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Abstract

This paper has two goals. First, it expands the pre-
sentation of the marginal particle filter for SLAM
proposed recently ifMartinez-Cantiret al.,, 2004.

In particular, it presents detailed pseudo-code to en-
able practitioners to implement the algorithm eas-
ily. Second, it proposes an extension to the multi-
robot setting. In the marginal representation, the
robots share a common map and their locations are
independent given this map. The robot’s relative
locations with respect to each other are assumed
to be unknown. The multi-robot Marginal-Slam
algorithm estimates these transformations of coor-
dinates between the robots to produce a common
global map.
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on increasing paths was initially pointed out[iindrieu et
al., 1999.

The same concerns apply to the multi-robot setting. The
problem is further exacerbated since we typically do notkno
the relative position of one robot with respect to the othkrs
is important to estimate this quantity in order to produce a
global map. Some authors simplify the problem by only car-
rying out the map merging step when two robots make “eye-
contact’[Howard, 200%. In general, however, the only infor-
mation available is the data association between commen fea
tures in both maps. In this setting, some authors have adlopte
Monte-Carlo localization using joint path samplibigox et
al., 2004. However, as we have argued earlier, this approach
could easily result in degeneracy of the filter. We refer the
interested reader td-ox et al., 2004 for background on the
multi-robot SLAM problem.

This paper presents a marginal filtering approach, where
the Monte Carlo integration with respect to the robot state

For many years, Simultaneous Localization and MappindPose) happens in the marginal space. The apprtaels
(SLAM) has occupied the center-stage in robotics re-static maps as parametersvhich by necessity are learned
searcH Durrant-Whyte and Bailey, 2006; Thrun, 2§0Zhe  using maximum likelihood (ML) or maximum a posteriori in-
introduction of particle filters (PFs) gave researchers thderence. The idea of treating maps as parameters is not new.
power and flexibility to handle nonlinearity and non-Gaassi It has been central to the incremental ML metHddhrun,
distributions routinely{Fox et al, 2001. Moreover, it en- 1993. However, this method resorts to an ML estimate of
abled researchers to exploit conditional independence, uhe state and hence fails to manage the uncertainty in the ro-
ing the Rao-Blackwellized particle filtering (RBPF) varian ~ bot state properly, as elaborated[ihrun, 2002. A varia-
reduction technique, to obtain more efficient Monte Carlotion based on learning the distribution of the robot statek a
schemes. RBPFs were applied to dynamic mipsucet  using an ML estimator of the map as a function of the exist-
et al, 2004 and subsequently to static maps with the cel-ing andgrowing state trajectoriesvas proposed ifiThrun,
ebrated FastSLAM algorithniMontemerlo et al, 2003. 2001. This alternative unfortunately suffers from the same
The application of RBPF to dynamic maps is only sensi-consistency problems as FastSLAM. Various EM techniques
ble inasmuch as one has a good model to describe the evesing forward-backward state smoothing and map estimation
lution of the dynamicmap. On the other hand, the appli- in the M step have also been proposed; [§é¢&un, 2002 for
cation of RBPF to static maps has come into question. I& survey. However, these methods only apply when learn-
has become popular knowledge that the approach can dirg the map off-line. Moreover, it is only very recently that
verge [Bailey et al, 2006. In loose terms, learning static Particle smoothing has become feasiliéaaset al, 2004.
variables (the map) by conditioning on increasing hiswrie (As an aside, we note that two-filter smoothers do better than
of the state variables results in an accumulation of Montdorward-backward smoothers in the PF context.)

