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Abstract. In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly
the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forward-
backward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to
compute the model uncertainty and the measurement noise. We find that the method is intrinsically very powerful,
simple and stable.

1. Introduction

In environments where data is available in batches, it is
possible to address the general problem of Bayesian
learning with Gaussian approximations, in a princi-
pled way, using the expectation maximisation (EM)
algorithm [1] and dynamical models. Moreover, such
an approach allows us to treat non-stationary data sets.
This paper will focus on this learning strategy. In partic-
ular, it aims to extend the current work on EM learning
for dynamical linear systems to the problem of com-
puting the weights of a multi-layer perceptron (MLP),
the initial conditions and the noise variances jointly.

The application of the EM algorithm to learning and
inference in linear dynamical systems has occupied the
attention of several researchers in the past. Chen [2] was
one of the pioneers in this field. In particular, he applied
the EM algorithm to linear state space models known
in the statistics literature as MIMIC models. In these
models one observes multiple indicators and multiple
causes of a single latent variable. Chen’s MIMIC model
was implemented in a simulation study relating social
status and participation.

Watson and Engle [3] have suggested using the EM
algorithm, in conjunction with the method of scoring,
for the estimation of linear dynamic factor, MIMIC and
varying coefficient regression models. They evaluated
their paradigm experimentally by estimating common
factors in wage rate data from several industries in Los
Angeles, USA.

In 1982, Shumway and Stoffer [4] proposed the use
of the EM algorithm and linear state space models for
time series smoothing and forecasting with missing
observations. To demonstrate their method, they con-
sidered a health series representing total expenditures
for physician services as measured by two different
sources. The time series produced by each source have
similar values but exhibit missing observations at dif-
ferent periods. In Shumway and Stoffer’s approach, the
two series are automatically merged into an overall ex-
penditure series, which is then used for forecasting.
Nine years later, Shumway and Stoffer [5] extended
their work to switching linear dynamic models. In
essence, they derived a state space representation with
measurement matrices that switch according to a time
varying independent random process. They illustrate
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their method on an application involving the tracking
of multiple targets.

The method of learning and inference in linear state
space models via the EM algorithm has also played a
role in the fields of speech analysis and computer vi-
sion. Digalakis, Rohlicek and Ostendorf [6] applied it
to the speech recognition problem. They made a con-
nection between this method and the Baum-Welch esti-
mation algorithm for hidden Markov models (HMMs).
North and Blake [7] have implemented the method to
learn linear dynamic state space models used for track-
ing contours in images. Rao and Ballard [8] have also
explored the relevance of the EM algorithm together
with state space estimation in the field of vision. They
have developed an hierarchical network model of vi-
sual recognition that encapsulates these concepts.

Ghahramani [9] has embedded the EM method for
learning dynamic linear systems in a graphical mod-
els framework. He treats computationally intractable
models, such as factorial HMMs and switching state
space models, by resorting to Gibbs sampling and vari-
ational approximations. In another paper, Roweis and
Ghahramani [10] make use of the EM algorithm and
linear state space representations to present a unified
view of linear Gaussian models including factor anal-
ysis, mixtures of Gaussians, standard and probabilistic
versions of principal component analysis, vector quan-
tisation, Kalman smoothing and linear hidden Markov
models.

This paper is organised as follows. Section 2 in-
troduces the nonlinear state space modelling scheme
adopted in the paper. The application of extended
Kalman smoothing to estimate the weights of an MLP
is discussed in Section 3. Section 4 presents a brief
derivation of the EM algorithm, which is used as a step
towards the derivation of the EM algorithm for nonlin-
ear state space models in Section 5. Section 6 examines
some of the results obtained with experiments on syn-
thetic and real data.

2. Nonlinear State Space Model

To investigate the application of the EM algorithm to
state space learning, we shall focus on the following
nonlinear state space representation:

θt+1 = Aθt + ut

yt = f̂(xt ,θt )+ vt
(1)

wherex∈Rd denotes the input data,y∈Rc denotes
the output data andθ ∈Rm denotes the model states.

