without making any mistakes
(Hand, 1997). In our application, the ROC curve was obtained by averaging
all the predictions for each classifier in the Markov chain.

The percentage of classification errors in the test set was found to be
14.60. This error is of the same magnitude as previously reported results (de
Freitas, Niranjan, & Gee, 1998; Roberts & Penny, 1998). Finally, the estimated
probabilities of the signal-to-noise ratio (δ2), noise variance (σ 2), and model
order (k) for this application are depicted in Figure 12.



Robust Full Bayesian Learning for Radial Basis 2395

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4
δ2

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

σ2

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

k

Figure 12: Estimated probabilities of the signal-to-noise ratio (δ2), noise variance
(σ 2), and model order (k) for the classification example.

8 Conclusions

We have proposed a robust full Bayesian model for estimating, jointly, the
noise variance, parameters, and number of parameters of an RBF model.
We also considered the problem of stochastic optimization for model or-
der selection and proposed a solution that makes use of a reversible-jump
simulated annealing algorithm and classical information criteria. Moreover,
we gave proofs of geometric convergence for the reversible-jump algorithm
for the full Bayesian model and convergence for the simulated annealing
algorithm.

Contrary to previously reported results, our experiments suggest that
our Bayesian model is robust with respect to the specification of the prior.
In addition, we obtained more parsimonious RBF networks and slightly
better approximation errors than the ones previously reported in the liter-
ature. We also presented a comparison between Bayesian model averaging
and penalized likelihood model selection with the AIC and MDL criteria.
We found that the Bayesian strategy led to more accurate results. Yet the op-
timization strategy using the AIC and MDL criteria and a reversible-jump
simulated annealing algorithm was shown to converge faster for a specific
cooling schedule.
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There are many avenues for further research. These include estimating
the type of basis functions required for a particular task, performing in-
put variable selection, considering other noise models, adopting Bernoulli
and multinomial output distributions for probabilistic classification by in-
corporating ideas from the generalized linear models field, and extend-
ing the framework to sequential scenarios. A solution to the first problem
can be easily formulated using the reversible-jump MCMC framework pre-
sented here. Variable selection schemes can also be implemented via the
reversible-jump MCMC algorithm. Finally, we are working on a sequential
version of the algorithm that allows us to perform model selection in non-
stationary environments (Andrieu, de Freitas, & Doucet, 1999a, 1999b). We
also believe that the algorithms need to be tested on additional real-world
problems. For this purpose, we have made the software available online at
http://www.cs.berkeley.edu/∼jfgf.

Appendix A: Notation

Ai,j: entry of the matrix A in the ith row and jth column.

A′: transpose of matrix A.

|A|: determinant of matrix A.

If z , (z1, . . . , zj−1, zj, zj+1, . . . , zk)
′

then z−j , (z1, . . . , zj−1, zj+1, . . . , zk)
′.

In: identity matrix of dimension n× n.

IE(z): indicator function of the set E (1 if z ∈E, 0 otherwise).

bzc: highest integer strictly less than z.

z ∼p(z): z is distributed according to p(z).

z | y ∼p(z): the conditional distribution of z given y is p(z).

Probability F fF (·)
Distribution

Inverse gamma IG (α, β)
βα

0(α)
z−α−1 exp (−β/z) I[0,+∞) (z)

Gamma Ga (α, β)
βα

0(α)
zα−1 exp (−βz) I[0,+∞) (z)

Gaussian N (m, 6) |2π6|−1/2 exp
(− 1

2 (z−m)′6−1 (z−m)
)

Poisson Pn (λ) λz

z! exp(−λ)IN (z)
Uniform UA

[∫
A dz

]−1 IA (z)

Appendix B: Proof of Theorem 1

The proof of theorem 1 relies on the following theorem, which is a result of
theorems 14.0.1 and 15.0.1 in Meyn and Tweedie (1993):
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Theorem 3. Suppose that a Markovian transition kernel P on a space Z

1. Is a φ−irreducible (for some measure φ) aperiodic Markov transition kernel
with invariant distribution π .

2. Has geometric drift toward a small set C with drift function V: Z →
[1,+∞), that is, there exists 0 < λ < 1, b > 0, k0 and an integrable
measure ν such that:

PV(z) ≤ λV(z)+ bIC(z) (B.1)

Pk0(z, dz′) ≥ IC(z)ν(dz′). (B.2)

Then for π -almost all z0, some constants ρ < 1 and R < +∞, we have:

‖Pn(z0, ·)− π(·)‖TV ≤ RV(z0)ρ
n. (B.3)

That is, P is geometrically ergodic.

