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Abstract

This paper has two goals. First, it expands the pre-
sentation of the marginal particle filter for SLAM
proposed recently in[Martinez-Cantinet al., 2006].
In particular, it presents detailed pseudo-code to en-
able practitioners to implement the algorithm eas-
ily. Second, it proposes an extension to the multi-
robot setting. In the marginal representation, the
robots share a common map and their locations are
independent given this map. The robot’s relative
locations with respect to each other are assumed
to be unknown. The multi-robot Marginal-Slam
algorithm estimates these transformations of coor-
dinates between the robots to produce a common
global map.

1 Introduction
For many years, Simultaneous Localization and Mapping
(SLAM) has occupied the center-stage in robotics re-
search[Durrant-Whyte and Bailey, 2006; Thrun, 2002]. The
introduction of particle filters (PFs) gave researchers the
power and flexibility to handle nonlinearity and non-Gaussian
distributions routinely[Fox et al., 2001]. Moreover, it en-
abled researchers to exploit conditional independence, us-
ing the Rao-Blackwellized particle filtering (RBPF) variance
reduction technique, to obtain more efficient Monte Carlo
schemes. RBPFs were applied to dynamic maps[Doucet
et al., 2000] and subsequently to static maps with the cel-
ebrated FastSLAM algorithm[Montemerlo et al., 2003].
The application of RBPF to dynamic maps is only sensi-
ble inasmuch as one has a good model to describe the evo-
lution of the dynamicmap. On the other hand, the appli-
cation of RBPF to static maps has come into question. It
has become popular knowledge that the approach can di-
verge [Bailey et al., 2006]. In loose terms, learning static
variables (the map) by conditioning on increasing histories
of the state variables results in an accumulation of Monte
Carlo errors and explosion of variance. We will elaborate
on this later on and present further arguments. Heuristic ap-
proaches to ameliorate the situation[Stachnisset al., 2005;
Elinaset al., 2006] have been proposed, but these do no solve
the fundamental problem at hand. The problem of PF diver-
gence resulting from learning fixed variables by conditioning

on increasing paths was initially pointed out in[Andrieu et
al., 1999].

The same concerns apply to the multi-robot setting. The
problem is further exacerbated since we typically do not know
the relative position of one robot with respect to the others. It
is important to estimate this quantity in order to produce a
global map. Some authors simplify the problem by only car-
rying out the map merging step when two robots make “eye-
contact”[Howard, 2005]. In general, however, the only infor-
mation available is the data association between common fea-
tures in both maps. In this setting, some authors have adopted
Monte-Carlo localization using joint path sampling[Fox et
al., 2006]. However, as we have argued earlier, this approach
could easily result in degeneracy of the filter. We refer the
interested reader to[Fox et al., 2006] for background on the
multi-robot SLAM problem.

This paper presents a marginal filtering approach, where
the Monte Carlo integration with respect to the robot state
(pose) happens in the marginal space. The approachtreats
static maps as parameters, which by necessity are learned
using maximum likelihood (ML) or maximum a posteriori in-
ference. The idea of treating maps as parameters is not new.
It has been central to the incremental ML method[Thrun,
1993]. However, this method resorts to an ML estimate of
the state and hence fails to manage the uncertainty in the ro-
bot state properly, as elaborated in[Thrun, 2002]. A varia-
tion based on learning the distribution of the robot states and
using an ML estimator of the map as a function of the exist-
ing andgrowing state trajectorieswas proposed in[Thrun,
2001]. This alternative unfortunately suffers from the same
consistency problems as FastSLAM. Various EM techniques
using forward-backward state smoothing and map estimation
in the M step have also been proposed; see[Thrun, 2002] for
a survey. However, these methods only apply when learn-
ing the map off-line. Moreover, it is only very recently that
particle smoothing has become feasible[Klaaset al., 2006].
(As an aside, we note that two-filter smoothers do better than
forward-backward smoothers in the PF context.)

In the marginal approach to SLAM, we are able to compute
the filter derivative (derivative of the filtering distribution) on-
line. This is extremely crucial for on-line static parameter es-
timation, but has only become possible very recently follow-
ing new advances in particle simulation[Klaaset al., 2005;
Poyadjiset al., 2005a]. Another advantage of working on the



marginal space is that we can assume independency of the
robot locations given the shared map. Therefore, an indepen-
dent sample set can be used for each robot; thereby reducing
the dimensionality of the sampling space. That is, the filter
derivatives and mapping updates are independent despite the
fact that the map parameters are shared.

Sections 2 and 3 of this paper are a review of the method
proposed in[Martinez-Cantinet al., 2006]. The new exten-
sion to multiple robots and new experiments are presented in
Sections 4 and 5.