The measurements nonlinear mappingf̂(xt ,θt ) cor-
responds to a multi-layer perceptron (MLP) whose
weights are the model statesθ. The framework may
be easily extended to encompass recurrent networks,
radial basis networks and many other approximation
techniques. We assume the measurement (vt ) and pro-
cess (ut ) noise terms to be zero mean Gaussian with co-
variancesRandQ respectively. The matrixA contains
information about how the states evolve. It is partic-
ularly useful in tracking applications. However, when
the above model is employed merely for parameter es-
timation in neural network models with stationary data,
there is no need for the matrixA.

Despite the fact that the data is processed in batches,
the model of Eq. (1) allows the weights to be time vary-
ing. It is, therefore, possible to deal with non-stationary
data sets. In the event of the data being stationary, we
should expect the process noise term to vanish. Con-
sequently, if we know that the data is stationary, the
estimate of the process noise can be used to determine
how well the model explains the data. In Section 6, we
demonstrate this method on a few stationary data sets.

Our objective is to estimate the model states (MLP

weights)θ̂t and the set of parametersϕ
4= {R, Q, A,

µ,5} given the measurements{x1:N, y1:N},1 whereµ
and5 denote the mean and covariance of the Gaussian
prior p(θ0 |ϕ).

3. The Extended Kalman Smoother

One of the earliest implementations of the extended
Kalman filter (EKF) to train MLPs is due to Singhal
and Wu [11]. The algorithm’s computational complex-
ity is of the orderO(cm2) multiplications per time
step. Shah, Palmieri and Datum [12] and Puskorius and
Feldkamp [13] have proposed various approximations
to the weights covariance so as to simplify this prob-
lem. Here, we extend the work in this area by proposing
an algorithm to estimate the noise covariancesR and
Q and the initial conditionsµ and5. The method is
also more accurate as it involves smoothing instead of
plain filtering.

Smoothing often entails forward and backward fil-
tering over a segment of data so as to obtain improved
averaged estimates. Various techniques have been pro-
posed to accomplish this goal [14, 15]. In our work,
we make use of the well known Rauch-Tung-Striebel
smoother [16]. The forward filtering stage involves
computing the estimateŝθt and Pt , over a segment of
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N samples, with the following EKF recursions:

θ̂t+1|t = Aθ̂t

Pt+1|t = APt A′ + Q

Kt+1 = Pt+1|t G′t+1(R+ Gt+1Pt+1|t G′t+1)
−1

θ̂t+1 = θ̂t+1|t + Kt+1(yt+1− f̂(xt+1, θ̂t+1|t ))

Pt+1 = Pt+1|t − Kt+1Gt+1Pt+1|t

whereK denotes the Kalman gain,A′ the transpose of
A andG the Jacobian matrix:

G = ∂ f̂(θ, x)
∂θ

∣∣∣∣
(θ=θ̂)

=



∂ f̂1(θ,x)
∂θ1

∂ f̂2(θ,x)
∂θ1

· · · ∂ f̂c(θ,x)
∂θ1

∂ f̂1(θ,x)
∂θ2

...
...

∂ f̂1(θ,x)
∂θm

· · · ∂ f̂c(θ,x)
∂θm



′

Subsequently, the Rauch-Tung-Striebel smoother
makes use of the following backward recursions:

Jt−1 = Pt−1A′P−1
t |t−1

θ̂t−1|N = θ̂t−1Jt−1(θ̂t |N − Aθ̂t−1)

Pt−1|N = Pt−1+ Jt−1(Pt |N − Pt |t−1)J
′
t−1

Pt,t−1|N = Pt J ′t−1+ Jt (Pt+1,t |N − APt )J
′
t−1

where the parameters, covariance and cross-covariance
are defined as follows:

θ̂t |N = E(θt | y1:N)

Pt |N = E((θt − θ̂t )(θt − θ̂t )
′ | y1:N)

Pt,t−1|N = E((θt − θ̂t )(θt−1− θ̂t−1)
′ | y1:N)

They may be initialised with the following values:

θ̂N|N = θ̂N

PN|N = PN

PN,N−1|N = (I − KNG′N)APN−1

The extended Kalman smoother provides a mini-
mum variance Gaussian approximation to the posterior
probability density functionp(θ0:t | y1:t ) [17]. In many

cases, however, the posterior is multi-modal. This prob-
lem can be circumvented by implementing a mixture
of Kalman smoothers, where each individual smoother
approximates a particular mode.

