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Abstract

We derive a new expectation maximization
algorithm for policy optimization in linear
Gaussian Markov decision processes, where
the reward function is parameterized in terms
of a flexible mixture of Gaussians. This ap-
proach exploits both analytical tractability
and numerical optimization. Consequently,
on the one hand, it is more flexible and gen-
eral than closed-form solutions, such as the
widely used linear quadratic Gaussian (LQG)
controllers. On the other hand, it is more ac-
curate and faster than optimization methods
that rely on approximation and simulation.
Partial analytical solutions (though costly)
eliminate the need for simulation and, hence,
avoid approximation error. The experiments
will show that for the same cost of computa-
tion, policy optimization methods that rely
on analytical tractability have higher value
than the ones that rely on simulation.

1 Introduction

A large variety of techniques have been proposed to
attack the problem of optimal control in continuous
action and state spaces. At one end of the spectrum,
one encounters techniques that heavily exploit ana-
lytical tractability, such as linear-quadratic-Gaussian
controllers [3, 11]. The restrictions of linear-Gaussian
transition models and quadratic reward functions re-
sult in elegant and efficient recursions. However, these
restrictions often prove to be too unrealistic in many
practical domains.

At the other end of the spectrum, one finds techniques
that rely on approximation and numerical comput-
ing. These include direct simulation and approximate
dynamic programming; see for example [2, 12, 18].
The simulation approach is simple and very gen-
eral, but can lead to poor results when the rewards
are rare events or when there is a lack of a pri-
ori knowledge for constructing parameterized policies.

Dynamic programming approaches, relying either on
function approximation with stochastic approximation
or naive discretization of the continuous states and
actions, have not been found to perform well in high-
dimensional settings despite recent developments and
many years of research in the field of reinforcement
learning. (The strategy of mapping the control prob-
lem to one of statistical inference, as described in this
paper, provides and new fresh plan of attack on this
hard problem.)

Techniques in the middle of the spectrum, which take
advantage of both analytical tractability and approx-
imation methods, are very rare. One notable excep-
tion is the value iteration algorithm proposed in [15]
for solving partially observed Markov decision pro-
cesses (POMDPs) with a linear-Gaussian transition
model and a mixture of Gaussians reward model. This
specific representation enabled the authors to obtain
closed-form alpha-function updates in the classical
style of [16]. However, the approach requires that the
action space be discretized. For many practical prob-
lems, where the action space is large, this discretiza-
tion will suffer from the curse of dimensionality. If one
adopts Monte Carlo discretization to avoid the curse,
one is still subject to approximations errors: typically
high variance. In this paper, we present an algorithm
that uses a similar representation for the transition
and reward models, but that does not require that the
action space be discretized. The distributions over the
action and state spaces will be obtained analytically.

Our approach follows from a recently proposed formu-
lation of the stochastic planning and control problem
as one of parameter estimation for suitable artificial
statistical models [20]. There the authors propose a
solution using the EM algorithm. This idea seems to
have originated in [5], where only immediate rewards
are considered. This formulation has since been ap-
plied to operational space control [13] and in the se-
quential setting it has been studied by [1, 21]. Perhaps
the most complete and clear formulation is the one of
[19], which presents impressive results for finite state
space models.

In [19], the authors also consider continuous state



spaces, unlike most previous works which focus on
the discrete case. However, the authors only con-
sider a single Gaussian reward function. More im-
portantly, the technical details for these continuous
models are unfortunately incorrect and rely on a fairly
common misunderstanding in the optimal smoothing
literature. Namely, the paper uses the inverse of
the dynamic process (in particular the inverse un-
scented transformation) to obtain the backward tran-
sition model p(xn|xn+1) from the forward transition
model p(xn+1|xn). To see why this is erroneous, con-
sider the following simple auto-regressive process ex-
ample, taken from [8]: xn+1 = axn + σνn+1 and
x1 ∼ N (0, σ2(1− a2)−1), where |a| < 1. Through the
application of Bayes rule the backward transition ker-
nel can be written as p(xn

∣∣xn+1) = N (xn; axn+1, σ
2).

