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We show that a hierarchical Bayesian modeling approach allows us to per-
form regularization in sequential learning. We identify three inference
levels within this hierarchy: model selection, parameter estimation, and
noise estimation. In environments where data arrive sequentially, tech-
niques such as cross validation to achieve regularization or model selec-
tion are not possible. The Bayesian approach, with extended Kalman fil-
tering at the parameter estimation level, allows for regularization within
a minimum variance framework. A multilayer perceptron is used to gen-
erate the extended Kalman filter nonlinear measurements mapping. We
describe several algorithms at the noise estimation level that allow us to
implement on-line regularization. We also show the theoretical links be-
tween adaptive noise estimation in extended Kalman filtering, multiple
adaptive learning rates, and multiple smoothing regularization coeffi-
cients.

1 Introduction

Sequential training of neural networks is important in applications where
data sequences either exhibit nonstationary behavior or are difficult and
expensive to obtain before the training process. Scenarios where this type
of sequence arise include tracking and surveillance, control systems, fault
detection, signal processing, communications, econometric systems, demo-
graphic systems, geophysical problems, operations research, and automatic
navigation.

Although there has been great interest on the topic of regularization in
batch learning tasks, this topic has not received much attention in sequential
learning tasks. In this article, we adopt a hierarchical Bayesian framework
in conjunction with dynamical state-space models to derive regularization
algorithms for sequential estimation. These algorithms are based on estimat-
ing the noise processes on-line, while estimating the network weights with
the extended Kalman filter (EKF). In addition, we show that this method-
ology provides a unifying theoretical framework for many sequential esti-
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mation algorithms that attempt to avoid local minima in the error function.
In particular, we show that adaptive noise covariances in extended Kalman
filtering, multiple adaptive learning rates in on-line backpropagation, and
multiple smoothing regularization coefficients are mathematically equiva-
lent.

Section 2 describes the sequential learning task using state-space models
and a three-level hierarchical Bayesian structure. The three levels of in-
ference correspond to noise estimation, parameter estimation, and model
selection. In section 3, we propose a solution to the parameter estimation
level based on the application of the EKF to neural networks. Section 4 is
devoted to the noise estimation level and regularization. Finally, we present
our experiments in section 5 and point out several areas for further research
in section 6.

2 Dynamical Hierarchical Bayesian Models

We address the problem of training neural networks sequentially within the
following dynamical state-space framework:

wk+1 = wk + dk (2.1)

yk = gk(wk, xk)+ vk, (2.2)

where k(k = 1, . . . ,L) denotes the discrete time index. The output mea-
surements of the system (yk ∈ <o) depend on a nonlinear, multivariate,
time-varying function of the system inputs (xk ∈ <d) and a set of states
(wk ∈ <m). The measurements nonlinear mapping gk(.) is approximated by
a multilayer perceptron (MLP) whose weights are the model states w. The
work may be easily extended to encompass recurrent networks, radial basis
networks, and many other approximation techniques. The measurements
are assumed to be corrupted by noise vk, which we model as a zero mean,
uncorrelated gaussian process with adaptive covariance Rk. We model the
evolution of the model parameters by assuming that they depend on a de-
terministic component wk and a stochastic component dk. The process noise
dk may represent our uncertainty on how the parameters evolve, modeling
errors, or unknown inputs. We assume the process noise to be zero mean
with adaptive covariance Qk.

The sequential learning problem involves estimating the model param-
eters ŵk, estimating noise models, and selecting the right model {Mj | j =
1, . . . , r} on the basis of a set of past measurements Yk = {y1, y2, · · · , yk}.
This problem may be formulated in terms of three hierarchical hypothesis
spaces. In each space, probabilities for each quantity are defined in terms of
Bayes’ rule:

Posterior = Likelihood
Evidence

Prior.
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We propose the following inference levels:

Level 1: Parameter estimation

p(wk+1 | Yk+1,Mj,Rk+1,Qk)

= p(yk+1 | wk+1,Mj,Rk+1,Qk)

p(yk+1 | Yk,Mj,Rk+1,Qk)
p(wk+1 | Yk,Mj,Rk+1,Qk). (2.3)

Level 2: Noise estimation

p(Rk+1,Qk | Yk+1)

= p(yk+1 | Yk,Mj,Rk+1,Qk)

p(yk+1 | Yk,Mj)
p(Rk+1,Qk | Yk,Mj). (2.4)

Level 3: Model selection

p(Mj | Yk+1) =
p(yk+1 | Yk,Mj)

p(yk+1 | Yk)
p(Mj | Yk). (2.5)

The likelihood function at a particular level constitutes the evidence func-
tion at the next higher level. Therefore, by maximizing the evidence function
in the parameter estimation level, we are, in fact, maximizing the likelihood
of the noise covariances Rk and Qk as the new data arrive. This result plays
an important role when we devise methods for estimating the noise covari-
ances.