4. The EM Algorithm

So far, we have shown that given a set of parameters
ϕ = {R, Q, A,µ,5}and a matrix ofN measurements
y1:N , it is possible to compute the expected values of
the states with an extended Kalman smoother. In this
section, we present a treatment of the EM algorithm
that will allow us to learn the parametersϕ of nonlinear
state space models.

The EM algorithm is an iterative method for finding a
mode of the likelihood functionp(y1:N |ϕ). Roughly
speaking, it proceeds as follows: (E-step 1) estimate
the statesθ0:N given a set of parametersϕ, (M-step 1)
estimate the parameters given the new states, (E-step
2) re-estimate the states with the new parameters, and
so forth. The most remarkable attribute of the EM al-
gorithm is that it ensures an increase in the likelihood
function at each iteration. However, as the EKF can
only provide an approximation to the true statesθ0:N

in the E step, the EM algorithm to train MLPs is not
necessarily guaranteed to converge.

To gain more insight into the EM method, let us
express the likelihood function as follows:

p(y1:N |ϕ) = p(y1:N |ϕ) p(θ0:N | y1:N,ϕ)

p(θ0:N | y1:N,ϕ)

= p(θ0:N, y1:N |ϕ)
p(θ0:N | y1:N,ϕ)

Taking the logarithms of both sides yields the following
identity:

ln p(y1:N |ϕ) = ln p(θ0:N, y1:N |ϕ)
− ln p(θ0:N | y1:N,ϕ)

Let us treatθ0:N as a random variable with distribution
p(θ0:N | y1:N,ϕ

old), whereϕold is the current guess. If
we then take expectations on both sides of the previous
identity, while remembering that the left hand side does
not depend onθ0:N , we get:

ln p(y1:N |ϕ) = E(ln p(θ0:N, y1:N |ϕ))
−E(ln p(θ0:N | y1:N,ϕ)) (2)
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where the expectations involve averaging over the
matrixθ0:N underp(θ0:N | y1:N,ϕ

old). For example:

E(ln p(θ0:N, y1:N |ϕ))
=
∫
(ln p(θ0:N, y1:N |ϕ))p

(
θ0:N | y1:N,ϕ

old
)
dθ0:N

It is well known that the second term on the right side
of Eq. (2) is maximised forϕold. That is:

E(ln p(θ0:N | y1:N,ϕ
old)) ≥ E(ln p(θ0:N | y1:N,ϕ))

for any ϕ. To apply the EM algorithm, we need to
compute the first term on the right hand side of Eq. (2)
repeatedly. The aim is to maximise this term at each
iteration. One method of maximising it is discussed in
detail in the next section. For the time being, let us
assume that we can maximise it, that is:

E(ln p(θ0:N, y1:N |ϕnew)) ≥ E(ln p(θ0:N, y1:N |ϕold))

Then, it follows that the likelihood function also in-
creases at every iteration. To demonstrate this impor-
tant result, consider the change in likelihood for a single
iteration:

ln p(y1:N |ϕnew)− ln p(y1:N |ϕold)

= (E(ln p(θ0:N, y1:N |ϕnew))

−E(ln p(θ0:N, y1:N |ϕold)))

− (E(ln p(θ0:N | y1:N,ϕ
new))

−E(ln p(θ0:N | y1:N,ϕ
old)))

The right hand side of the above equation is posi-
tive because we are averaging under the distribution
p(θ0:N | y1:N,ϕ

old). Consequently, the likelihood func-
tion is guaranteed to increase at each iteration. The
EM algorithm’s name originates from the steps that
are required to increaseE(ln p(θ0:N, y1:N |ϕ)), namely
compute the Expectation and then Maximise it. The EM
algorithm thus involves the following steps:

Initialisation : Start with a guess forϕ0.

E-step: Determine the expected log-likelihood density
function of the complete data given the current esti-
mateϕold:

E(ln p(θ0:N, y1:N |ϕ))
=
∫
(ln p(θ0:N, y1:N |ϕ))p(θ0:N | y1:N,ϕ

old)dθ0:N

M-step: Compute a new value ofϕ that maximises the
expected log-likelihood of the complete data. The
maximum can be found by simple differentiation of
the expected log-likelihood with respect toϕ.