On the other hand, inversion of the dynamics xn =
a−1(xn+1 − σνn+1) incorrectly leads to an unstable
model: p(xn

∣∣xn+1) = N (a−1xn+1, a
−2σ2).

In this paper, we consider the general case of Gaus-
sian mixture reward functions and derive correct EM
updates for this setting. We show that the resulting
algorithm outperforms widely used policy gradient ap-
proaches. At the heart of our philosophy is the goal of
harnessing the power of analytical calculations in con-
junction with approximation methods. This strategy
has been shown to be very fruitful in inference tasks,
and we expect similar improvements to arise in the
control and reinforcement learning fields.

Sections 2 and 3 will introduce the basic formulation
of a sequential decision problem as one of statistical
inference. They will also outline an EM algorithm for
estimating the policy parameters while marginalizing
over the states and actions analytically. Section 4, is
where the technical contribution of this paper begins:
A new algorithm for arbitrary rewards that can be ap-
proximated with mixtures of Gaussians. After demon-
strating how well the new algorithm performs on syn-
thetic (but hard) MDPs, the paper concludes with a
motivating robotics example that shows how to map a
nonlinear control problem to a linear control problem
with an arbitrary reward. Hence, if we can solve linear
MDPs with arbitrary rewards, we can attack a large
class of difficult nonlinear control problems.

2 Model specification

The goal is to perform policy optimization for discrete-
time Markov decision processes (MDPs) defined by the
X -valued state-process {Xn}n≥1 and U-valued action-
process {Un}n≥1. The initial-state, transition, and
policy are:

X1 ∼ µ(x1),

Xn+1

∣∣ (Xn = xn, Un = un) ∼ f(xn+1|xn, un), and

Un
∣∣ (Xn = xn) ∼ πθ(un|xn)

respectively. In order to ease notation later, we will
also note that this model induces a Markov chain

{Zn}n≥1 over the extended state-space Z = X × U .
We will refer to realizations of this chain as state-action
paths, and denote their generative densities as

Z1 ∼ µθ(z1) and Zn+1

∣∣ (Zn = zn) ∼ fθ(zn+1|zn)

where µθ(z1) = µ(x1)πθ(u1|x1) and

fθ(zn+1|zn) = f(xn+1|xn, un)πθ(un+1|xn+1).

Similarly, we can also define the short-hand notation
πθ(zn) = πθ(un|xn).

The policy πθ as introduced earlier is assumed to have
some parameterized form governed by θ. Given an
immediate reward function r(z) = r(x, u) the prob-
lem of solving an MDP then reduces to finding the
values θ∗ that maximize some measure of the total ex-
pected reward induced by this policy. For this work
we will maximize the infinite-horizon, discounted, ex-
pected reward

J(θ) = Eµθ(z1) fθ(z2|z1) ···
[°∞

k=1 γ
k−1 r(Zk)

]
. (1)

The objective function J(θ) defined in (1) can also be
reinterpreted as the objective function associated with
an infinite mixture of finite horizon MDPs (where the
reward only happens at the last time step). This was
noted by [20] and also used in [6] to solve integral
equations. In order to discuss this interpretation we
will first introduce the density

pθ(z1:k|k) = µθ(z1)
k¹

n=2

fθ(zn|zn−1), (2)

which represents the probability of a k-length state-
action path. We can notice from Eq. (1) that use of the
discount factor γ is very similar to putting a geometric
distribution over path lengths k. Using this intuition
we can write

pθ(k, z1:k) = (1− γ)γk−1 pθ(z1:k|k) (3)

as the joint distribution over both paths and path
lengths. We should note that this is a trans-
dimensional distribution defined on

�∞
k=1{k} × Zk,

i.e. a distribution where the dimensionality of the dis-
tribution (k in this case) is also a random variable.
Given this formulation, the following proposition then
holds:
Proposition 1. The objective function J(θ) is pro-
portional to the expected reward obtained at the last
step under pθ. More precisely,

J(θ) = (1− γ)−1 Epθ [r(ZK)]. (4)

Proof. We can expand J(θ) from (1) as

J(θ) =

» h
µθ(z1)

∞¹
n=2

fθ(zn|zn−1)
ih ∞̧

k=1

γk−1 r(zk)
i
dz1:∞,

=
∞̧

k=1

»
(1− γ)−1 (1− γ) γk−1 pθ(z1:k|k) r(zk) dz1:k

= (1− γ)−1 Epθ [r(ZK)],



from which our claim follows.