At the parameter estimation level, we apply the EKF algorithm to esti-
mate the weights of an MLP. The EKF, however, requires knowledge of the
noise covariances. To overcome this difficulty, in section 4 we present tech-
niques for estimating these covariances in slowly changing non-stationary
environments. There, we show that algorithms for estimating the noise co-
variance allow us to perform regularization in a sequential framework.
Model selection is not covered in this article.

3 Parameter Estimation

For optimality reasons, we want ŵk to be an unbiased, minimum vari-
ance, and consistent estimate (Gelb, 1974). The minimum variance esti-
mation framework is based on minimizing the variance of the neural net-
work weights, thereby leading to smooth estimates for the network weights
and outputs. A popular and suboptimal strategy for obtaining estimates
of this type is to employ the EKF for parameter estimation. The EKF is
a minimum variance estimator based on a Taylor series expansion of the
nonlinear function gk(wk, xk) around the previous estimate. Using this ex-
pansion and under the assumptions that the state-space model noise pro-
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cesses are uncorrelated with each other and the initial estimates of the pa-
rameters wk and their covariance matrix Pk, we can model the prior, ev-
idence, and likelihood functions as follows (de Freitas, Niranjan, & Gee
1997):

Prior = p(wk+1 | Yk,Mj,Rk+1,Qk)

≈ N (ŵk,Pk +Qk)

Evidence = p(yk+1 | Yk,Mj,Rk+1,Qk)

≈ N (g(ŵk, xk+1),Gk+1(Pk +Qk)GT
k+1 + Rk+1)

Likelihood = p(yk+1 | wk+1,Mj,Rk+1,Qk)

≈ N (g(wk+1, xk+1),Rk+1),

where G denotes the Jacobian ∂g
∂w |(w=ŵ) and the symbol T denotes the

transpose of a matrix. Since the EKF is a suboptimal estimator based on
linearization of a nonlinear mapping, ŵ is only an approximation to the
expected value, and, strictly speaking, Pk is an approximation to the co-
variance matrix. It is also important to point out that the EKF may di-
verge as a result of its inherent approximations. The consistency of the
EKF may be evaluated by means of extensive Monte Carlo simulations
(Bar-Shalom & Li 1993). Substituting the expressions for the prior, likeli-
hood, and evidence into equation (2.3), yields the posterior density func-
tion:

Posterior = p(wk+1 | Yk+1,Mj,Rk+1,Qk) ≈ N (ŵk+1,Pk+1),

where the updated weights, covariance and Kalman gain (Kk+1) are given
by:

ŵk+1 = ŵk + Kk+1(yk+1 − g(ŵk, xk+1)) (3.1)

Pk+1 = Pk +Qk − Kk+1Gk+1(Pk +Qk) (3.2)

Kk+1 = (Pk +Qk)GT
k+1[Rk+1 + Gk+1(Pk +Qk)GT

k+1]−1. (3.3)

By grouping the MLP weights into a single vector w, we can use the EKF
equations (3.1–3.3) to compute new estimates of the weights recursively.
The entries of the Jacobian matrix are calculated by backpropagating the o
output values {y1(t), y2(t), · · · , yo(t)} through the network. An example of
how to do this for a simple MLP is presented in appendix B of de Freitas et
al. (1997).
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One of the earliest implementations of EKF-trained MLPs is due to Sing-
hal and Wu (1988). The algorithm’s computational complexity is of the or-
der om2 multiplications per time step. Shah, Palmieri, and Datum (1992)
and Puskorius and Feldkamp (1991) have proposed various approxima-
tions to the weights covariance so as to simplify this problem. The EKF is
an improvement over conventional MLP estimation techniques, such as on-
line backpropagation, in that it makes use of second-order statistics (Ruck,
Rogers, Kabrisky, Maybeck, & Oxley, 1992; Schotky & Saad, 1999). These
statistics are essential for placing error bars on the predictions and for com-
bining separate networks into committees of networks when p(wk | Yk) has
multiple modes (Bar-Shalom & Li, 1993; Blom & Bar-Shalom, 1988; Kadirka-
manathan & Kadirkamanathan, 1995).