5. The EM Algorithm for Nonlinear State
Space Models

To derive the EM algorithm for nonlinear state space
models, we need to develop an expression for the like-
lihood of the completed data. We assume that the like-
lihood of the data given the states, the initial condi-
tions and the evolution of the states can be represented
by Gaussian distributions. In particular, if the initial
mean and covariance of the states is given byµ and5,
then:

p(θ0 |ϕ)

= 1

(2π)m/2 |5| 1/2 exp

[
−1

2
(θ0− µ)′5−1(θ0− µ)

]
p(θt |θt−1,ϕ) = 1

(2π)m/2 |Q|1/2 exp

×
[
−1

2
(θt − Aθt−1)

′Q−1(θt − Aθt−1)

]
p(yt |θt ,ϕ) = 1

(2π)c/2 |R|1/2 exp

×
[
−1

2
(yt − f̂(θt , xt ))

′R−1(yt − f̂(θt , xt ))

]
Under the model assumptions of uncorrelated noise
sources and Markov state evolution, the likelihood of
the complete data is given by:

p(θ0:N, y1:N |ϕ)

= p(θ0 |ϕ)
N∏

t=1

p(θt |θt−1,ϕ)
N∏

t=1

p(yt |θt ,ϕ)

Hence, the log-likelihood of the complete data is given
by the following expression:

ln p(θ0:N, y1:N |ϕ)

= −
N∑

t=1

[
1

2
(yt − f̂(θt , xt ))

′R−1(yt − f̂(θt , xt ))

]

− N

2
ln |R| −

N∑
t=1

[
1

2
(θt − Aθt−1)

′Q−1(θt − Aθt−1)

]
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−N

2
ln |Q| − 1

2
(θ0− µ)′5−1(θ0− µ)

−1

2
ln |5| − Nc+ (N + 1)m

2
ln(2π) (3)

As discussed in the previous section, all we
need to do now is to compute the expectation of
ln p(θ0:N, y1:N |ϕ) and then differentiate the result
with respect to the parametersϕ so as to maximise
it. The EM algorithm for nonlinear state space mod-
els will thus involve computing the expected values of
the states and covariances with the extended Kalman
smoother and then maximising the parametersϕ with
the formulae obtained by differentiating the expected
log-likelihood.

5.1. Computing the Expectation of the
Log-Likelihood

If we take the expectation of the log-likelihood for the
complete data, by averaging overθ0:N under the dis-
tribution p(θ0:N | y1:N,ϕ

old), we get the following ex-
pression:

E(ln p(θ0:N, y1:N |ϕ))

= −N

2
ln |R| − N

2
ln |Q|

−1

2
ln |5| − Nc+ (N + 1)m

2
ln(2π)

−
N∑

t=1

1

2
E[y′t R

−1yt − y′t R
−1f̂(θt , xt )

−f̂(θt , xt )
′R−1yt + f̂(θt , xt )

′R−1f̂(θt , xt )]

−
N∑

t=1

1

2
E[θ′t Q

−1θt − θ′t Q−1Aθt−1

−θ′t−1A′Q−1θt + θ′t−1A′Q−1Aθt−1]

−1

2
E[θ′05

−1θ0− θ′05−1µ

−µ′5−1θ0+ µ′5−1µ]

We need to digress briefly to compute the expectation
of the measurements mappingf̂(θt , xt ). We should re-
call that the EKF approximation to this mapping is

given by:

f̂(θt , xt ) = f̂(θ̂t |N, xt )+ ∂ f̂(θt , xt )

∂θt

∣∣∣∣
(θt=θ̂t |N )

× (θt − θ̂t |N)+ · · ·

Consequently, if we take expectations on both sides of
the equation, we get:

E(f̂(θt , xt )) ≈ f̂(θ̂t |N, xt )

and

E((f̂(θt , xt )− f̂(θ̂t |N, xt ))(f̂(θt , xt )− f̂(θ̂t |N, xt ))
′)

≈ E
[(

f̂(θ̂t |N, xt )+ ∂ f̂(θt , xt )

∂θt

∣∣∣∣
(θt=θ̂t |N )

×(θt − θ̂t |N)− f̂(θ̂t |N, xt )

)
×
(

f̂(θ̂t |N, xt )+ ∂ f̂(θt , xt )