2 Problem Formulation
We present a general formulation of the problem that is ap-
plicable to both feature-based maps and grid-based maps. A
more specific and detailed model appears in the experimen-
tal section. The unknown robot pose (location and heading),
xt ∈ X , is modelled as a Markov process of initial dis-
tribution p (x1) and transition priorp (xt|xt−1). The ob-
servations,yt ∈ Y, are assumed to be conditionally inde-
pendent given the process{xt} and of marginal distribution
p θ(yt|xt), whereθ is a vector describing the elements of the
map. Hence, the model consists of the following two distrib-
utions:

p(xt|xt−1)

p θ(yt|xt) t ≥ 1.

We denote byx1:t , {x1, ...,xt} andy1:t , {y1, ...,yt},
respectively, the robot state and the observations up to time t,
and definep(x1|x0) , p(x1) for notational convenience.

In this formulation, we have usedθ to describe the map
only. However,θ could be used to include other parameters in
the transition and measurement models, as well as, to include
data association variables[Thrun, 2002]. For simplicity of
presentation, we will assume that the associations are given.

Our objective is to compute sequentially in time thefilter-
ing distributionp (xt|y1:t) and point estimates of the map
θ.

3 Particle Methods
3.1 The Joint Path Space Approach
In classical Rao-Blackwellized particle filtering, one first
notes the following decomposition of the joint posterior:

p(θ,x1:t|y1:t) = p(θ|x1:t,y1:t)p(x1:t|y1:t).

Consequently, given the state pathx1:t, we can solve for the
mapθ analytically. This leaves us with only having to carry
out particle filtering to compute the posterior distribution of
the robot statep(x1:t|y1:t).

If we had a set of samples (orparticles)
{
x

(i)
t

}N

i=1
from

p(xt|y1:t), we could approximate the distribution with the
Monte Carlo estimate

p̂(dxt|y1:t) =
1

N

N∑

i=1

δ
x

(i)
t

(dxt),

whereδ
x

(i)
t

(dxt) denotes the delta Dirac function. This esti-
mate converges almost surely to the true expectation asN

goes to infinity. Unfortunately, one cannot easily sample
from the marginal distributionp(xt|y1:t) directly. Instead,
we draw particles fromp(x1:t|y1:t) and samplesx1:t−1 are
ignored. This is a valid way to draw samples from a marginal
distribution and is at the core of most Monte Carlo statistical
methods. The unknown normalizing constant precludes us
from sampling directly from the posterior. Instead, we draw
samples from a proposal distributionq and weight the parti-
cles according to the following importance ratio:

wt(x1:t) =
p(x1:t|y1:t)

q(x1:t|y1:t)

The proposal distribution is constructed sequentially

q(x1:t|y1:t) = q(x1:t−1|y1:t−1)q(xt|yt,xt−1)

and, hence, the importance weights can be updated recur-
sively in time

wt(x1:t) =
p(x1:t|y1:t)

p(x1:t−1|y1:t−1)q(xt|yt,xt−1)
wt−1(x1:t−1).

(1)
Given a set ofN particles{x(i)

1:t−1}
N
i=1, we obtain a set of

particles{x(i)
1:t}

N
i=1 by sampling fromq(xt|yt,x

(i)
t−1) and ap-

plying the weights of equation (1).
The familiar particle filtering equations for this model are

obtained by remarking that

p(x1:t|y1:t) ∝ p (x1:t,y1:t) =

t∏

k=1

p(yk|xk)p(xk|xk−1),

given which, equation (1) becomes

w̃
(i)
t ∝

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |yt,x

(i)
t−1)

w̃
(i)
t−1.

This iterative scheme produces a weighted measure
{x

(i)
1:t, w

(i)
t }N

i=1, wherew(i)
t = w̃

(i)
t /

∑
j w̃

(j)
t , and is known

as Sequential Importance Sampling (SIS).
It has been proved[Doucet, 1998] that the variance of the

importance weights in SIS increases over time. This causes
most particles to have very small probability. A common
strategy to solve thisdegeneracy, consists of using a resam-
pling step (SIR) after updating the weights to replicate sam-
ples with high probability and prune those with negligible
weight[Doucetet al., 2001].

This is the procedure in common use by practitioners. It
can be deceptive: although only the statext is being updated
every round, the algorithm is nonetheless importance sam-
pling in the growing joint path spaceX t.

Formally, the resampling step should be done along the full
path{x(i)

1:t, w
(i)
1:t}

N
i=1. Since dynamic systems forget the past

exponentially fast, several authors carry out resampling over
the marginal space{x(i)

t , w
(i)
t }N

i=1. This would be fine if, for
example, we were inteterested in tracking dynamic maps.