4 Noise Estimation and Regularization

A well-known limitation of the EKF is the assumption of known a priori
statistics to describe the measurement and process noise. Setting these noise
levels appropriately often makes the difference between success and fail-
ure in the use of the EKF (Candy, 1986). In many applications, it is not
straightforward to choose the noise covariances (Jazwinski, 1970). In ad-
dition, in environments where the noise statistics change with time, such
an approach can lead to large estimation errors and even to a divergence
of errors. Several researchers in the estimation, filtering and control fields
have attempted to solve this problem (Jazwinski, 1969; Mehra, 1970, 1971;
Myers & Tapley, 1976; Tenney, Hebbert, & Sandall, 1977). Mehra (1972) and
Li and Bar-Shalom (1994) give brief surveys on this topic.

It is important to note that algorithms for estimating the noise covariances
within the EKF framework can lead to a degradation of the performance of
the EKF. By increasing the process noise covariance Qk, the Kalman gain also
increases, thereby producing bigger changes in the weight updates (refer
to equations 3.1 and 3.3). That is, more importance is placed on the most
recent measurements. Consequently, it may be asserted that filters with
adaptive process noise covariances exhibit adaptive memory. Additionally,
as the Kalman gain increases, the bandwidth of the filter also increases (Bar-
Shalom & Li, 1993). Therefore, the filter becomes less immune to noise and
outliers.

The amount of oscillation in the model prediction clearly depends on
the value of the process noise covariance. As a result, this covariance can
be used as a regularization mechanism to control the smoothness of the
prediction.

In the following subsections, we derive three algorithms to estimate the
noise covariances. The first two derivations serve to illustrate the fact that
algorithms for adapting distributed learning rates, smoothing regularizers,
or stochastic noise in gradient descent methods are equivalent (see Figure 1).
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Figure 1: One-dimensional example of several adaptive gradient descent meth-
ods. To escape from local minima, we can increase the momentum of the ball as
it approaches a particular local minimum, allow the ball to bounce randomly
within a given vertical interval (stochastic descent), or stretch the surface with
smoothing regularizers.

In the derivation of the third algorithm, we address the trade-off between
regularization and tracking performance in sequential learning.

4.1 Algorithm 1: Adaptive Distributed Learning Rates. Sutton (1992b)
proposed an optimization approach for linear networks, using the Kalman
filter equations with Pk updated by a variation of the least-mean-square
rule (Jacobs, 1988; Sutton, 1992a). The main purpose of the method was to
reduce the computational time at the expense of a small deterioration in the
performance of the estimator. Another important aspect of the algorithm is
that it circumvents the problem of choosing the process noise covariance Q.
The technique involves approximating P with a diagonal matrix, whose ith
diagonal entry is given by:

pmm = exp(βm),

where βm is updated by the least-mean-square rule modified such that the
learning rates for each parameter are updated sequentially. The diagonal
matrix approximation to P implies that the model parameters are uncorre-
lated. This assumption may, of course, degrade the performance of the EKF
estimator.
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To circumvent the problem of choosing the process noise covariance Q
when training nonlinear neural networks, while at the same time increas-
ing computational efficiency, we have extended Sutton’s algorithm to the
nonlinear case. In particular, we make use of MLPs with sigmoidal basis
functions in the hidden layer and linear basis functions in the output layer.
The network weights and Kalman gain are updated using the EKF, while
the weights covariance P is updated by backpropagating the squared output
errors, with β as follows:

βk+1 =
{
βk + ηδikojk output layer

βk + ηwijkδikojk(1− ojk)xdk hidden layer

where the index i corresponds to the ith neuron in the output layer, j to
the jth neuron in the hidden layer, d to the dth input variable, and k to the
estimation step. δik represents the k-output error for neuron i. The symbols
oi and η denote the output of the ith neuron in layer i and the learning rate,
respectively. This learning rate is a parameter that quantifies another param-
eter Pk. We shall refer to it as a hyperparameter. We have found in practice
that choosing this hyperparameter is easier than choosing the process noise
covariance matrix.