We need to prove five lemmas that will allow us to prove the different con-
ditions required to apply theorem 2. These lemmas will enable us to prove
proposition 1, which will establish the minorization condition, equation B.2,
for some k0 and measure φ (to be described). The φ-irreducibility and ape-
riodicity of the Markov chain are then proved in corollary 3, thereby en-
suring the simple convergence of the Markov chain. To complete the proof,
proposition 2 will establish the drift condition, equation B.1. To simplify the
presentation, we consider only one network output. The proof for multiple
outputs follows trivially.

Before presenting the various lemmas and their respective proofs, we
need to introduce some notation. Let K(3k1 , δ2

k1
, k1, µ1:k1

; d3k2 , dδ2
k2

, k2, d
µ1:k2

) denote the transition kernel of the Markov chain.6 Thus, for fixed
(3k1 , δ2

k1
, k1, µ1:k1

) ∈ R+2 ×Ω, we have:

Pr
(
(3k2 , δ

2
k2

, k2,µ1:k2
) ∈ Ak2 | (3k1 , δ

2
k1

, k1,µ1:k1
)
)

=
∫

Ak2

K(3k1 , δ
2
k1

, k1,µ1:k1
; d3k2 , dδ2

k2
, k2, dµ1:k2

),

where Ak2 ∈ B(R+2 × {k2} ×Ωk2). This transition kernel is by construction
(see section 4.2) a mixture of transition kernels. Hence:

K(3k1 , δ
2
k1

, k1,µ1:k1
; d3k2 , dδ2

k2
, k2, dµ1:k2

)

6 We will use the notation 3k, δ2
k , when necessary, for ease of presentation. This does

not mean that these variables depend on the dimension k.
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=
(

bk1Kbirth(3k1 , δ
2
k1

, k1,µ1:k1
; d3k1 , dδ2

k1
, k1 + 1, dµ1:k1+1)

+ dk1Kdeath(3k1 , δ
2
k1

, k1,µ1:k1
; d3k1 , dδ2

k1
, k1 − 1, dµ1:k1−1)

+ sk1Ksplit(3k1 , δ
2
k1

, k1,µ1:k1
; d3k1 , dδ2

k1
, k1 + 1, dµ1:k1+1)

+mk1Kmerge(3k1 , δ
2
k1

, k1,µ1:k1
; d3k1 , dδ2

k1
, k1 − 1, dµ1:k1−1)

+ (1− bk1 − dk1 − sk1 −mk1)

×Kupdate(3k1 , δ
2
k1

, k1,µ1:k1
; d3k1 , dδ2

k1
, k1, dµ∗1:k1

)
)

× p(δ2
k2
| δ2

k1
, k2,µ1:k2

, x, y)p(3k2 | k2)d3k2 dδ2
k2

,

whereKbirth andKdeath correspond to the reversible jumps described in sec-
tion 4.2.1,Ksplit andKmerge to the reversible jumps described in section 4.2.2,
andKupdate is described in section 4.2.3. The different steps for sampling the
parameters δ2

k2
and 3k2 are described in section 4.1.3.

Lemma 1. We denote P∗k the matrix Pk for which δ2 → +∞. Let v ∈ RN,
then v′P∗k v = 0 if and only if v belongs to the space spanned by the columns of
D

(
µ1:k, x

)
, with µ1:k ∈ Ωk.