Static parameter estimation and model selection do not
necessarily exhibit the exponential forgetting behavior.For
example, static maps depend on the whole state trajectory.



Resampling over the joint path space is guaranteed to de-
plete the past in finite time. Alternatively, resampling from
the marginal space still leaves us with an accumulation of
Monte Carlo errors over time. Some implementations have
introduced artificial dynamics or Markov chain Monte Carlo
(MCMC) rejuvenation steps to reduce the severity of the
problem, but these approaches do not overcome the problem.

In conclusion, whether we resample or not, learning the
map as a function of a growing path in Monte Carlo simula-
tion is a bad idea.

The same degeneracy problem arises if we try to obtain
estimates of the filter derivative∇θp θ(xt|y1:t) for recursive
(online) map estimation. To see this, let∇θp θ(x1:t|y1:t) de-
note the gradient vector of the path posterior with respect to
the map. Then, we have

∇θp θ(x1:t|y1:t) =
∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
p θ(x1:t|y1:t)

and, consequently the filter derivative, necessary for online
map learning, is given by:

∇θp θ(xt|y1:t) =

∫

X t−1

∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
p θ(x1:t|y1:t)dx1:t−1

(2)
This equation says that when using standard particle filters
to approximate the filter derivative we are implicitly carrying
out importance sampling on a vast growing space with pro-
posalp θ(x1:t|y1:t) and weight∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
. This should

be enough reason to call for a new approach. Yet, the problem
is even worse.

The filter derivative is a signed-measure, and not a standard
probability measure. It consists of positive and negative func-
tions over disjoint parts of the state space and it sums to zero
over the entire state space. A serious problem, when carrying
out classical particle filtering to estimate this signed-measure,
is that particles with positive and negative weights will cancel
each other, say, in parts of the space where the derivative is
close to zero. This is wasteful and statistically harmful. See
Figure 1 of[Poyadjiset al., 2005a] for a beautiful depiction
of this problem.

The technique presented in the following section over-
comes these deficiencies.

3.2 The Marginal Space Approach
Marginal Particle Filtering
To eliminate the problems discussed in the previous section,
we will perform particle filteringdirectlyon the marginal dis-
tribution p(xt|y1:t) instead of on the joint space[Klaas et
al., 2005; Poyadjiset al., 2005b; 2005a]. To do so, we be-
gin by noting that the predictive density can be obtained by
marginalization:

p θ(xt|y1:t−1) =

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1 (3)

To simplify the exposition later on, we introduce the follow-
ing notation[Poyadjiset al., 2005a]:

p θ(xt|y1:t) ,
ξ θ(xt,y1:t)∫
ξ θ(xt,y1:t)dxt

(4)

Using equation (3) and Bayes rule, the unnormalized filtering
distribution can be expanded as follows:

ξ θ(xt,y1:t) = p θ(yt|xt)

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1.

The integral in equation (3) is generally not solveable
analytically, but since we have a particle approximation of
p(xt−1|y1:t−1) (namely,{x(i)

t−1, w
(i)
t−1}), we can approximate

(3) as the weighted kernel density estimate

p̂ θ(xt|y1:t−1) =

N∑

j=1

w
(j)
t−1p(xt|x

(j)
t−1).

While we are free to choose any proposal distribution that
has appropriate support, it is convenient to assume that the
marginal proposal takes a similar form, namely

q θ(xt|y1:t) =

N∑

j=1

w
(j)
t−1q θ(xt|yt,x

(j)
t−1). (5)

We can easily draw particles from this proposal using
multinomial or stratified sampling. Note the importance
weights are now defined on the marginal space:

wt =
p θ(xt|y1:t)

q θ(xt|y1:t)
.

The Filter Derivative
In order to obtain the gradient vector with respect to the map
variables, we apply standard differentiation rules to equa-
tion (4), yielding:

∇θp θ(xt|y1:t) =
∇θξ θ(xt,y1:t)∫
ξ θ(xt,y1:t)dxt

− p θ(xt|y1:t)

∫
∇θξ θ(xt,y1:t)dxt∫
ξ θ(xt,y1:t)dxt

. (6)

Similarly, using the expansions for the derivatives of logs, the
gradient ofξ(·) can be written as follows:

∇θξ θ(xt|y1:t) = p θ(yt|xt)∇θ log p θ(yt|xt)

×

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1

+p θ(yt|xt)

∫
p(xt|xt−1)∇θp θ(xt−1|y1:t−1)dxt−1 (7)

Note that the importance sampling process now happens in
the marginal space. The last integral in equation (4) can be
expanded using the score identity:∫
p(xt|xt−1)∇θ log[p θ(xt−1|y1:t−1)]p θ(xt−1|y1:t−1)dxt−1

That is we sample from the marginal filtering distribution
and weight withβ , ∇θ log[p θ(xt−1|y1:t−1)]. Contrast this
with equation (2).