The EKF equation used to update the weights is similar to the update
equations typically used to compute the weights of neural networks by er-
ror backpropagation. The only difference is that it assumes that there is a
different adaptive learning-rate parameter for each weight. The mathemati-
cal relation between adaptive learning rates (L) in on-line backpropagation
and Kalman filtering parameters is given by de Freitas et al. (1997):

L = (Pk +Qk)(Rk+1 + Gk+1(Pk +Qk)GT
k+1)

−1.

Thus, adapting the process noise is equivalent to adapting the learning rates.

4.2 Algorithm 2: Evidence Maximization with Weight Decay Priors.
We derive a sequential method for updating R and Q, based on the evi-
dence approximation framework with weight decay priors for batch learn-
ing (see Bishop, 1995, chap. 10). In so doing, we show that algorithms for
adapting the noise covariances are equivalent to algorithms that make use
of smoothing regularizers.

In the evidence approximation framework for batch learning, the prior
and likelihood are expressed as follows:

p(w) = 1
(2π)m/2α−m/2 exp

(
−α

2
‖w‖2

)
(4.1)

p(Yk | w) = 1
(2π)L/2β−L/2 exp

(
−β

2

L∑
k=1

(yk − ĝL,m(w, xk))
2

)
, (4.2)
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where ĝL,m(w, xk) corresponds to the model prediction. The hyperparam-
eters α and β control the variance of the prior distribution of the weights
and the variance of the measurement noise. α also plays the role of the reg-
ularization coefficient. Using Bayes’ rule (see equation 2.3) and taking into
account that the evidence does not depend on the weights, the following
posterior density function may be obtained:

p(w | Yk) = 1
Zs(α, β)

exp(−S(w)),

where Zs(α, β) is a normalizing factor. For the prior and the likelihood of
equations 4.1 and 4.2, S(w) is given by

S(w) = α

2
‖w‖2 + β

2

L∑
k=1

(yk − ĝL,m(w, xk))
2. (4.3)

The posterior density may be approximated by applying a Taylor series
expansion of S(w) around a local minimum (wMP) and retaining the series
terms up to second order:

S(w) = S(wMP)+ 1
2
(w−wMP)

TA(w−wMP).

Hence, the gaussian approximation to the posterior density function be-
comes:

p(w | Yk)= 1
(2π)m/2|A|−1/2 exp

(
− 1

2
(w−wMP)

TA(w−wMP)

)
. (4.4)

Maximizing the posterior probability density function involves minimizing
the error function given by equation 4.3. Equation 4.3 is a particular case of
a regularized error function. More generally, this error function is given by:

S(w) =
L∑

k=1

(yk − ĝL,m(w, xk))
2 + νÄ,

where ν is a positive parameter that serves to balance the trade-off between
smoothness and data approximation. A large value of ν places more im-
portance on the smoothness of the model; a small value of ν places more
emphasis on fitting the data. The functionalÄ penalizes for excessive model
complexity (Girosi, Jones, & Poggio, 1995).

In the evidence framework, the parameters w are obtained by minimiz-
ing equation 4.3, while the hyperparameters α and β are obtained by max-
imizing the evidence p(Yk | α, β) after approximating the posterior density
function by a gaussian function centered at wMP. In doing so, the following
recursive formulas for α and β are obtained:

αk+1 = γ∑m
i=1 w2

i
and βk+1 = L− γ∑L

k=1(yk − ĝL,m(wk, xk))
2
. (4.5)
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The quantity γ = ∑m
i=1

λi
λi+α , represents the effective number of param-

eters, where the λi are the eigenvalues of the Hessian of the error function
ED. The effective number of parameters, as the name implies, is the number
of parameters that effectively contributes to the neural network mapping.
The remaining weights have no contribution because their magnitudes are
forced to zero by the weight decay prior.