Here the discount-factor γ induces a distribution to
mix over finite time MDPS, where the stopping time
is given by K. One benefit of this formulation is that
the reward function is only “evaluated” at time K, i.e.
we neeed only compute rewards that occur at the last
time step. This representation will prove particularly
useful later when performing inference as we will only
need to evaluate the reward function at the end of the
chain and then propagate this backwards in time.

3 Policy Search as Inference

The reformulated objective of Section 2 presents a new
way of evaluating the expected reward which defines
J(θ). In this section we will discuss an alternative
method of optimizing this objective function, namely
using methods originally developed for inference prob-
lems. We follow the approach of [20] in this section
and hence omit proofs. We will begin by constructing

rp(k, z1:k|θ) =
pθ(k, z1:k) r(zk)

Epθ [r(ZK)]
, (5)

which we can easily see is the normalized density re-
sulting from multiplying the reward r(z) with the
trans-dimensional distribution pθ(k, z1:k). We should
note that this formulation does require that r(z) be
strictly positive in order to ensure that the density
is well defined1. This distribution was crucial to the
development in [7] of a Markov Chain Monte Carlo
(MCMC) procedure to sample from rp(k, z1:k, θ) =
p(θ)rp(k, z1:k|θ), where p(θ) is a prior on the unknown
parameters θ. By construction, this yields a marginalrp(θ) ∝ J(θ) p(θ), resulting in higher probability mass
where the expected reward is higher, and therefore
samples which concentrate on these high reward areas.
Instead of using this approximate integration method,
in this paper we focus on developing a more efficient
exact integration method for the specific mixture re-
ward model presented in Section 4.

We will treat (k, z1:k) as hidden data, and maximize
the likelihood of θ via an Expectation Maximization
(EM) algorithm. Using the standard EM terminology
we can define the following terms:

• the complete data likelihood is given by
pθ(k, z1:k) r(zk), i.e. the combined likelihood
of our observed data (of which there is none) and
hidden data;
• the incomplete data likelihood is the integral over

our complete data likelihood with respect to our
hidden data, and is thus given by Epθ [r(ZK)];
• the predictive distribution of our hidden data is

the normalized distribution over hidden data, and
thus rp(k, z1:k|θ).

1We will later show how to eliminate this assumption
in some situations.

The EM algorithm is particularly useful in situations
where it is difficult to directly optimize the incomplete
data likelihood—often because of the existence of hid-
den data. Instead, we can iteratively maximize

Q(θ, θi−1) = E
rp

[
log{pθ(k, z1:k) r(zk)}

∣∣θi−1

]
, (6)

θi = arg max
θ
Q(θ, θi−1). (7)

Intuitively, at every iteration the previous values θi−1

are used to calculate the expected complete data like-
lihood in the E-step (6) which is then maximized in
the M-step (7). It is well known that this iterative
technique is guaranteed to produce a local maximum
of the incomplete data likelihood, which in our case is
a maximum of Epθ [r(ZK)] as desired.

Since we will be maximizing the Q-function with re-
spect to θ, we can drop any additive constants which
don’t depend on θ, simplifying the function to

Q(θ, θi−1) h
∞̧

k=1

rp(k|θi−1)
ķ

n=1

» rp(zn|k, θi−1) log πθ(zn) dzn

where ‘h’ denotes ‘equal up to an additive constant’.
The following two sub-sections will describe the result-
ing E-step and the M-step in more detail.