∂θt

∣∣∣∣
(θt=θ̂t |N )

×(θt − θ̂t |N)− f̂(θ̂t |N, xt )

)′]
= Gt Pt |NG′t

Hence, under the distributionp(θ0:N | y1:N,ϕ
old), it

follows that:

E(f̂(θt , xt )f̂(θt , xt )
′)

≈ Gt Pt |NG′t + f̂(θ̂t |N, xt )f̂(θ̂t |N, xt )
′

Using this approximation and the fact that the trace and
expectation operators are linear, the expectation of the
log-likelihood becomes:

E(ln p(θ0:N, y1:N |ϕ))
≈ −N

2
ln |R| − N

2
ln |Q|

− 1

2
ln |5| − Nc+ (N + 1)m)

2
ln(2π)

−
N∑

t=1

1

2
tr(R−1[yty′t − f̂(θ̂t |N, xt )y′t − yt f̂(θ̂t |N, xt )

′

+ f̂(θ̂t |N, xt )f̂(θ̂t |N, xt )
′ + Gt Pt |NG′t ])

−
N∑

t=1

1

2
tr(Q−1[θ̂t |N θ̂

′
t |N + Pt |N − 2A(θ̂t |N θ̂

′
t−1|N
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+ Pt,t−1|N)′ + A(θ̂t−1θ̂
′
t−1|N + Pt−1|N)A′])

− 1

2
tr(5−1[θ̂0|N θ̂

′
0|N + P0|N − 2θ̂0|Nµ′ + µµ′])

Completing squares and using the following abbrevia-
tions:

0 =
N∑

t=1

θ̂t |N θ̂
′
t |N + Pt |N

1 =
N∑

t=1

θ̂t−1|N θ̂
′
t−1|N + Pt−1|N

ϒ =
N∑

t=1

θ̂t |N θ̂
′
t−1|N + Pt,t−1|N

we get our final expression for the approximate expec-
tation of the log-likelihood:

E(ln p(θ0:N, y1:N |ϕ))
≈ −N

2
ln |R| − N

2
ln |Q|

− 1

2
ln |5| − Nc+ (N + 1)m

2
ln(2π)

−
N∑

t=1

1

2
tr (R−1[(yt − f̂(θ̂t |N, xt ))

× (yt − f̂(θ̂t |N, xt ))
′ + Gt Pt |NG′t ])

− 1

2
tr(Q−1[0 − 2Aϒ ′ + A1A′])

− 1

2
tr(5−1[(θ̂0|N − µ)(θ̂0|N − µ)′ + P0|N ])

(4)

5.2. Differentiating the Expected Log-Likelihood

To maximise the expected value of the log-likelihood
with respect to the parametersϕ, we need to compute
the derivatives with respect to each parameter individu-
ally. This is done in the subsequent sections, where we
make use of some results of matrix differentiation [18].

5.2.1. Maximum with Respect to A.Differentiating
the expected log-likelihood with respect toA yields:

∂

∂A
E(ln p(θ0:N, y1:N |ϕ))

≈ −1

2

∂

∂A
tr(Q−1[0 − 2Aϒ ′ + A1A′])

= −1

2
(−2Q−1ϒ + 2Q−1A1)

Equating this result to zero yields the value ofA that
maximises the approximate log-likelihood:

A = ϒ1−1 (5)

5.2.2. Maximum with Respect to R.Differentiating
the expected log-likelihood with respect toR−1 gives:

∂

∂R−1
E(ln p(θ0:N, y1:N |ϕ))

≈ ∂

∂R−1

(
N

2
ln |R−1| −

N∑
t=1

1

2
tr(R−1[Gt Pt |NG′t

+(yt − f̂(θ̂t |N, xt ))(yt − f̂(θ̂t |N, xt ))
′])
)

= N

2
R−

N∑
t=1

1

2
(Gt Pt |NG′t

+(yt − f̂(θ̂t |N, xt ))(yt − f̂(θ̂t |N, xt ))
′)

Hence, by equating the above result to zero, the ap-
proximate maximum of the log-likelihood with respect
to R is given by:

R = 1

N

N∑
t=1

(Gt Pt |NG′t + (yt − f̂(θ̂t |N, xt ))

× (yt − f̂(θ̂t |N, xt ))
′) (6)