Carlo errors and explosion of variance. We will elaborate Inthe marginal approach to SLAM, we are able to compute
on this later on and present further arguments. Heuristic apthe filter derivative (derivative of the filtering distribai) on-
proaches to ameliorate the situatiBtachnisset al, 2005; line. This is extremely crucial for on-line static paranmegs-
Elinaset al,, 2004 have been proposed, but these do no solvdimation, but has only become possible very recently follow
the fundamental problem at hand. The problem of PF divering new advances in particle simulatibkilaaset al, 2005;
gence resulting from learning fixed variables by conditigni Poyadjiset al, 20054. Another advantage of working on the



marginal space is that we can assume independency of tlgwes to infinity. Unfortunately, one cannot easily sample
robot locations given the shared map. Therefore, an indeperirom the marginal distributiom(x;|y:.¢) directly. Instead,
dent sample set can be used for each robot; thereby reducinge draw particles fromp(xi.:|y1.:) and samplex,.,_; are
the dimensionality of the sampling space. That is, the filteignored. This is a valid way to draw samples from a marginal
derivatives and mapping updates are independent despite tHistribution and is at the core of most Monte Carlo stattic
fact that the map parameters are shared. methods. The unknown normalizing constant precludes us
Sections 2 and 3 of this paper are a review of the methodrom sampling directly from the posterior. Instead, we draw
proposed ifMartinez-Cantiret al, 2004. The new exten- samples from a proposal distributigrand weight the parti-
sion to multiple robots and new experiments are presented idles according to the following importance ratio:
Sections 4 and 5.
_ P(X1:t]y1:e)
. wt(xl:t) =
2 Problem Formulation q(x1:tly1:e)

We present a general formulation of the problem that is apThe proposal distribution is constructed sequentially

plicable to both feature-based maps and grid-based maps. A

more specific and detailed model appears in the experimen- q(X1:4ly1:6) = q(X1:e—1]y1:6-1)q(Xe|ye, Xe—1)

tal section. The unknown robot pose (location and heading)snq hence. the importance weights can be updated recur-
x, € X, is modelled as a Markov process of initial dis- siveiy in time

tribution p (x;) and transition priop (x| x;—1). The ob-

servationsy; € ), are assumed to be conditionally inde- p(X1:4|y1:t)

pendent given the proces$s; } and of marginal distribution wi(X1:e) = p(xl.t_l\yw—l)Q(Xt\Yt,Xt-1)wt71(x1:t71)'
po(y:|x:), whered is a vector describing the elements of the i ' (1)

map. Hence, the model consists of the following two distrib-
utions:

Given a set ofV particles{x(ﬁ?&,1 N |, we obtain a set of

particles{xg';)t}f\’:1 by sampling frorm(xt\yt,xii)l) and ap-
p(xe[xi-1) plying the weights of equation (1).
po(ye|xt) t> 1. The familiar particle filtering equations for this model are

We denote byxy,; £ {x1,...x;} andyis 2 {y1,....y:}, obtained by remarking that

respectively, the robot state and the observations up ®ttim t

and definey(x1|xo) £ p(x;) for notational convenience. p(X1elyr:e) o< p (X, yie) = [ [ pOyslxr)p(xklxi-1),
In this formulation, we have useflto describe the map k=1

only. Howeverf could be used to include other parameters 'r(‘]given which, equation (L) becomes

the transition and measurement models, as well as, to iaclu

data association varlablé§hrun, 2002. For simplicity of ) p(yt\xgl))p(XEZ)|X§Z_)1) )

presentation, we will assume that the associations are give w; o< @ @ Wy
Our objective is to compute sequentially in time fieer- q(xy [y x;24)

ing distributionp (x:|y1.:) and point estimates of the map This

S iterative scheme produces a weighted measure
(=0 WY wherew” = @V > @, and is known
3 Particle Methods as Sequential Importance Sampling (SIS).
. It has been provefDoucet, 1998thatthe variance of the
3.1 The Joint Path Spac-:e Approlach o ~importance weights in SIS increases over timi&is causes
In classical Rao-Blackwellized particle filtering, one firs most particles to have very small probability. A common
notes the following decomposition of the joint posterior:  strategy to solve thisegeneracyconsists of using a resam-
P(0, 1.4 |y12) = p(O]X1:0, Y1:0)D(X1t|y1:0)- pling step (SIR) after updating the weights to replicate sam

, ples with high probability and prune those with negligible
Consequently, given the state path;, we can solve for the \yeight[Doucetet al, 2001.

map¢ analytically. This leaves us with only having to carry  Thjs s the procedure in common use by practitioners. It

out particle filtering to compute the posterior distribatiof -5 pe deceptive: although only the statés being updated

the robot stat@(x.¢|y1:t). v every round, the algorithm is nonetheless importance sam-
If we had a set of samples (particleg {xgl)} from  Pling in the growing joint path spacet”.

