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What is Monte Carlo?
History
Rejection sampling

|mportance sampling

Sequential Monte Carlo

Markov chain Monte Carlo
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L] Integration

Why Monte Carlo?

L


http://www.cs.ubc.ca/spider/poole/

Why Monte Carlo?

L] Integration

L] Optimisation
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Why Monte Carlo?

L] Integration
L] Optimisation

L] Simulation
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William Gosset (aka Student)

GUINNESS. PURE GENIUS.
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The Bomb and the ENIAC
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Metropolis
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Enrico Fermi and the FERMIAC
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History of Modern Monte Carlo

1949 Metropolis and Ulam publish the first paper.

1953 T
19/0 T
1984 T

ne Metropolis algorithm.

ne Metropolis-Hastings generalisation.

ne Gibbs sampler becomes popular.

1990 Statisticians learn about it.

Renal ssance.
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A Few Applications

Sophisticated statistical modelling.

Queries on the web.

Tracking.

Econometrics.

Probabilistic graphical models.
Control and Communications.

Computer graphics.
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Approximating probabilities
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Tracking
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Realistic graphics
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Integration and Probabilistic Inference

1. Normalisation:

PCYIX)P(X)
Jx PYIX)p(X)dX’

PXly) =
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Integration and Probabilistic Inference

1. Normalisation:

PCYIX)P(X)
Jx PYIX)p(x)dx’

2. Marginalisation:

PXly) =

PXly) = /z pP(X, zly)dz
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Integration and Probabilistic Inference

1. Normalisation:

P(YIX)P(X)
Jx PYIX)p(X)dX’

2. Marginalisation:

PXly) =

PX|y) = fz p(X, zly)dz

3. Expectation:

Eoxy) (F (X)) = fx f )p(x]y)dx
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Statistical Physics

Here, one needs to compute the partition function Z of a
system with states s and Hamiltonian E(S)

where k is Boltzmann’'s constant and T denotes the
temperature of the system. Summing over the large number
of possible configurations is prohibitively expensive.
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Monte Carlo Integration

If we have samples {xM}N . distributed according to p(x|y),
then

_ M Target distribution
B [0 Approximation
e Th. @ Samples

j ] ~

N
1 .
/ fOop(x|x)dx  isapproximated with = » “f(x")
N =1
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Monte Carlo Optimisation

L] Simple global optimisation.

X = argmax p(x(i))
x:i=1,....N
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Monte Carlo Optimisation

L] Simple global optimisation.

X = argmax p(x(i))
x:i=1,....N

[l Simulated annealing.
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L1 We only know how to sample from standard
distributions, e.g. uniform, multinomial, Gaussian and
Gamma distributions.
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Rgection Sampling

We can sample from a distribution p(x), which is known up to
a proportionality constant, by sampling from another
easy-to-sample proposal distribution g(x) that satisfies

P(X) < Mg(Xx), M < oo, asfollows:

Seti =1
Repeat until i = N

1. Sample xM~q (x) and u ~ Uq,1).
<)

p(x" 0 -
2. Ifu< Ma (<) then accept x*’ and increment the
counter i by 1. Otherwise, reject.
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|mportance Sampling

| (f) = /f(x)p(x)dx

_ PX)
= /f(x)q(x)q(x)dx

— / f (X)w(X)q(x)dx

By simulating N i.i.d. samples {x"}N , according to q(x) and
evaluating w(x®), we obtain

N
T (F) — (i) (i)
In (F) ;f(x )W(X )
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|mportance Sampling

ThelS estimator 1s unbiased, but has variance

varge (In (F)) = Equo (F200OWA(X)) — 14(F)

This variance is minimised when

[T ) [p(X)

T = 0 1poodx
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Adaptive Importance Sampling

Introduce parametric proposals and adapt the parameters so
as to minimise the variance

aw(x®, 6y
30k

N
LN 200y )
emzet—aﬁi;f xMw(x®, o)

where « isalearning rate and XV ~ q(x, 6).
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|mportance Sampling and Rare Events

PE) = / | E0p()dX

= / | e(X)W(X)q(X, 6)dX

The theory of large deviations tells us how to map this
problem to a constrained optimisation problem.
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