Then, noting that y′Pky = 1
1+δ2 y′y + δ2

1+δ2 y′P∗k y, we obtain the following
corollary:

Corollary 2. If the observed data y are really noisy, that is, cannot be described
as the sum of k basis functions and a linear mapping, then there exists a number
ε > 0 such that for all k ≤ kmax, δ2 ∈ R+, and µ1:k ∈ Ωk, we have y′Pky ≥ε

> 0.

Lemma 2. For all k ≤ kmax, δ2 ∈ R+, and µ1:k ∈ Ωk, we have y′Pky ≤ y′y.

Lemma 3. Let K1 be the transition kernel corresponding to K such that 3 and
δ2 are kept fixed. Then there exists M1 > 0 such that for any M2 sufficiently large,
any δ2 ∈ R+ and k1 = 1, . . . , kmax:

K1(3, δ2, k1,µ1:k1
;3, δ2, k1 − 1, dµ1:k1−1)

≥ c?I{3;3<M2}(3)

M1M2k1
δSµ1:k1

(dµ1:k1−1)

with c? > 0 as defined in equation 4.5.
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Proof. According to the definition of the transition kernel, for all variables
((k1,µ1:k1

), (k2,µ1:k2
)) ∈ Ω2, one has the following inequality:

K1(3, δ2, k1,µ1:k1
;3, δ2, k2, dµ1:k2

) ≥ min{1, rdeath}dk1

δSµ1:k1
(dµ1:k2

)

k1
,

where 1/k1 is the probability of choosing one of the basis functions for the
purpose of removing it and Sµ1:k1

, {µ′ ∈ Ωk1−1/∃l ∈ {1, . . . , k1} such that
µ′ = µ−l}. Then from equation 4.6 and for all k1 = 1, . . . , kmax, we have

r−1
death =

(
γ0 + y′1:NPk1−1y1:N

γ0 + y′1:NPk1 y1:N

)(
N+υ0

2 ) 1
k1(1+ δ2)1/2 .

As a result, we can use lemmas 1 and 2 to obtain ε and M1 such that

r−1
death ≤

(
γ0 + y′1:Ny1:N

ε

)(
N+υ0

2 ) 1
k1(1+ δ2)1/2 < M1 < +∞.

Thus, there exists M1 sufficiently large such that for any M2 sufficiently
large (from equation 4.5), δ2 ∈ R+, 1 ≤ k1 ≤ kmax, and µ1:k1

∈ Ωk1

K1(3, δ2, k1,µ1:k1
;3, δ2, k1 − 1, dµ1:k1−1)

≥ I{3;3<M2}(3)
c?

M2

1
M1k1

δSµ1:k1
(dµ1:k1−1). (B.4)

Lemma 4. The transition kernel K satisfies the following inequality for k = 0:

K(30, δ
2
0, 0,µ0; d3∗0, dδ∗20 , 0, dµ0) ≥ ζϕ(δ∗20 | 0)p(30 | 0)dδ∗20 d30, (B.5)

with ζ > 0 and ϕ a probability density.

Proof. From the definition of the transition kernel K, we have:7

K(30, δ
2
0, 0,µ0; d3∗0, dδ∗20 , 0, dµ0)

≥ u0p(δ∗20 | δ2
0, 0, dµ0, x, y)p(30 | 0)dδ∗20 d30

≥ (1− c?)p(δ∗20 | δ2
0, 0, dµ0, x, y)p(30 | 0)dδ∗20 d30

as 0 < 1− c? ≤ u0 ≤ 1, and we adopt the notation ϕ( δ∗2 | 0) , p(δ∗2 | δ2, 0,
µ0, x, y).