) U Ji=1 Formally, the resampling step should be done along the full
p(x¢|y1:), we could approximate the distribution with the ath{:c(i) w1 Since dvnamic svstems forget the past
Monte Carlo estimate P Lt Wit Si=1 y y getine p

N exponentially fast, s<(e\)/eratl )authors carry out resamplireg o
~ 1 the marginal spacgz.”, w!” }¥ .. This would be fine if, for
d: L) = — 0 i (d g p "t , Wy i=1: X k '
pldxilyre) = 2 o (dx1), example, we were inteterested in tracking dynamic maps.
= ) ) ) . Static parameter estimation and model selection do not
whered, (. (dx;) denotes the delta Dirac function. This esti- necessarily exhibit the exponential forgetting behavigor
mate converges almost surely to the true expectatio’Vvas example, static maps depend on the whole state trajectory.



Resampling over the joint path space is guaranteed to déJsing equation (3) and Bayes rule, the unnormalized filterin
plete the past in finite time. Alternatively, resamplingrfro distribution can be expanded as follows:
the marginal space still leaves us with an accumulation of
Monte Carlo errors over time. Some implementations have ¢(X¢, Y1:1) = pe(ytIXt)/p(XtIth)pe(th|y1:t71)dxt71~
introduced artificial dynamics or Markov chain Monte Carlo
(MCMC) rejuvenation steps to reduce the severity of the . . . e
problem, but these approaches do not overcome the problefdnalytically, but since we have a particle approximation of
In conclusion, whether we resample or not, learning thep(X¢—1[y1:¢—1) (namely,{x\",, w{"}), we can approximate
map as a function of a growing path in Monte Carlo simula-(3) as the weighted kernel density estimate
tion is a bad idea. N 4
The same degeneracy problem arises if we try to obtain Polxelyre—1) = Y wipxelxi”)).
estimates of the filter derivativ@gp ¢ (x¢|y1.:) for recursive =1
(online) map estimation. To see this, Bjp g (x1.t|y1.) de-
note the gradient vector of the path posterior with respect th
the map. Then, we have

The integral in equation (3) is generally not solveable

While we are free to choose any proposal distribution that
as appropriate support, it is convenient to assume that the
marginal proposal takes a similar form, namely

Vopo(X1:t|y1:e) = MPH(XM\YM) - () (4)
R Po(X1:¢ly1:) R qo(x¢e|y1e) = Zwt]_1Q(9(Xt|Yt7XtJ_1)- ()
and, consequently the filter derivative, necessary fomenli i =t . : .
map learning, is given by: We can _ea5|ly dra\_l\{ partlcles_ from this pr_oposal using
multinomial or stratified sampling. Note the importance

Vepe(XLt|yl:t)p9(xl-t|y1-t)dxl~t . weights are now defined on the marginal space:
xt-1 Po(Xe|y1e) T ' @ w, = Po(Xe|yi:e)
This equation says that when using standard particle filters ) o qo(xely1:1)
to approximate the filter derivative we are implicitly caimg | he Filter Derivative

out importance Sampling on a vast growing space with pro_ln O_rdel’ to obtain the gradient Ve_CtOF W|th _I’eSpeCt to the map
posalp g (x1.|y1.:) and Weightwpe(xl:ﬂyl;)_ This should variables, we apply standard differentiation rules to equa

Po(X1:ely1:e tion 4, ielding:
be enough reason to call for a new épprloach. Yet, the problem @)y g

is even worse.