5.2.3. Maximum with Respect to Q.Following
the same steps, the derivative of the expected log-
likelihood with respect toQ−1 is given by:

∂

∂Q−1
E(ln p(θ0:N, y1:N |ϕ))

≈ N

2
Q− 1

2
(0 − 2Aϒ ′ + A1A′)

Hence, equating to zero and using the result that
A = ϒ1−1, the approximate maximum of the log-
likelihood with respect toQ is given by:

Q = 1

N
(0 −ϒ1−1ϒ ′) (7)

5.2.4. Maximum with Respect toµ. It is also possible
to treat the initial conditions as parameters and improve
their estimates in the M-step of the EM algorithm. Find-
ing the derivative of the expected log-likelihood with
respect to the initial states gives:

∂

∂µ
E(ln p(θ0:N, y1:N |ϕ)) ≈ 1

2
5−1(−2θ̂0|N + 2µ)
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Hence, the initial value for the states should be:

µ = θ̂0|N (8)

5.2.5. Maximum with Respect toΠ. The derivative
of the expected log-likelihood with respect to the in-
verse of the initial covariance gives:

∂

∂5−1
E(ln p(θ0:N, y1:N |ϕ))

≈ 5

2
− 1

2
((θ̂0|N − µ)(θ̂0|N − µ

)′ + P0|N)

Therefore, the initial covariance should be updated as
follows:

5 = P0|N (9)

5.3. The E and M Steps for Nonlinear State
Space Models

We can now prescribe the EM algorithm for nonlinear
state space models as follows:

Initialisation : Start with a guess forϕ = {R, Q, A,
µ,5}.

E-step: Determine the expected valuesθ̂t |N , Pt |N and
Pt,t−1|N , given the current parameter estimateϕold,
using the extended Kalman smoothing equations de-
scribed in Section 4.2.

M-step: Compute new values of the parametersϕ =
{R, Q, A,µ,5} using equations (5) to (9).

The complexity of this algorithm isO(m3N) opera-
tions per iteration.

6. Experiments

6.1. Simple Regression Example

For the purposes of demonstrating the method, we ad-
dress the problem of learning the following nonlinear
mapping from(x1, x2) to y:

y = 4 sin(x1− 2)+ 2x2+ 5+ η

wherex1 and x2 were chosen to be two normal ran-
dom sequences of 700 samples each. The noise pro-
cess η was sampled from a zero mean Gaussian

distribution with varianceR= 0.5. An MLP with four
sigmoidal neurons in the hidden layer and a linear neu-
ron in the output layer was used to approximate the
measurements mapping. After 50 iterations, as shown
in Fig. 1, the estimate of observation varianceR con-
verges to the true value. In addition, the trace of the
process noise covarianceQ goes to zero. Note that
since the data is stationary, the trace ofQ should tend
to zero. That is, the trace ofQ can be used to provide
an estimate of how well the model fits the data. The
innovations covariance (variance of the evidence func-
tion p(yt | y1:t−1, θ̂t |t−1, Qt−1, Rt−1)) tends toR over
the entire data set, as shown in Fig. 2. The top plot
of this figure shows that the MLP approximates the
true function without fitting the noise. That is, it gener-
alises well. Figure 1 also shows how the log-likelihood
increases at each step, thereby demonstrating that the
algorithm converges well.

6.2. Robot Arm Mapping

This data set is often used as a benchmark to compare
neural network algorithms.2 It involves implementing
a model to map the joint angle of a robot arm(x1, x2)

to the position of the end of the arm(y1, y2). The data
were generated from the following model:

y1 = 2.0 cos(x1)+ 1.3 cos(x1+ x2)+ ε1

y2 = 2.0 sin(x1)+ 1.3 sin(x1+ x2)+ ε2

whereεi ∼ N (0, σ 2), σ = 0.05. We use the first 200
observations of the data set to train our models and the
last 200 observations to test them.