7 When k = 0, we keep for notational convenience the same notation for the transition
kernel even if µ0 does not exist.
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Lemma 5. There exists a constant ξ > 0 and a probability density ϕ such that
for all δ2 ∈ R+, 0 ≤ k ≤ kmax, and µ1:k ∈ Ωk, one obtains:

p(δ∗2 | δ2, k,µ1:k, x, y) ≥ ξϕ(δ∗2 | k). (B.6)

Proof. From section 4.1.2, to update δ2 at each iteration, one draws from
the distribution p(α1:m, σ 2 | δ2, k,µ1:k, x, y), that is, one draws σ 2 from

p(σ 2 | δ2, k,µ1:k, x, y)

=
(

γ0+y′1:NPky1:N

2

) N+υ0
2

0
(

N+υ0
2

)
(σ 2)

N+υ0
2 +1

exp
( −1

2σ 2 (γ0 + y′1:NPky1:N)

)
;

then α1:m from

p(α1:m | δ2, k,µ1:k, σ
2, x, y)

= 1
|2πσ 2Mk|1/2 exp

( −1
2σ 2 (α1:m − hk)

′M−1
k (α1:m − hk)

)
;

and finally one draws δ∗2 according to

p(δ∗2 | δ2, k,θ, x, y)

=
(α′1:mD′(µ1:k,x)D(µ1:k,x)α1:m

2σ 2 + βδ2

)m/2+α
δ2

0(m/2+ αδ2)(δ∗2)m/2+α
δ2+1

× exp
(−1

δ∗2

(
α′1:mD′(µ1:k, x)D(µ1:k, x)α1:m

2σ 2 + βδ2

))
.

Consequently:

p(δ∗2 | δ2, k,θ, x, y)p(α1:m, σ 2 | δ2, k,µ1:k, x, y)

=
(

γ0+y′1:NPky1:N

2

) N+υ0
2

(α′1:mD′(µ1:k,x)D(µ1:k,x)α1:m

2σ 2 + βδ2

)m/2+α
δ2

0(N+υ0
2 )0(m/2+ αδ2)(2π)m/2(σ 2)(N+υ0+m)/2+1(δ∗2)m/2+α

δ2+1|Mk|1/2

× exp
( −1

2σ 2

[
(α1:m − hk)

′M−1
k (α1:m − hk)+ γ0 + y′1:NPky1:N

+ α
′
1:mD′(µ1:k, x)D(µ1:k, x)α1:m

δ∗2

]
− βδ2

δ∗2

)
.

We can obtain the minorization condition, given by equation B.6, by inte-
grating with respect to the nuisance parametersα1:m and σ 2. To accomplish



Robust Full Bayesian Learning for Radial Basis 2401

this, we need to perform some algebraic manipulations to obtain the fol-
lowing relation,

(α1:m − hk)
′M−1

k (α1:m − hk)+ (γ0 + y1:NPky1:N)

+ α
′
1:mD′(µ1:k, x)D(µ1:k, x)α1:m

δ∗2

= (α1:m − h•k)
′M•−1

k (α1:m − h•k)+ γ0 + y1:NP•ky1:N,

with:

M•−1
k =

(
1+ 1

δ2 +
1

δ∗2

)
D′(µ1:k, x)D(µ1:k, x)

h•k = M•kD′(µ1:k, x)y1:N

P•k = IN −D(µ1:k, x)M•kD′(µ1:k, x).

We can now integrate with respect to α1:m (gaussian distribution) and σ2

(inverse gamma distribution) to obtain the minorization condition for δ∗2:

p(δ∗2 | δ2, k,µ1:k, x, y)

≥
∫
Rm×R+

(
γ0+y′1:NPky1:N

2

) N+υ0
2

(βδ2)m/2+α
δ2

0(N+υ0
2 )0(m/2+ αδ2)(2π)m/2

×(σ 2)(N+υ0+m)/2+1(δ∗2)m/2+α
δ2+1|Mk|1/2

× exp
( −1

2σ 2

[
(α1:m − h•k)

′M•−1
k (α1:m − h•k)+ γ0 + y′1:NP•ky1:N

]
− βδ2

δ∗2

)
dα1:mdσ 2

= |M
•
k |1/2

|Mk|1/2

(
γ0+y′1:NPky1:N

2

) N+υ0
2

(βδ2)m/2+α
δ2

0(m/2+ αδ2)
(

γ0+y′1:NP•k y1:N

2

) N+υ0
2

(δ∗2)m/2+α
δ2+1

exp
(
−βδ2

δ∗2

)