Vopo(xe|yi+) =

Voéo(Xs,¥1:
Vopo(xtlyit) = 0€0(Xt, y1:t)

The filter derivative is a signed-measure, and not a standard f §o(Xe,y1:0)dx;
probability measure. It consists of positive and negativecf [ Voo (xs,y1.e)dx;
tions over disjoint parts of the state space and it sums  zer = po(xe|y1) = -(6)
over the entire state space. A serious problem, when carryin J €0k, yu:e)dxy

out classical particle filtering to estimate this signecamee, ~ Similarly, using the expansions for the derivatives of ldbe
is that particles with positive and negative weights withcel ~ gradient of¢(-) can be written as follows:

each other, say, in parts of the space where the derivative ISV ¢, (x|y1.:) = po(ye|xi)Vologpe(ye|x:)
close to zero. This is wasteful and statistically harmfuge S
Figure 1 of[Poyadijiset al., 20054 for a beautiful depiction X /p(xt\xt_l)pg(xt_l|y1:t_1)dxt_1

of this problem.

The technlque_ _pres_ented in the following section over- _i_pa(yt|Xt)/p(xt|xt_1)V9p9(Xt_1|yl;t—1)dxt—1 (7)
comes these deficiencies.

. Note that the importance sampling process now happens in
3.2 The Marginal Space Approach the marginal spaceThe last integral in equation (4) can be
Marginal Particle Filtering expanded using the score identity:
To eliminate the problems discussed in the previous section
we will perform particle filteringdirectly on the marginal dis- /p(xt\xt_l)ve log[pa(xt—1]y1:e—1)lpo(Xe—1|y1e—1)dx; 1
tarll.t?uztg)gs;? (gé%djl);? ztltfazdoggk;);nzghoeaéo[r;g sa%acsig(,levaes St& That is we sample from the marginal filtering distribution
gin by noting that the predictive density can be obtained byand weight with3 = Vg log[pg(x;—1]y1.—1)]. Contrast this
marginalization: with equation (2). _ )

The other thing to note, as pointed out[Poyadiiset al.,
20054 is that the marginal filter derivative allows us to obtain
a particle approximation of the Hahn-Jordan decomposition
This implies that we can surmount the problem of particles
of opposite signs cancelling each other out in infinitesimal
neighborhoods of the state space. Once again we refer the
s Co(xe,y14) 4 reader to Figure 1 dPoyadjiset al., 20054 for an illustration
- [ Eo(xs,y1.4)dx, (4) of this phenomenon.

pe(xt‘y1:t71) :/p(Xt|Xt71)p9(Xt71|y1:t71)dxt71 (3

To simplify the exposition later on, we introduce the follow
ing notation[Poyadijiset al., 2005a:

pa(Xt|Y1:t)



Monte Carlo Implementation A detailed analysis is presented[ifadic and Doucet, 2005
We are now ready to present the particle algorithnjRify-  The only remaining detail is to describe the Monte Carlo ap-
adjiset al, 20054 for approximating the filter derivative ef- proximation of the gradient of the predictive distributiof
ficiently. Assume that at time — 1, we have the following can be derived as follows:

approximations of the filter and its gradient: —_
PP 9 Vopo(ye|yi:i—1)

S VelogBslyilyr1) = e v D)
Poxialyren) = D w80 (xi1) T
im1 ! _ S Voo (xe,y1:)dxy
P N ) . f&Ae(Xt,yu)dxt
Vepo(th\YLtfl) = ng_)ﬁt(_)ﬁxgi)l(xtfl)- N ~(j)
P b _ Zj:l Pt ®)
Then, we can sample from the proposal in equation (5) and Z;'Vzl @t

compute the new unnormalized importance weights: )
Pseudo-Code for Marginal Slam

) polyelxi”) PR wi? p(xi”x(”)) The Marginal-SLAM algorithm is depicted in Figure 1. Note
Wy = <D y1e) that it is linear in the number of features. It has@fN?)
. 4 qe{ b YLt 4 ~ complexity in terms of the number of samples, but this can be
L po(ylxi) i p(x” 7)) [V log p oy [xi”)+3;" ] reduced taO(N log N) using the fast multipole expansions
= and metric tree recursions proposedHKiaaset al., 2005.