It is possible to maximize the posterior density function by performing
integrations over the hyperparameters analytically (Buntine & Weigend,
1991; Mackay, 1996; Williams, 1995; Wolpert, 1993). The latter approach is
known as the MAP framework for α and β. The hyperparameters computed
by the MAP framework differ from the ones computed by the evidence
framework in that the former makes use of the total number of parameters
and not only the effective number of parameters. That is,α andβ are updated
according to:

αk+1 = m∑m
i=1 w2

i
and βk+1 = L∑L

k=1(yk − ĝL,m(wk, xk))
2
. (4.6)

By comparing the expressions for the prior, likelihood, and evidence in
the EKF framework (see section 3) with equations 4.1, 4.2, and 4.4, we can
establish the following relations:

P = A−1, Q = α−1Im − A−1 and R = β−1Io, (4.7)

where Im and Io represent identity matrices of sizes m and o, respectively.
Therefore, it is possible to update Q and R sequentially by expressing them
in terms of the sequential updates of α and β. That is, adapting the noise
processes is equivalent to adapting the regularization coefficients. A moving
window may be implemented to estimate β. The size of the window is a
parameter that requires tuning.

4.3 Algorithm 3: Evidence Maximization with Sequentially Updated
Priors. In EKF, we have knowledge of the equation describing the evidence
function in terms of the noise covariances. Consequently, we can compute
Rk and Qk automatically by maximizing the evidence density:

p(yk+1 | Yk,Mj,Rk+1,Qk) ∼ N (gk+1(ŵk, xk+1),

Gk+1(Pk +Qk)GT
k+1 + Rk+1).

Strictly speaking, this is not a full Bayesian solution. We are computing
solely the likelihood of the noise covariances. That is, we are assuming no
knowledge of the prior at the noise estimation level. For simplicity, we have
restricted our analysis in this section to a single output. Let us now define
the model residuals:

rk+1 = yk+1 − E[yk+1 | Yk,Mj,Rk+1,Qk] = yk+1 − gk+1(ŵk, xk+1). (4.8)
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It follows that the probability of the residuals is equivalent to the evidence
function at the parameter estimation level, that is:

p(rk+1) = p(yk+1 | Yk,Mj,Rk+1,Qk).

Let us assume initially that the process noise covariance may be described
by a single parameter q—more specifically:

Q = qIm.

The maxima of the evidence function with respect to q may be calculated
by differentiating the evidence function as follows:

d
dq

p(rk+1) = 1
(2π)1/2

exp

(
−1

2

r2
k+1

Gk+1(Pk +Qk)GT
k+1 + Rk+1

)
[
−1

2
Gk+1GT

k+1(Gk+1(Pk +Qk)GT
k+1 + Rk+1)

−3/2

+ 1
2

r2
k+1Gk+1GT

k+1(Gk+1(Pk +Qk)GT
k+1 + Rk+1)

−5/2
]
.

Equating the derivative to zero yields:

r2
k+1 = E[r2

k+1]. (4.9)

It is straightforward to prove that this singularity corresponds to a global
maximum on [0,∞) by computing the second derivative. This result reveals
that maximizing the evidence function corresponds to equating the covari-
ance over time r2

k+1 to the ensemble covariance E[r2
k+1]. That is, maximizing

the evidence leads to a covariance matching method.
Jazwinski (1969; Jazwinski & Bailie, 1967) devised an algorithm for up-

dating q according to equation 4.9. Since

r2
k+1 = Gk+1PkGT

k+1 + qGk+1GT
k+1 + Rk+1,

it follows that q may be recursively computed according to:

q =


r2
k+1−E[r2

k+1|q=0]

Gk+1GT
k+1

if q ≥ 0

0 otherwise.
(4.10)

This estimator increases q each time the variance over time of the model
residuals exceeds the ensemble variance. When q increases, the Kalman
gain also increases, and consequently the model parameters update also
increases (see equations 3.1 and 3.3). That is, the estimator places more
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emphasis on the incoming data. As long as the variance over time of the
residuals remains smaller than the ensemble covariance, the process noise
input is zero and the filter carries on minimizing the variance of the pa-
rameters (i.e., tending to a regularized solution). Section 5.2 discusses an
experiment where this behavior is illustrated.