3.1 The E-step

In order to construct the necessary E-step distribu-
tions we will utilize a technique similar to that used
for parameter estimation in Hidden Markov Models
(HMMs) and Linear Dynamical Systems (LDS). First,
we will introduce the forward messages αθ(zn) which
will denote the distribution over state-action pairs af-
ter n steps2. This can be defined recursively as

αθ(zn) =
»
αθ(zn−1) fθ(zn|zn−1) dzn−1, (8)

where messages are initialized with the initial-state
distribution, αθ(z1) = µ(z1). Next, given some finite
path length k, we can introduce the backward messages
βθ(zn|k) which we will use to denote the expected re-
ward in n− k steps; here we can recursively define

βθ(zn|k) =
»
βθ(zn+1|k) fθ(zn+1|zn) dzn+1 (9)

where these messages are initialized with the immedi-
ate reward, βθ(zk|k) = r(zk). In a standard HMM-
context the backward messages would be used to rep-
resent the likelihood of all observed events from time
n + 1 to k, but in our situation we have no observa-
tions other than the reward term. In essence we are
treating the reward r(zk) as if it were the likelihood of
some observed data that only happens at the end of
our state-action path at time k.

2Technically we should write this as αθ(zn|n) since the
distribution depends on n, but this is implied by zn.



Another useful property of these messages is that, un-
like in an HMM-context, the α- and β-messages are
independent of each other so long as the backward
messages are parameterized using the form

βθ(z|τ) = βθ(zn|k) for τ = k − n. (10)

In other words the β-messages denote the expected
reward in τ steps, starting from state z. This was
first observed by [20], and allows us to compute these
distributions in parallel. For the rest of this section we
will continue using the notation given in (9) purely for
reasons of exposition.

The forward and backward messages introduced above
now provide us with an efficient means of calculating
the expected reward for a given θ as well as the distri-
butions required for the E-step.
Proposition 2. The k-step reward is given by

Epθ [r(Zk)|k] =
»
αθ(zn) βθ(zn|k) dzn (11)

for any n, and the infinite-horizon reward is given by

Epθ [r(ZK)] =
∞̧

k=1

(1− γ) γk−1 Epθ [r(Zk)|k]. (12)

Proposition 3. The product of α- and β-messages
gives us the unnormalized distribution over zn,

rp(zn|k, θ) =
1

Epθ [r(Zk)|k]
αθ(zn) βθ(zn|k), (13)

where the normalizing constant is the k-step reward.
The distribution over k is given by

rp(k|θ) = (1− γ)γk−1 Epθ [r(Zk)|k]
Epθ [r(ZK)]

. (14)

3.2 The M-step

In order to solve for θi at each iteration we must com-
pute the gradient ∇Q(θ, θi−1), which is equal to

∞̧

k=1

rp(k|θi−1)
ķ

n=1

» rp(zn|k, θi−1)∇ log πθ(zn) dzn. (15)

We can then analytically find the zeros of ∇Q(θ, θi−1)
if this function is concave with respect to θ. If an
analytical solution is not possible a generalized EM
(GEM) algorithm can be employed, where the gradi-
ent is evaluated at the current parameter values to
obtain ∇Q(θi−1, θi−1). Steps can then be taken in the
direction of this gradient, a technique that is similarly
guaranteed to converge to a local maximum [9]. For
this work we will use a quasi-Newton optimization ap-
proach, the LBFGS-B algorithm [4].

It is also possible to make a direct connection between
EM-based algorithms and the policy gradient, ∇J . By

rearranging terms we can write the Q-function’s gra-
dient as

∇Q(θ, θi−1) =

» rp(k, z1:k|θi−1)∇ log pθ(k, z1:k) dz1:k dk

=

»
pθi−1(k, z1:k) r(zk)

E[r(ZK)|θi−1]
· ∇pθ(k, z1:k)

pθ(k, z1:k)
dz1:k dk,

and by evaluating this gradient at θi−1, we obtain

∇Q =
1

E[r(ZK)|θi−1]

»
∇pθi−1(k, z1:k) r(zk) dz1:k dk

=
1

E[r(ZK)|θi−1]
· (1− γ)∇J(θi−1)

where the second line follows directly from Equa-
tion (4). This equivalence has several implications,
the first of which is simply that a GEM algorithm com-
putes a gradient in exactly the same direction as the
policy gradient. Secondly, it shows how we can use
the methods of this section to calculate the gradient
even for reward-models that may not necessarily be
positive, i.e. the gradient can be written as

∇J(θ) =
E[r(ZK)|θ]

(1− γ)
· ∇Q(θ, θ)

=
¸
k

γk−1
ķ

n=1

»
αθ(zn)βθ(zn|τ)∇ log πθ(zn) dzn.