ﬁl(gl

QG(X?) ly1:t) The marginal particle filter is an old idéBearnhead, 1998;
These weights lead to the following approximations: Pitt and Shephard, 1999Yet, because of its large computa-
L& tional cost, it was not fully explored until the introduatiof
N R 7@ fast methodgKlaaset al., 2004. When using the transition
S0 y1t) N ; e 5"5') (xt) prior as proposal, the marginal filter and classical patiiti
N ter are equivalentkhan et al, 2004, but this is no longer
— 1 ~(4) true when computing the derivative of the filter as outlined i
Voo (Xt y1:) = N 21 Pt 5x§” (x¢) [Poyadiiset al., 20051 and this paper.

Finally, normalizing the weight; and substituting the abov 4 Multi-robot Implementation

Monte Carlo estimates into the expression for the derigativ ) .
of pg in terms of¢ », we obtain: Hereinafter, we focus on feature-based representations be

cause our goal is to apply the method to visually guided mo-

N .
= _ () H(4) bile robots[Lowe, 2004; Bayet al, 2006; Newmaret al,
Vepo(xi, y1:e) = Z“’t B 0y (x¢) 2004. The robot motion model is based on simple differen-
=1 tial drive vehicle
where,
(%) > ~(45) X = X1 +dicos(y_1)
g _ _Pr (i) 225 Pt Y, = Y, d, si
wy By —G5 Wi e t -1+ dysin(yy1)
2 O 2 Ve = o1+,
On-Line Map Learning wherex; = [X,,Y;,1] denotes the robot pose and heading

Armed with Monte Carlo estimates of the filter derivative, gnqu, = [4,, o,] denotes the translation and rotation motion

we can now attack the problem of developing recursive mapommands (odometry) at tintawith corresponding Gaussian
estimators. Here, we choose to maximize the predictive likepigey, ~ N(0,05I), Whereor = [04,04]. The transition

lihood (also known as the innovations or evidence): model is Gaussian in terms af, but it involves a nonlinear

transformation betweemn, andx;. Specifically, it is given by
Po (Yt |Y1:t—1) =/ [Po (}’t ‘Xt )p(xt |Xt—1 )p 0 (Xt—l |Y1:t—1)dxt—1:t the f0”0W|ng expreSSK)n

To accomplish this, we adopt the following stochastic agpro 1 (de —dy)?  (ap — Gy)?
imation algorithm: p(x¢|xi—1,u1) = 5 5|
. 2TO 404 —20; —207%,
0r = 0r1+7Vologpo(yelyr:i—1) ©)
Provided that the step sizg satisfies standard stochastic ap- where
proximation criteria, see for examplBertsekas and Tsitsik- i = 22
lis, 1996; Spall, 200K it can be shown that, converges to 6= y/dz T dy
the set of global or local maxima &f6), where[Poyadjiset —d. si d
al. 20053 4, = arctan ( 2 sin(i_1) + dy §08(¢t1))
. dy cos(y—1) + dy sin(,_1)
10) = 1 1 L with d, = X; — X;—; andd, = Y; — Y;_1. In the work,
©) oo k +1 ; ogpo(yelysi—1) we will use this transition prior as the proposal distribati



Marginal-SLAM

posal
x;" Z wi”qo(xelye, x{)

e Fori=1,..., N, evaluate the importance weights

i N
s polyex) S wi (i)
© =
qo(x;” [y1:1)
o _ palyix”)
P = o
aalxly)

B STRININE
j=1

[Vologpa(y:lxi”) + 5]
e Normalise the importance weights

~(%)

(1) Wy
w; = —
Zj wij)
i "‘(J)
(1) () _ ﬁr(t ) w® Z
we B = —G) W ~(J)
Zj wy Z
e Update the map vector
Z ~(J)
O =01+ v ——— ~(J)
>, Wy

e Update the learning rate ;.

e Fori=1,..., N, sample the robot state from the pro-

Figure 1: The Marginal-SLAM algorithm at time

ture is:

(pr — ﬁt)z + (¢ — Qgt)2

(10)
—202 —202

p(yelxe) = exp

20,04

The overall observation likelihood is given by a product of
the individual likelihood terms. The gradient of the log-
likelihood can be obtained by simple differentiation:

Balpi=pi) _ Ay(de—¢r)

1 =
Velog(p(yelxe)) = — | A /5 Awf;jfa%t)
pe ‘ o2 + pog

(11)
One of the main SLAM difficulties is partial observability of
the parameters. The choice of learning rates affected by
this partial observability. In our case, we chose to impleime
separate learning rates for each landmark. Each individual
rate depends on the number of times its corresponding &atur
is observed. In addition, when there is no observation, the
likelihood function of the unseen features is assumed to be
uniform over the whole space, th&h log(p(y:|x:)) = 0.

4.1 Non-Stationarity and Estimate Recovery

Although our goal has been to develop a method for static
maps using decreasing learning rates, it is possible totadop
small constant learning rates to estimate time-varyingpar
meters (maps). This enables us to attack maps that contain
some moving parameters, such as chairs and dMadinez-
Cantinet al,, 2004.

The same strategy for dealing with non-stationarity can
also be adopted to correct for modelling errors. For exam-
ple, the ability to track moving features enables Marginal-
SLAM to recover from errors in data associatigmovided
that the correct correspondences are obtained in subsdquen
steps This is crucial because in the early steps of the al-
gorithm there aren’t enough observations to guaranteeagjlob
map consistency. Figure 6 in the experimental sectiors-illu
trates how Marginal-SLAM is robust with respect to reason-
able errors in matching.

We do this for both Marginal-SLAM and FastSLAM so as 4-2 Map Merging
to provide a fair comparison. One can do better however byDur goal is to merge the map estimates of each robot into

adopting approximations of the optimal proposal distiitout

a single global map. When the relative robot locations are

that account for the latest observations. Typical apprexim known, the problem is simple and reduces to standard mono-
tions of this type include the extended and unscented Kalmalithic SLAM. In practice, however, we do not know the trans-

filters.

We assume a simple range and bearing sepser [p;, o]

with a point feature detector:

pr = \JAZ+AZ
. aretan (—Am sin(yy) + A, cos(wt))
Ay cos(y) + Ay sin(yy)

whereA, = 60, — X, andA, = 0, — Y;, with [0,,0,] de-

formations of coordinates that would allow all the robots to
have the same reference frame for the global map. We must
therefore estimate the parameters of these linear tranafor
tions (rotation and translation) between the poses of the va
ous robots.

Some authors simplify this problem by only carrying
out the map merging step when two robots make “eye-
contact’[Howard, 200%. In general, however, the only infor-
mation available is the data association between commen fea
tures in both maps. In this setting, some authors have adlopte
Monte-Carlo localization using joint path samplifigox et

noting the feature location. The sensor has white Gaussiaal., 200d. However, as we have argued in earlier sections,

noisev; ~ N (0,01) in the measurement space, where-

this approach could easily result in degeneracy of the filter

[0,,04]. Hence, the observation likelihood for a single fea-We point out in passing that map merging is only one of the



Multi-robot Marginal-SLAM at step t
1. For each robot, compute their pose and map:

e Fori=1,..., N, particles

1. Sample new particles from the prior mixture prg
posal:

(a) Select mixture components using stratified 1
sampling:
7(2) 1

N
{X t—1, N} —
i=1

(b) Simulate the stochastic dynamics for each g

lected componeni(x¢|u;, x'\",):

[d7, @] = [de, o] + 0 5 0 ~ N(0,01)
X{0= X[+ di cos(9))
Y=Y/ 4 d? sin(y, %)
wii): ;(_Z)l + aii)

2. Evaluate the importance weights using the expre

sions in equations (9), (10) and (11) for the trans
tion prior (odometry), likelihood and gradient:

) YN
() ()
Xil1, Wey

i=1

@ = polyelxi”)
2 = w"Velogpe(ylxi”)

- N . . ) _ _
LPQ(yt|x,(51)) Zj:1 wi@l §i)1p(x§’) \u§1)7 X§Q1)
f N 7 - - -

Zj:l wil)lp(ng) |11£,1), ng,)l)

e Fori =1,..., N, normalise the importance weights:

~ i ~7)
@ Ggm By ) 2P
Wl =S om W B =S ~0)
Zj Wy Zj Wy Zj wy
e Update the individual map vector:
Z _ 5(]')
0 =01+ 'Ytji,f(j)
Zj Wy

e Update the learning rates.
2. If maps share features:

e Compute the relative linear transformation between t
coordinates of both robots.

e Transform all maps to a common reference frame usi
the estimated linear transformations.

e Place all transformed features in a common global m
All robots use this map at stept 1.