The estimator of equation 4.10 is based on a single residual and is there-
fore of little statistical significance. This difficulty is overcome by employing
a sliding window to compute the sample mean for N predicted residuals
instead of a single residual. Jazwinski (1969) shows that for the following
sample mean,

mr = 1
N

N∑
l=1

rk+l

R1/2
k+l

,

we may proceed as above, by maximizing p(mr), to obtain the following
estimator:

q =
{

m2
r−E[m2

r |q=0]
S if q ≥ 0

0 otherwise,
(4.11)

where

E[m2
r | q = 0] = SNPkST

N + 1/N,

S = SNST
N + SN−1ST

N−1+, · · · ,+S1ST
1

and

SN = 1
N

N∑
l=1

1

R1/2
k+l

Gk+l, SN−1 = 1
N

N∑
l=2

1

R1/2
k+l

Gk+l, . . . ,

S1 = 1
N

1

R1/2
k+N

Gk+N. (4.12)

With this estimator, one has to choose the length N of the moving window
used to update q. If the window size is too small, the algorithm places more
emphasis on fitting the incoming data than fitting the previous data. As
a result, it might never converge. On the other hand, if the window size
is too large, the algorithm will fail to adapt quickly to new environments.
We refer to the problem of choosing the right window length as the regu-
larization/tracking dilemma. It is a dilemma because we cannot ascertain,
without a priori knowledge, whether the fluctuations in the data correspond
to time-varying components of the data or to noise.
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It is possible to extend the derivation to a more general noise model by
adopting the following covariance:

Q =


q1 0 · · · 0
0 q2 0
...

. . .

0 0 qm

 . (4.13)

By calculating the derivative of the evidence function with respect to a
generic diagonal entry of Q and then equating to zero, we obtain an estima-
tor involving the following system of equations:



(
∂yk+1
∂w1

)2 (
∂yk+1
∂w2

)2 · · ·
(
∂yk+1
∂wm

)2

(
∂yk
∂w1

)2 (
∂yk
∂w2

)2 (
∂yk
∂wm

)2

...
. . .(

∂yk−N
∂w1

)2 (
∂yk−N
∂w2

)2 (
∂yk−N
∂wm

)2




q1
q2
...

qm

 =

εk+1
εk
...

εk−N

 . (4.14)

Multiple hyperparameters are very handy when one considers distributed
priors for automatic relevance determination (input and basis functions
selection) (de Freitas et al., 1997; Mackay 1994, 1995). Estimating Q in equa-
tion 4.14 is, however, not very reliable (de Freitas et al., 1997; Mackay 1994,
1995) because it involves estimating a large number of noise parameters
and, in addition, requires a long moving window of size N to avoid illcon-
ditioning.

We can also maximize the evidence function with respect to Rk = rIo and
obtain the following estimator for r:

r =
r2

k − Gk(Pk +Qk)GT
k if r ≥ 0

0 otherwise.
(4.15)

The hyperparameter r is not as useful as q in controlling filter divergence.
This is because r can slow the rate of decrease of the covariance matrix Pk,
but cannot cause it to increase (see equations 3.1–3.3).

5 Experiments

5.1 Experiment 1: Comparison Between the Noise Estimation Meth-
ods. To compare the performance of the various EKF training algorithms,
100 input-output data vectors were generated from the following nonlinear,
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Figure 2: Data generated to train MLP.

nonstationary process:

xk = 0.5xk−1 + 25xk−1

1+ x2
k−1

+ 8 cos(1.2(k− 1))+ dk

yk =
x2

k

20
+ vk,

where xk denotes the input vectors and yk the output vectors of 300 time
samples each. The gaussian process noise standard deviation was set to 0.1;
the measurement noise standard deviation was set to 3 sin(0.05k). The initial
state x0 was 0.1. Figure 2 shows the data generated with this model. The
changes of the measurement noise variance are similar to the ones typically
observed in financial returns data (Shephard, 1996).

We then proceeded to train an MLP with 10 sigmoidal neurons in the
hidden layer and 1 linear output neuron with the following methods: the
standard EKF algorithm, the EKF algorithm with Pk updated by error back-
propagation (EKFBP), with evidence maximization and weight decay pri-
ors (EKFEV), with MAP noise adaptation (EKFMAP), and with evidence
maximization and sequentially updated priors (EKFQ). The initial vari-
ance of the weights, initial weights covariance matrix entries, initial R, and
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Figure 3: Simulation results for the EKF and EKFQ algorithms. The top left plot
shows the actual data [· · ·] and the EKF [- -] and EKFQ [—] one-step-ahead
predictions. The top right plot shows the estimated process noise parameter.
The bottom plots show the innovations covariance for both methods.

initial Q were set to 1, 10, 3, and 1e − 5, respectively. The length of the
sliding window of the adaptive noise algorithms was set to 10 time sam-
ples.