This is well defined so long as the above integral exists.
By performing this calculation we can obtain an an-
alytical estimate of the gradient ∇J(θi−1), and hence
we need not rely on simulation.

4 A mixture-of-Gaussians model

We will now describe a particular instance of the gen-
eral EM algorithm described earlier. Consider state
and action spaces given by X = Rnx and U = Rnu .
We will assume a linear-Gaussian3 transition model
and policy,

µ(x1) = N (x1;µ0,Σ0),
f(xn+1|xn, un) = N (xn+1;Axn +Bun,Σ), and

πθ(un|xn) = N (un;Kxn +m,σ2I).

Here the policy is parameterized by θ = (K,m, σ), the
model itself is paramaterized by (µ0,Σ0, A,B,Σ), and
I is the identity matrix. We will further assume a
reward model which is an unnormalized mixture of P
Gaussians

r(z) =
P̧

j=1

wj N (yj ;Mjz, Lj), z = [x;u] (16)

3We will let N (x;µ,Σ) denote a Normal distribution in

x with mean µ and covariance Σ, and let N denote the
unnormalized distribution.



State-action transition parameters:

F =

»
A B

KA KB

–
, m =

»
0
m

–
, Σ =

»
Σ ΣKT

KΣ KΣKT + σ2I

–
Initial state-action parameters:

µ0 =

»
µ0

Kµ0

–
, Σ0 =

»
Σ ΣKT

KΣ KΣKT + Σ0

–

Figure 1: Definition of the transition parameters.

each parameterized by (wj , yj ,Mj , Lj). It is useful to
note that even were it normalized this is not strictly
a Gaussian distribution in z because of the presence
of Mj . Under this model the state-action transition
model is also linear-Gaussian, given by

µθ(z1) = N (z1;µ0,Σ0) and

fθ(zn+1|zn) = N (zn+1;Fzn +m,Σ). (17)

Although the parameters (µ0,Σ0, F ,m,Σ) depend on
θ, we have left this dependency implicit in order to
simplify the notation. The exact form of the param-
eters is given in Figure 1, and we give these terms
without proof as they are relatively simple to derive.

With our model specified, we can now write the for-
ward and backward messages for this problem:

αθ(zn) = N (zn; pµn, pΣn),

βθ(z|τ) =
¸
j

wj exp
{
− 1

2 (qcjτ + zTqΩjτz − 2zTqµjτ )
}
.

The full recursive definition can be seen in Figure 2.
The updates for the forward message parameters are
relatively simple, and are essentially the same as those
given in the update phase of the discrete-time Kalman
filter. The derivation of the backward messages is a
more complicated (and tedious) process. Here we have
reparameterized the individual Gaussian components
of the reward model in canonical form and written the
backward messages in the time-to-go notation.

For a given k and n, and τ = k− n, the unnormalized
distribution over zn is given by the product of forward-
and backward-messages

αθ(zn) βθ(zn|τ) =
¸
j

wj rwjnτ N (zn; rµjnτ , rΣjnτ ), (18)

where the parameters ( rwjnτ , rµjnτ , rΣjnτ ) are defined in
Figure 3. Further, via Proposition 3 we can obtain
both the k-step reward and the predictive distribution,

Epθ [r(Zk)|k]=
»
αθ(zn) βθ(zn|τ) dzn=

¸
j

wj rwjnτ 4= rwnτ ,
rpθ(zn|k)=

¸
j

νjnτ N (zn; rµjnτ , rΣjnτ ) (19)

Forward message recursion:

pµ1 = µ0,pΣ1 = Σ0;

pµn = F pµn−1 +m,pΣn = F pΣn−1F
T + Σ.