D
I

2S-
i

he

ap.

Here, we adopt standard vision algorithms to compute the
correspondences between featulgartley and Zisserman,
2000; Brown and Lowe, 2005 In order to simplify the pre-
sentation, let us for the time being consider only two robots
Ry andRs. When the two robots share a common set of map
features for which we have computed the correspondences,
we apply standard algorithms to estimate the transformatio
of coordinates between the posedirandR,. (We refer the
reader to eithefCastellanos and Tadd, 1999, Appendices A
and B for a detailed explanation ¢Brown and Lowe, 2005
for a brief yet comprehensive explanation on how to carry out
feature matching and estimation of transformations betwee
different reference frames.)

Once we know the transformation of coordinates, we map
Ry's pose to the reference frame Bf. We now have a com-
mon reference frame for the poses of both robots. We also
transform the estimates of the location of map featuresiso th
common reference frame. Finally we merge the estimates of
the map feature locations of both robots in order to produce
the common global map.

As mentioned previously in Section 4.1, we noticed that
Marginal-SLAM was able to converge empirically to the true
map, even in the presence of errors in the estimates of the
relative transformations.

The multi-robot Marginal-SLAM algorithm is detailed in
figure 2. For clarification, the pseudo-code is based on the
robot and sensor models presented in this paper, but it can be
easily modified to treat other models.

5 Experiments

In this preliminary work, experiments are based on simula-
tions in a controlled environment, where all the error searc
and data associations are known. This simulated environmen
allows us to carry out experiments for one and multiple rebot
using different sensor and motion noise models.

We first present a brief comparison of Marginal-SLAM and
FastSLAM. For a more detailed comparison, Belartinez-
Cantin et al, 2004. Figure 3 shows a comparison be-

tween the number of effective particl®g sy = 1/25\;1 w?
using Marginal-SLAM and FastSLAM. This quantity mea-
sures the degeneracy of sequential Monte Carlo algorithms.
To obtain a fair comparison, we use the same transition
prior p(x;|u:, x;—1) as the proposal distribution in both algo-
rithms. Clearly, the marginal particle filter reaches adyea
state, but FastSLAM loses particle diversity at a very fast.r
These results are based on the following parameter settings
L = 200,04 = 0.1m,0, = 0.5deg,0, = 0.025m,04 =
3deg, whereL denotes the number of landmarks.

In the multi-robot case, we used only 50 landmarks to en-
sure that we have a demanding testing scenario. That is, the

Figure 2: The multi-robot Marginal-SLAM algorithm at time robots share very few features in common. For simplicity, we
t. This version uses stratified resampling to sample from thé!se only two robots, but the algorithm extends naturally to
mixture proposal. The proposal in this case is simply a mix-more robots.

ture of transition priors.

components of the more general approach presentgebin

et al, 2004.

We assume that the initial relative robot location is un-
known. As shown in Figure 4, we have to learn the linear
transformation (rotation and translation) of coordindbes
tween the two robots using standard geometry. When the ro-
bots detect common features, the estimated linear tranafor
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quickly drops and FastSLAM fails to maintain particle disigy after 200 steps. The right plot is a zoomed view of thediad
plot.