The simulation results for the EKF and EKFQ algorithms are shown in
Figure 3. Note that the EKFQ algorithm slows the convergence of the EKF
parameter estimates so as to be able to track the changing measurement
variance. In Table 1, we compare the one-step-ahead normalized square
errors (NSE) obtained with each method. The NSE are defined as
follows:

NSE =
√√√√ 300∑

k=1

(yk − ĝ(wk, xk))
2 .

According to Table 1, it is clear that the only algorithm that provides a clear
prediction improvement over the standard EKF algorithm is the evidence
maximization algorithm with sequentially updated priors. In terms of com-
putational time, the EKF algorithm with Pk updated by backpropagation is
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Table 1: Simulation Results for 100 Runs in Experiment 1.

NSE Mega Floating-Point operations

EKF 25.95 21.9
EKFQ 23.01 24.1
EKFMAP 61.06 22.6
EKFEV 73.94 22.6
EKFBP 58.87 2.2

faster, but its prediction is worse than the one for the standard EKF. This is
not a surprising result considering the assumption of uncorrelated weights.
The EKFEV and EKFMAP performed poorly because they require the net-
work weights to converge to a good solution before the noise covariances
can be updated. That is, the noise estimation algorithm does not facilitate the
estimation of the weights, as it happens in the case of the EKFQ algorithm.
The EKFEV and EKFMAP therefore appear to be unsuitable for sequential
learning tasks.

5.2 Experiment 2: Sequential Evidence Maximization with Sequen-
tially Updated Priors. This experiment aims to describe the behavior of
the evidence-maximization algorithm (EKFQ) of equation 4.11 in a time-
varying, noisy, and chaotic scenario. The problem tackled is a more difficult
variation of the chaotic quadratic or logistic map. One hundred input (yk)
and output (yk+1) data vectors were generated according to the following
equation:

yk+1 =


3.5yk(1− yk)+ vk 1 ≤ k ≤ 150
3.7yk(1− yk)+ vk 150 < k ≤ 225
3.1yk(1− yk)+ vk 225 < k ≤ 300

where vk denotes gaussian noise with a standard deviation of 0.01. In the
interval 150 < k ≤ 225, the series exhibits chaotic behavior. A single hidden-
layer MLP with 10 sigmoidal neurons in the hidden layer and a single output
linear neuron were trained to approximate the mapping between (yk) and
(yk+1). The initial weights, weights covariance matrix diagonal entries, R,
and Q were set to 1, 100, 1× 10−4, and 0, respectively. The sliding window
to estimate Q was set to three time samples.

As shown in Figure 4, during the initialization and after each change of
behavior (samples 150 and 225), the estimator for the process noise covari-
ance Q becomes active. That is, each time the environment undergoes a se-
vere change, more importance is given to the new data. As the environment
stabilizes, the minimum variance minimization criterion of the Kalman fil-
ter leads to a decrease in the variance of the output. Therefore, it is possible
to design an estimator that balances the trade-off between regularization
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Figure 4: Performance of the evidence maximization for a nonstationary chaotic
quadratic map. (Top) True data [· · ·] and the prediction [—]. (Middle) Output
confidence intervals. (Bottom) Value of the adaptive noise parameter.

and tracking. The results obtained with the EKF and EKFQ algorithms are
summarized in Table 2.

5.3 Example with Real-World Data. The mathematical modeling of fi-
nancial derivatives has become increasingly popular for two reasons. First,
financial institutions have much interest in developing more sophisticated
pricing models for options contracts (Hull, 1997). Second, options data offer
an excellent source of difficult and challenging problems to the statistical and
neural computing communities (Hutchinson, Lo, & Poggio, 1994; Ingber &

Table 2: Simulation Results for 100 Runs of the Quadratic Chaotic Map.

NSE Mega Floating-Point Operations

EKF 31.76 21.8
EKFQ 1.37 23.0

Note: The EKFQ algorithm provides a large improve-
ment over the EKF at a very small computational cost.
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Wilson, 1999; Niranjan, 1996). So far, the research results seem to provide
clear evidence that there is a nonlinear and nonstationary relation between
the options’ price and the cash products’ price, maturity time, strike price,
interest rates, and variance of the returns on the cash product (volatility).
The standard model used to describe this relation is the Black-Scholes (1973)
model.