Backward message recursion:

qΩj0 = MT
j L
−1
j Mj ,

qµj0 = MT
j L
−1
j yj ,

qcj0 = log |2πLj |+ yT
j L
−1
j yj ,

qΩjτ+1 = F
T

(Σ
−1 − Σ

−1rΣΣ
−1

)F ,

qµjτ+1 = F
T

Σ
−1

(rΣΣ
−1
m+ rΣqµjτ −m),

qcjτ+1 = qcjτ + log |ΣrΣ−1|+mTΣ
−1
m

− (qµjτ + Σ
−1
m)T rΣ (qµjτ + Σ

−1
m),

where rΣ−1 = qΩjτ + Σ
−1

.

Figure 2: The α- and β-message recursions for the mix-
ture of Gaussians model. In order to ease notation as
much as possible we mark the statistics of the forward
messages with a hat (e.g. pa) and mark the backward
pass statistics with a check (e.g. qa).

where νjnτ = wj rwjnτ/ rwnτ . We can then write the mean
and covariance of zn given k as

E[Zn|k] = rµnτ =
¸
j

νjnτ rµjnτ , and

cov[Zn|k] = rΣnτ =
¸
j

(νjnτ )2 rΣjnτ . (20)

Finally, by referring to Equation (14) we can easily ob-
tain the discrete distribution rp(k|θ) ∝ (1−γ) γk−1 rwnτ .
Given θi−1 = (Ki−1,mi−1, σi−1) we can now calcu-
late the partial derivatives of log πθ(x|u) with respect
to each policy parameter and plug these directly into
Equation (15) to obtain ∇Q(θ, θi−1), i.e.

∂Q

∂K
=
¸
k

rp(k|θi−1)
ķ

n=1

σ−2
i−1

`
E[UnX

T
n ]−mi−1E[XT

n ]

−Ki−1E[XnX
T
n ]
´
,

∂Q

∂m
=
¸
k

rp(k|θi−1)
ķ

n=1

σ−2
i−1(E[Un]−Ki−1E[Xn]−mi−1),

∂Q

∂σ
=
¸
k

rp(k|θi−1)
ķ

n=1

σ−3
i−1E[CTC]− nuσ−1

i−1, (21)

where C = Un − Ki−1Xn − mi−1. We have also left
the dependency on k in the above expectations im-
plicit in order to shorten the notation. By setting this
gradient equal to 0 and solving for θ we can obtain
the EM update. Given the fact that Zn = [Xn;Un],
the expectations needed to perform these calculations
can be trivially obtained from the sufficient statistics



Parameterization of the predictive distr.:

rΣjnτ = (pΣ−1
n + qΩjτ )−1

rµjnτ = rΣjnτ (pΣ−1
n pµn + qµjτ )

rwjnτ = |pΣ−1
n
rΣjnτ | 12 exp

n
− 1

2

hqcjτ + pµT
n
pΣ−1
n pµn

− (rµjnτ )T(rΣjnτ )−1(rµjnτ )
io

Figure 3: Parameterization of rp(zn|k, θ) as in (19).

in (20), where

E[ZnZT
n ] = rΣnτ + rµnτ (rµnτ )T and

E[CTC] = Tr(Ki−1cov[Xn]KT
i−1 + cov[Un])

+ ‖E[Un]−Ki−1E[Xn]−mi−1‖2.

The gradient ∇J can also be calculated, where

∇J(θi−1) =
¸
k

γk−1
ķ

n=1

¸
j

(wj rwjnτ ) ·

»
N (zn; rµjnτ , rΣjnτ )∇ log πθi−1(zn) dzn.

The integral in this formulation can be evaluated using
sufficient statistics similar to those in (20). And here
we have made no assumptions as to the sign of wj .

5 Results on synthetic data

In this section we will empirically observe the behav-
ior of EM on Gaussian MDPs of the form introduced
in Section 4. The simplest way to test these meth-
ods involves randomly generating the parameters of
an MDP model and observing their convergence be-
havior. We generated transition parameters Aij and
Bij from a standard uniform and components of the
initial-state mean µ0 uniformly in the range [0, 5]; co-
variance terms for these models were initialized diag-
onally with standard-deviations uniformly sampled in
the range (0, 5]. The reward terms yj and Lj were
initialized similarly, whereas the “covariance” terms
Lj were initialized using a random SPD matrix with
eigenvectors uniformly distributed in (0, 5].

