### Monte Carlo Methods

Nando de Freitas

University of British Columbia

### Overview

- Introduction
  - > What is Monte Carlo?
  - > History
  - Rejection sampling
  - > Importance sampling
- Sequential Monte Carlo
- Markov chain Monte Carlo

## Why Monte Carlo?

Integration



## Why Monte Carlo?

- > Integration
- Optimisation



## Why Monte Carlo?

- > Integration
- Optimisation
- **Simulation**



## William Gosset (aka Student)



## The Bomb and the ENIAC





## Metropolis, Ulam and von Neumann







### Enrico Fermi and the FERMIAC



### History of Modern Monte Carlo

- ➤ 1949 Metropolis and Ulam publish the first paper.
- ➤ 1953 The Metropolis algorithm.
- ➤ 1970 The Metropolis-Hastings generalisation.
- ➤ 1984 The Gibbs sampler becomes popular.
- > 1990 Statisticians learn about it.
- **Renaissance.**

### A Few Applications

- > Sophisticated statistical modelling.
- Queries on the web.
- Tracking.
- **Econometrics.**
- Probabilistic graphical models.
- ➤ Control and Communications.
- ➤ Computer graphics.



## Approximating probabilities

**₽** 

# Tracking

. .



## Realistic graphics

### Integration and Probabilistic Inference

#### 1. Normalisation:

$$p(x|y) = \frac{p(y|x)p(x)}{\int_X p(y|x')p(x')dx'}$$



### Integration and Probabilistic Inference

#### 1. Normalisation:

$$p(x|y) = \frac{p(y|x)p(x)}{\int_X p(y|x')p(x')dx'}$$

#### 2. Marginalisation:

$$p(x|y) = \int_{Z} p(x, z|y)dz$$



### Integration and Probabilistic Inference

#### 1. Normalisation:

$$p(x|y) = \frac{p(y|x)p(x)}{\int_X p(y|x')p(x')dx'}$$

2. Marginalisation:

$$p(x|y) = \int_{Z} p(x, z|y) dz$$

3. Expectation:

$$\mathbb{E}_{p(x|y)}(f(x)) = \int_{X} f(x)p(x|y)dx$$



## Statistical Physics

Here, one needs to compute the partition function Z of a system with states s and Hamiltonian E(s)

$$Z = \sum_{s} \exp\left[-\frac{E(s)}{kT}\right],$$

where k is Boltzmann's constant and T denotes the temperature of the system. Summing over the large number of possible configurations is prohibitively expensive.



### Monte Carlo Integration

If we have samples  $\{x^{(i)}\}_{i=1}^{N}$  distributed according to p(x|y), then



$$\int f(x)p(x|\mathbf{x})dx \quad \text{is approximated with} \quad \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$$



## Monte Carlo Optimisation

Simple global optimisation.

$$\widehat{x} = \underset{x^{(i)}; i=1,...,N}{\operatorname{arg max}} p\left(x^{(i)}\right)$$



### Monte Carlo Optimisation

Simple global optimisation.

$$\widehat{x} = \underset{x^{(i)}; i=1,...,N}{\operatorname{arg max}} p\left(x^{(i)}\right)$$

Simulated annealing.



### The catch

We only know how to sample from standard distributions, *e.g.* uniform, multinomial, Gaussian and Gamma distributions.



## Rejection Sampling

We can sample from a distribution p(x), which is known up to a proportionality constant, by sampling from another easy-to-sample proposal distribution q(x) that satisfies  $p(x) \le Mq(x), M < \infty$ , as follows:

Set 
$$i = 1$$

Repeat until i = N

- 1. Sample  $x^{(i)} \sim q(x)$  and  $u \sim U_{(0,1)}$ .
- 2. If  $u < \frac{p(x^{(i)})}{Mq(x^{(i)})}$  then accept  $x^{(i)}$  and increment the counter i by 1. Otherwise, reject.



## Importance Sampling

$$I(f) = \int f(x)p(x)dx$$

$$= \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$= \int f(x)w(x)q(x)dx$$

By simulating N i.i.d. samples  $\{x^{(i)}\}_{i=1}^N$  according to q(x) and evaluating  $w(x^{(i)})$ , we obtain

$$\widehat{I}_{N}(f) = \sum_{i=1}^{N} f\left(x^{(i)}\right) w\left(x^{(i)}\right)$$



### Importance Sampling

The IS estimator is unbiased, but has variance

$$\operatorname{var}_{q(x)}\left(\widehat{I}_{N}\left(f\right)\right) = \mathbb{E}_{q(x)}\left(f^{2}(x)w^{2}(x)\right) - I^{2}(f)$$

This variance is minimised when

$$q^{\star}(x) = \frac{|f(x)|p(x)}{\int |f(x)|p(x)dx}$$



## Adaptive Importance Sampling

Introduce parametric proposals and adapt the parameters so as to minimise the variance

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{N} \sum_{i=1}^{N} f^2(x^{(i)}) w(x^{(i)}, \theta_t) \frac{\partial w(x^{(i)}, \theta_t)}{\partial \theta_t}$$

where  $\alpha$  is a learning rate and  $x^{(i)} \sim q(x, \theta)$ .



### Importance Sampling and Rare Events







### Importance Sampling and Rare Events

$$P(E) = \int I_E(x)p(x)dx$$
$$= \int I_E(x)w(x)q(x,\theta^*)dx$$

The theory of large deviations tells us how to map this problem to a constrained optimisation problem.