Hutchinson et. al. (1994) and Niranjan (1996) have focused on the options
pricing problem from a neural computing perspective. The former showed
that good approximations to the widely used Black-Scholes formula may be
obtained with neural networks, while the latter looked at the nonstationary
aspects of the problem. Our work follows from Niranjan (1996), with the
aim of showing that more accurate tracking of the options prices can be
achieved by adapting the noise covariances. We train MLPs to generate one-
step-ahead predictions of the options prices. These predictions for a group
of options on the same cash product, but with different strike prices and/or
time to maturity, can be used to determine whether one of the options is
being mispriced.

We treat the cash product’s value normalized by the strike price and
time to maturity as the network inputs. The network’s output consists of
the call and put option prices normalized by the strike price. We used five
pairs of call and put option contracts on the FTSE100 index (February 1994–
December 1994) to evaluate our pricing algorithms. The parameters were
estimated by the following methods:

Trivial: Involves using the current value of the option as the next prediction.

RBF-EKF: Represents a regularized radial basis function network with four
hidden neurons, which was originally proposed in Hutchinson et al.
(1994). The output weights are estimated with a Kalman filter, while the
means of the radial functions correspond to random subsets of the data
and their covariance is set to the identity matrix as in Niranjan (1996).

BS: Corresponds to a conventional Black-Scholes model with two outputs
(normalized call and put prices) and two parameters (risk-free interest
rate and volatility). The risk-free interest rate was set to 0.06, while the
volatility was estimated over a moving window (of 50 time steps) as
described in Hull (1997).

MLP-EKF: Stands for an MLP, with six sigmoidal hidden units and a lin-
ear output neuron, trained with the EKF algorithm. The noise covari-
ances R and Q and the states covariance P were set to diagonal matrices
with entries equal to 10−6, 10−7, and 10, respectively. The weights prior
corresponded to a zero mean gaussian density with covariance equal
to 1.

MLP-EKFQ: Represents an MLP, with six sigmoidal hidden units and a
linear output neuron, trained with the EKF with evidence maximization
and sequentially updated priors. The states covariance P was given by a
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Figure 5: Tracking put and call option prices with an MLP trained with the
EKFQ algorithm.

diagonal matrix with entries equal to 10. The weights prior corresponded
to a zero mean gaussian density with covariance equal to 1.

Figure 5 shows the one-step-ahead predictions obtained with the EKFQ
algorithm. In Table 3, we compare the one-step-ahead normalized square
errors obtained with each method. The square errors were measured over
only the last 100 days of trading, so as to allow the algorithms to converge. It
is clear from the results that adapting the process noise covariance sequen-
tially leads to improved predictions with the options data.

Table 3: One-Step-Ahead Prediction Errors on Call Options.

Strike Price 2925 3025 3125 3225 3325

Trivial 0.0783 0.0611 0.0524 0.0339 0.0205
RBF-EKF 0.0538 0.0445 0.0546 0.0360 0.0206
BS 0.0761 0.0598 0.0534 0.0377 0.0262
MLP-EKF 0.0414 0.0384 0.0427 0.0285 0.0145
MLP-EKFQ 0.0404 0.0366 0.0394 0.0283 0.0150
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6 Conclusions

We have presented several algorithms to perform regularization in sequen-
tial learning tasks. The algorithms are based on adapting the noise pro-
cesses sequentially. The experiments21 indicated that one of these algo-
rithms, EKFQ, may lead to improved prediction results when either the
data source is time varying or there is little a priori knowledge about how
to tune the noise processes.

We showed that the hierarchical Bayesian inference methodology pro-
vides an elegant, unifying treatment of the sequential learning problem.
We showed that distributed learning rates, adaptive noise parameters, and
adaptive smoothing regularizers are mathematically equivalent. This re-
sult sheds light on many areas of the machine learning field. It places many
diverse approaches to estimation and regularization within a unified frame-
work.

There are many avenues for further research. These include deriving
convergence bounds, implementing static and dynamic mixtures of mod-
els, implementing other model structures such as recurrent networks, and,
testing the algorithms on additional problems.
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