As an aside, it is also worth noting that although
we know the optimal policy will be deterministic,
by allowing the exploration term σ to vary we ob-
tain annealing-like behavior where local maxima are
smoothed out by a large initial value of σ. The plot
in Figure 4 contains the average convergence behavior
of the two EM variants on a series of 100 simple, 1-
dimensional MDPs (a 3-dimensional parameter space).
The trace of each optimization process is normalized
to be in the range [0, 1] and averaged across all models.
The first thing to note is the poor performance of the
standard EM algorithm as compared to the GEM algo-
rithm. This behavior results from the high proportion
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Figure 4: Convergence results on 100, randomly sam-
pled 1-dimensional MDPs (for which the policy space
is R3). For each algorithm we use the same tuning
parameters (i.e. learning rate, number of trajectories,
etc.) across different models. Also shown is the varia-
tion of this performance between different models.

of hidden data and is a situation that only worsens as
the dimensionality increases.

We also contrast the EM-based approach to policy
gradient methods including: (i) a gradient-free ap-
proach using finite-differences and common random
numbers for variance reduction (i.e. PEGASUS [12]);
(ii) stochastic gradient ascent using the vanilla policy-
gradient and the vanilla policy-gradient combined with
the optimal baseline; (iii) the natural actor-critic [14].
The convergence rates of these different algorithms
can also be seen in Figure 4. Given a well chosen
learning rate—and if the reward model induces a nice,
broad surface with well-defined gradients—the policy-
gradient methods perform quite well. It is worth not-
ing, however, that these algorithms are greatly af-
fected by the choice of learning rate. For most mod-
els it seemed possible to vary the learning rate of
the policy-gradient methods in order to achieve per-
formance comparable with GEM, but these learning
rates did not generalize across multiple models and re-
quired multiple runs to obtain. One other tradeoff,
however, is the time-complexity of these two classes
of algorithms. Each iteration of the policy gradient
algorithms runs in time O(pkmax) where p is the num-
ber of trajectories, and kmax is the time-horizon; the
EM-based algorithms are O(k2

max). As a result, even
accounting for the issue of learning rates, the fact that
these algorithms are linear in kmax may make them
seem more attractive for problems with a large time-
horizon.

The differences in performance, however, are much
greater when the reward function is rare, i.e. with sup-
port limited to only a small region of the state space.
Figure 5 shows the convergence behavior of the al-
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Figure 5: Convergence for 20 randomly selected MDPs
(3D states and 3D actions, with policy space being
R13). The policy gradient algorithms did not have
enough gradient information to make any progress in
all but a few of the models. The two plots on top show
the change in this behavior when the initial policy θ0
is initialized closer to the optimum.

gorithms on a set of larger, 3-dimensional state- and
action-space models (policies in these models are pa-
rameterized by θ ∈ R13). In particular we see that the
policy-gradient algorithms perform very poorly, and
are for the most part unable to make any progress
towards the goal. This is because in this space the
reward model is much more rare than in lower dimen-
sions, resulting in little-to-no gradient information ex-
cept in a small region around the optimum and what
little gradient exists is also likely washed out by the
noise in the system. The GEM algorithm does not suf-
fer from this problem not only because the iterations
are analytic, but also because of the backward mes-
sages. In contrast, the policy gradient algorithms only
perform a noisy forward pass, and so are much less
likely to get good information about a rare reward.
We also experimented with starting the initial value
of θ closer to the optimum, as can be seen from the
top plots of Figure 5, and we see that the the policy
gradients are able to make progress in this situation.
This is not, however, an effective strategy: in order
to find a closer value for θ0 we were forced to initially
solve the system using the GEM algorithm.