Figure 3 shows the 3D plots of the training data and
the contours of the training and test data. The contour
plots also include the typical approximations that were
obtained using our algorithm and an MLP with 2 lin-
ear output neurons and 20 sigmoidal hidden neurons.
Figure 4 illustrates the convergence of the algorithm.
In this particular run the training and test mean square
errors were 0.0057 and 0.0081 (the minimum bound
being 2σ 2 = 0.005). Our mean square errors are of
the same magnitude as the ones reported by other re-
searchers [19–23]. Figure 4 also shows the two diag-
onal entries of the measurements noise covariance and
the trace of the process noise covariance. They behave
as expected.
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Figure 1. The top plots show the log-likelihood function and the convergence rate (log-likelihood slope) for the simple regression problem.
The bottom plots show the convergence of the measurements noise covarianceR and the trace of the process noise covarianceQ.

Figure 2. The top plot shows that the MLP fit, for the regression example, approximates the true function (the former is almost exactly on top
of the latter); it does not fit the noise. The bottom plot shows that the uncertainty in the predictions (innovations) converges to the uncertainty
engendered by the measurement noise.

6.3. Classification with Medical Data

Here, we consider an interesting nonlinear classifica-
tion data set3 collected as part of a study to iden-

tify patients with muscle tremor [24, 25]. The data
was gathered from a group of patients (9 with, pri-
marily, Parkinson’s disease or multiple sclerosis) and
from a control group (not exhibiting the disease). Arm
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Figure 3. The top plots show the training data surfaces corresponding to each coordinate of the robot arm’s position. The Middle and bottom
plots show the training and validation data [- -] and the respective MLP mappings [—].

Figure 4. The top plots show the log-likelihood function and the convergence rate (log-likelihood slope) for the robot arm problem. The bottom
plots show the convergence of the diagonal entries of the measurements noise covarianceR (almost identical) and the trace of the process noise
covarianceQ.

muscle tremor was measured with a 3-D mouse and a
movement tracker in three linear and three angular di-
rections. The time series of the measurements were
parameterised using a set of autoregressive models.
The number of features was then reduced to two [24].
Figure 5 shows a plot of these features for patient (◦)

and control groups (+). The figure also shows the de-
cision boundaries (solid lines) and confidence intervals
(dashed lines) obtained with an MLP, consisting of 10
sigmoidal hidden neurons and an output linear neuron.
We should point out, however, that having an output
linear neuron leads to a classification framework based
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Figure 5. Classification boundaries (–) and confidence intervals (- -) for the MLP classifier. The circles indicate patients, while the crosses
represent the control group.

on discriminants. An alternative and more principled
approach, which we do not pursue here, is to use a lo-
gistic output neuron so that the classification scheme is
based on probabilities of class membership.

The size of the confidence intervals for the deci-
sion boundary is given by the noise variance (σ 2).
These intervals are a measure of uncertainty on the

Figure 6. Receiver operating characteristic (ROC) of the classifier for the tremor test data.

threshold that we apply to the linear output neuron.
Our confidence of correctly classifying a sample oc-
curring within these intervals should be very low. The
receiver operating characteristic (ROC) curve, shown
in Fig. 6, indicates that we can expect to detect patients
with a 70% confidence without making any mistakes.
The percentage of classification errors in the test set
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Figure 7. The top plots show the log-likelihood function and the convergence rate (log-likelihood slope) for the tremor data classification
problem. The bottom plots show the convergence of the measurements noise covarianceR and the trace of the process noise covarianceQ.

was found to be 15.17. This error is of the same magni-
tude as previous results [26]. Finally, the convergence
properties of the EM algorithm for this application are
illustrated in Fig. 7.

7. Conclusions

In this paper, we derived an EM algorithm to esti-
mate the neural network weights, measurement noise
and model uncertainty (in the case of stationary data)
jointly. We found that it performs well in terms of
model accuracy and generalisation ability. Further re-
search avenues include extending the method to other
types of noise processes, establishing theoretical con-
vergence bounds and investigating ways of efficiently
initialising the algorithm so as to avoid local min-
ima. The latter problem can be circumvented, to a
certain extent, by stochastic global optimisation algo-
rithms. Finally, we have made the software available at
http://www.cs.berkeley.edu/~jfgf.
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Notes

1. We adopt the notationz1:N
4= {z1, z2, . . . , zN}. In addition, we

suppress the input variablesx in the arguments of the probability
distributions.

2. The data set can be found athttp://wol.ra.phy.cam.ac.
uk/mackay/.

3. The data is available athttp://www.ee.ic.ac.uk/hp/
staff/sroberts.html.
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