Step 200 Step 250 Step 4536
o ©00000000CO0 g

. g?e?ﬁ?e?@@&owée***g******* wl 2*0*0*0*0*0*0*0*0*0*0****Zitz*o*o*é wl z’b’ébt’ct’ebbb’et;&aéﬁﬁﬁvt:
°r i&&%%%@&gﬁdﬁ******;@@;@;ﬂ* on 01030x01050204030:0, %0 0 0N RN o 8 S bbbbbobbOOOOOE OO0 0D O
q ©000¢ 4 s ¥ o s 8 b o o

as| & g 00" 4 sk O o, S & st b e .
q oF . o & b . o ©
G * O ox OF o ®

q o % o b ®
30F q & Ow% 30 or O* E 30 . ) o
@ & o® ‘:}O or O* 0*0* £ ° ® .
a o B2 251 o & o* 9, 251 P ° e
0 Q o g% o O ox O o P °
:Q :{ing o & o0, P ® 5
20 . @ myzo 20 o & 032, 200 o ® : .
a ¢ oo o * Q0 %« 5 b ° e
s 2 ® e o D8 * ® 2 e
o ° e e @ Q% - ol IS 5
or s ® ® e r s ¢ SNk b 0 . ®

@ » & o[£ Py ®
@ £ L e * b ]
SR T B R S e
@ 2 o 1/
@ ® @ O % £ ®

b 606060
ok Y Qsea@aasa-co:g@%f?Qese ° ol s °® Fo*O ol b bbb bbdbbe b '

0
N
3

-10 0 10 20 30

Figure 6: Loop closing in Multi-robot Marginal-SLAM with tavrobots. Despite the error introduced during map merging,
the robot is able to close the loop (left plot). Although thaprestimate after loop closing is still inaccurate (middiat)p
Marginal-SLAM is able to minimize the average error and @ge to the true solution. The right plot displays the estma
and true maps map after 10 loops. The blue stars represetruthemap and the black circles correspond to the most recent
map estimate. The red diamonds are the current observations

tion is used to represent both maps with respect to a commain the loop closing area for this robot. The convergence®f th
reference frame (robaR;’s position in our case). The two filter is empirically verified in this last experiment.

maps are then merged into a single global map. This is illus- We close this section by stating that Marginal-SLAM is
trated in Figure 5. In this figure, the estimated transfoiomat able to build accurate maps with large range and bearing
is biased, because the estimates of the maps have not camsise. However, very large sensor noise (for example sonar)
verged and the observations are very noisy. Therefore, theemands a high number of particles to ensure convergence.
map merging step introduces some error in the global magn addition, many update steps are required to obtain reason
However, as discussed in Section 4.1, Marginal-SLAM is ableable errors. We believe that data driven proposals and adap-
to recover from these errors. Figure 6 reveals ltwand R, tive stochastic approximation could be applied in the faitur
close the loop and keep updating the shared map, while rde confront this problem and speed up the convergence rate.
ducing the error introduce in the map merging step. The plots

are with respect td?;’s location. There is no need for ab- 6 Conclusions

solute location or reference information. The experiments and arguments in this paper[dfattinez-

Finally, Figure 7 shows the average mean Euclidean disCantinet al, 2004 indicate that Marginal-SLAM is an im-
tance of the landmarks estimate with respect to the true locgortant new direction in the design of particle methods for
tion after ten repetitions of the experiment. We use aroboce SLAM. It is clear that algorithms designed to work on the
tric representation based on the expectation of the firgttiob  marginal space behave better than the ones designed to work
location. The peaks represent points with high heading erroon the path space. They also lend themselves naturally to the
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Figure 4: In the first iteration of the multi-robot experimen Figure 5: Map merging in multi-robot Marginal-SLAM. The
the unknown relative position of the robots is modelled inunknown relative robot location is recovered using the es-
terms of an unknown linear transformation. The upper plofimated transformation between common features in both
represents the true robot locations. The lower plot shows thmaps. In the lower plot, maps have been merged. The re-
robot locations, while emphasizing that we don’t know thesulting map is biased because of the poor relative locagen e
linear transformation of coordinates at this early stagee T timate at this early stage. Again, the blue stars represent t
blue stars represent the true map and the black circles-corré'ieé map and the black circles correspond to the most recent
spond to the most recent map estimate. The red diamonds aifieap estimate. The red diamonds are the current observations
the current observations.
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