6 Robotic applications

Consider an n-jointed robotic system such that
q, q̇, q̈ ∈ Rn denote the joint angles, velocities, and
accelerations respectively. Most such systems can be
described by the rigid-body dynamics

q̈ = M−1(q)(τ − c(q, q̇)− g(q)), (22)

x
hole

q
1

q
2 q

3

end effector, f(q)

Figure 6: Model of a robot arm “peg-in-hole” task.

where M(q) denotes the inertia matrix, c(q, q̇) de-
notes the coriolis and centripetal forces, g(q) is the
force due to gravity, and τ the torques generated by
the motors. The objective is then to control the evo-
lution of the joints [q; q̇; q̈] ∈ R3n with actions given
by some sequence of torques τ ∈ Rn. It is easy to see
from (22), however, that the dynamics of this system
are highly non-linear and as a result we cannot apply
the techniques of Section 4. But the system can in-
stead be reformulated in a different action-space that
enforces linear dynamics.

A system can be called feedback-linearizable if there
exists some function pτ (q, q̇, q̈) that cancels the natu-
ral dynamics of the system in some local neighborhood
of (q, q̇, q̈), where q̈ is some desired joint-space accel-
eration. That is, we want a function pτ that locally
approximates the torque required to maintain some
acceleration q̈ from the state (q, q̇). In general this
function can be obtained via an estimate of the in-
verse dynamics [10]. Given the inverse dynamics, we
can control the evolution of states x = [q; q̇] via ac-
tions u = q̈ where the dynamics are linear.

While it is often possible to linearize the dynamics of
such a system, this can drastically change the reward
model necessary to induce some desired behavior. It
is also frequently the case that the reward model de-
pends on non-linear terms such as the end-effector po-
sition z = f(q). The function f denotes the forward-
kinematics of the system, and depends on parameters
such as the link lengths l and masses m [10]. Again, al-
though the reward may be a simple quadratic in z, this
will in general be non-linear in x and u. These are pre-
cisely the situations where the mixture-of-Gaussians
approach presented earlier should prove useful. On
one hand this formulation immediately allows us to
tackle multimodal regulation tasks whose rewards can
be specified in the form of Equation (16). Another
possibility, though, would be to fit the model either to
some known functional form or to data.
One simple application of this technique on a robotic
model is the “peg-in-hole” task, a depiction of which
is shown in Figure 6. The goal of this task is to move
the end-effector into some position xhole and regulate
about this point. We can specify the reward as

r(x, u) = exp
˘
−λ1‖f(q)− xhole‖2 − λ2‖q̇‖2 − λ3‖q̈‖2

¯
.

Rather than attempting to fit this entire model, we can
instead restrict ourselves to the reward-terms depend
on q. In this paper we fit the model using sparse,
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Figure 7: A trace of the optimization process for the
3-jointed robot arm model using the learned reward
(left) and a rare reward (right).

psuedo-input Gaussian Processes regression [17]. The
regression process results in a linear-combination of
Gaussians with parameters (wj ,mj , Sj) that can be
used to approximate the full reward model:

r(x, u) ≈
¸
j

wj N (q;mj , Sj) · exp
˘
−λ2‖q̇‖2 − λ3‖q̈‖2

¯
=
¸
j

wj N ([x;u]; yj , Lj),

for yj = [mj ; 0; 0] and Lj = blkdiag(Sj , 1
λ2
I, 1

λ3
I).

Given this information we can now perform policy
search over the 22-dimensional space of all policies.
Here we use a maximum time-horizon kmax = 100.
Figure 7 shows a trace of the resulting optimization
process; the resulting policy is successfully able to
move the arm’s end-effector to the position xhole and
from there regulates about this point. Here, although
not a simple problem, the reward is relatively broad,
and the natural actor-critic was able to do well. Due
to the analytic nature of the GEM approach, however,
we are still able to improve on this policy in the long-
run. The GEM algorithm actually converges quite
quickly, but each iteration is adversely affected by the
O(k2

max) time complexity. We also experimented with
the baseline-based approach on this problem, but were
unable to find a learning-rate that would allow this
method to converge. Based on these results we also ex-
perimented with putting a single, very peaked reward
at the resulting target joint angles. These results are
also shown in Figure 7, and we can see that the ana-
lytic GEM algorithm greatly outperforms the natural
actor-critic with rare rewards.

7 Conclusion

In this paper we derived an analytic approach to
control problems modeled with mixtures-of-Gaussians.

We have also shown that when the reward is rare, a
backwards pass is crucial to solving these problems.
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