≥
(

1+ 1
δ2

1+ 1
δ2 + 1

δ∗2

)m/2
ε

N+υ0
2 β

m/2+α
δ2

δ2

(γ0 + y′1:Ny1:N)
N+υ0

2 0(m/2+ αδ2)

1
(δ∗2)m/2+α

δ2+1

× exp
(
−βδ2

δ∗2

)

≥
(

1
1+ δ∗2

)(kmax+d+1)/2 ε
N+υ0

2 mink∈{0,...,kmax} β
m/2+α

δ2

δ2

(γ0+y′1:Ny1:N)
N+υ0

2 0
(
(kmax + d+ 1)/2+ αδ2

)
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× 1

(δ∗2)
kmax+d+1

2 +α
δ2+1

exp
(
−βδ2

δ∗2

)
,

where we have made use of lemma 1, its corollary and lemma 2.

Proposition 1. For any M2 sufficiently large, there exists an ηM2 > 0 such that
for all ((3k1 , δ

2
k1

, k1,µ1:k1
), (3k2 , δ

2
k2

, k2,µ1:k2
)) ∈ (R+2 ×Ω)2

K(kmax)3k1 , δ
2
1, k1,µ1:k1

; d3k2 , dδ2
k2

, k2, dµ1:k2
)

≥ I{3k1 ;3k1 <M2}(3k1)ηM2φ(d3k2 , dδ2
k2

, k2, dµ1:k2
)

where φ(d3, dδ2, k, dµ1:k) , p(3 | k)d3ϕ(δ2 | k)dδ2I{0}(k)δ{µ0}(dµ1:k).

Proof. From lemmas 3 and 5, one obtains for k1 = 1, . . . , kmax:

K(3k1 , δ
2
k1

, k1,µ1:k1
; d3k1−1, dδ2

k1−1, k1 − 1, dµk1−1)

≥ I{3k1 ;3k1 <M2}(3k1)
c?

M2

1
M1k1

ξp(3k1−1 | k1 − 1)d3k1−1ϕ(δ2
k1−1 | k1 − 1)

× dδ2
k1−1δSµ1:k1

(dµk1−1).

Consequently for k1 = 1, . . . , kmax, when one iterates the kernel K kmax
times, the resulting transition kernel denoted K(kmax) satisfies:

K(kmax)(3k1 , δ
2
k1

, k1,µ1:k1
; d3∗0, dδ∗20 , 0, dµ∗0)

=
∫
R+×R+×Ω

K(k1)(3k1 , δ
2
k1

, k1,µ1:k1
; d3l, dδ2

l , l, dµ1:l)K(kmax−k1)

× (3l, δ
2
l , l,µ1:l; d3∗0, dδ∗20 , 0, dµ∗0)

≥
∫
R+×R+

∫
{0}×Ω0

K(k1)(3k1 , δ
2
k1

, k1,µ1:k1
; d3l, dδ2

l , l, dµ1:l)K(kmax−k1)

× (3l, δ
2
l , l,µ1:l; d3∗0, dδ∗20 , 0, dµ∗0)

= K(k1)(3k1 , δ
2
k1

, k1,µ1:k1
; d30, dδ2

0, 0, dµ0)K(kmax−k1)

× (30, δ
2
0, 0,µ0; d3∗0, dδ∗20 , 0, dµ∗0)

≥ I{3k1 ;3k1 <M2}(3k1)M
k1−1
3 (

ξc?

M1M2
)k1ς kmax−k1φ(d3∗0, dδ∗20 , 0, dµ∗0),

where we have used lemma 4 and M3 = mink=1,...,kmax

∫
{3;3<M2} p(3 | k)d3 >

0. The conclusion follows with ηM2 , min{ς kmax , mink∈{1,...,kmax}M
k−1
3 (

ξc?

M1M2
)k

ς kmax−k} > 0.
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Corollary 3. The transition kernelK is φ-irreducible. In addition, we know that
p(d3, dδ2, k, dµ1:k | x, y) is an invariant distribution of K and the Markov chain
is φ-irreducible; then according to Tierney (1994, theorem 1*) the Markov chain
is p(d3, dδ2, k, dµ1:k | x, y)-irreducible. Aperiodicity is straightforward. Indeed
there is a nonzero probability of choosing the update move in the empty configura-
tion from equation B.5 and to move anywhere in R2 × {0} × {µ0}. Therefore, the
Markov chain admits p(d3, dδ2, k, dµ1:k | x, y) as unique equilibrium distribution
(Tierney, 1994, theorem 1*).

We will now prove the drift condition:

Proposition 2. Let V(3, δ2, k,µ1:k) , max{1, 3υ} for υ > 0; then

lim
3→+∞

KV(3, δ2, k,µ1:k)/V(3, δ2, k,µ1:k) = 0,

where by definition,

KV(3, δ2, k,µ1:k)

,
∫
R+×R+×Ω

K(3, δ2, k,µ1:k; d3∗, dδ∗2, k∗, dµ∗1:k)V(3∗, δ∗2, k∗,µ∗1:k)

Proof. The transition kernel of the Markov chain is of the form (we remove
some arguments for convenience):

K = (
bk1Kbirth + dk1Kdeath +mk1Kmerge + sk1Ksplit

+ (1− bk1 − dk1 − sk1 −mk1

)
Kupdate)p(δ2

k2
| δ2

k1
, k2,µ1:k2

, x, y)

× p(3k2 | k2).

Now, study the following expression:

KV(3k1 , δ
2
1, k1,µ1:k1

)

= bk1

∑
k2∈{k1,k1+1}

∫
8k2

Kbirth

∫
R+

p(δ2
k2
| δ2

k1
, k2,µ1:k2

, x, y)dδ2
k2

×
∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+ dk1

∑
k2∈{k1,k1−1}

∫
8k2

Kdeath

∫
R+

p(δ2
k2
| δ2

k1
, k2,µ1:k2

, x, y)dδ2
k2

×
∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+ sk1

∑
k2∈{k1,k1+1}

∫
8k2

Ksplit

∫
R+

p(δ2
k2
| δ2

k1
, k2,µ1:k2

, x, y)dδ2
k2
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×
∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+mk1

∑
k2∈{k1,k1−1}

∫
8k2

Kmerge

∫
R+

p(δ2
k2
| δ2

k1
, k2,µ1:k2

, x, y)dδ2
k2

×
∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+ (1− bk1 − dk1 − sk1 −mk1)

∫
Ωk1

Kupdate

×
∫
R+

p(δ∗2k1
| δ2

k1
, k1,µ

∗
1:k1

, x, y)dδ2
k1

∫
R+

p(3∗k1
| k1)3

∗υ
k1

d3∗k1

= bk1

∑
k2∈{k1,k1+1}

∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+ dk1

∑
k2∈{k1,k1−1}

∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+ sk1

∑
k2∈{k1,k1+1}

∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+mk1

∑
k2∈{k1,k1−1}

∫
R+

p(3k2 | k2)3
υ
k2

d3k2

+ (1− bk1 − dk1 − sk1 −mk1)

∫
R+

p(3∗k1
| k1)3

∗υ
k1

d3∗k1
.

As p(3 | k) is a gamma distribution, for any 0 ≤ k ≤ kmax, one obtains the
inequality

∫
R+ p(3 | k)3υd3 < +∞, and then the result follows immedi-

ately.

Proof of Theorem 3. By construction, the transition kernel K(3k1 , δ2
k1

, k1,
µ1:k1

; d3k2 , dδ2
k2

, k2, dµ1:k2
) admits the probability distribution p(d3, dδ2, k,

dµ1:k | x, y) as invariant distribution. Proposition 1 proved the φ-irreduc-
ibility and the minorization condition with k0 = kmax, and proposition 2
proved the drift condition. Thus, theorem 3 applies.
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