The other thing to note, as pointed out in[Poyadjiset al.,
2005a] is that the marginal filter derivative allows us to obtain
a particle approximation of the Hahn-Jordan decomposition.
This implies that we can surmount the problem of particles
of opposite signs cancelling each other out in infinitesimal
neighborhoods of the state space. Once again we refer the
reader to Figure 1 of[Poyadjiset al., 2005a] for an illustration
of this phenomenon.



Monte Carlo Implementation
We are now ready to present the particle algorithm of[Poy-
adjiset al., 2005a] for approximating the filter derivative ef-
ficiently. Assume that at timet − 1, we have the following
approximations of the filter and its gradient:

p̂ θ(xt−1|y1:t−1) =
N∑

i=1

w
(i)
t−1δx(i)

t−1

(xt−1)

∇̂θp θ(xt−1|y1:t−1) =

N∑

i=1

w
(i)
t−1β

(i)
t−1δx(i)

t−1
(xt−1).

Then, we can sample from the proposal in equation (5) and
compute the new unnormalized importance weights:

w̃
(i)
t =

p θ(yt|x
(i)
t )

∑N
j=1 w

(j)
t−1p(x

(i)
t |x

(j)
t−1)

q θ(x
(i)
t |y1:t)

ρ̃
(i)
t =

p θ(yt|x
(i)
t )

∑
jw

(j)
t−1p(x

(i)
t |x

(j)
t−1)[∇θ log p θ(yt|x

(i)
t )+β

(j)
t−1]

q θ(x
(i)
t |y1:t)

These weights lead to the following approximations:

ξ̂ θ(xt,y1:t) =
1

N

N∑

i=1

w̃
(i)
t δ

x
(i)
t

(xt)

∇̂θξ θ(xt,y1:t) =
1

N

N∑

i=1

ρ̃
(i)
t δ

x
(i)
t

(xt)

Finally, normalizing the weights and substituting the above
Monte Carlo estimates into the expression for the derivative
of p θ in terms ofξ θ, we obtain:

∇̂θp θ(xt,y1:t) =

N∑

i=1

w
(i)
t β

(i)
t δ

x
(i)
t

(xt)

where,

w
(i)
t β

(i)
t =

ρ̃
(i)
t∑

j w̃
(j)
t

− w
(i)
t

∑
j ρ̃

(j)
t

∑
j w̃

(j)
t

On-Line Map Learning
Armed with Monte Carlo estimates of the filter derivative,
we can now attack the problem of developing recursive map
estimators. Here, we choose to maximize the predictive like-
lihood (also known as the innovations or evidence):

p θ(yt|y1:t−1) =

∫∫
p θ(yt|xt)p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1:t

To accomplish this, we adopt the following stochastic approx-
imation algorithm:

θt = θt−1 + γt∇θ log p̂ θ(yt|y1:t−1)

Provided that the step sizeγt satisfies standard stochastic ap-
proximation criteria, see for example[Bertsekas and Tsitsik-
lis, 1996; Spall, 2005], it can be shown thatθt converges to
the set of global or local maxima ofl(θ), where[Poyadjiset
al., 2005a]

l(θ) = lim
k→∞

1

k + 1

k∑

t=1

log p θ(yt|y1:t−1)

A detailed analysis is presented in[Tadic and Doucet, 2005].
The only remaining detail is to describe the Monte Carlo ap-
proximation of the gradient of the predictive distribution. It
can be derived as follows:

∇θ log p̂ θ(yt|y1:t−1) =
∇̂θp θ(yt|y1:t−1)

p̂ θ(yt|y1:t−1)

=

∫
∇̂θξ θ(xt,y1:t)dxt∫
ξ̂ θ(xt,y1:t)dxt

=

∑N
j=1 ρ̃

(j)
t

∑N
j=1 w̃

(j)
t

(8)

Pseudo-Code for Marginal Slam
The Marginal-SLAM algorithm is depicted in Figure 1. Note
that it is linear in the number of features. It has anO(N2)
complexity in terms of the number of samples, but this can be
reduced toO(N logN) using the fast multipole expansions
and metric tree recursions proposed in[Klaaset al., 2005].

The marginal particle filter is an old idea[Fearnhead, 1998;
Pitt and Shephard, 1999]. Yet, because of its large computa-
tional cost, it was not fully explored until the introduction of
fast methods[Klaaset al., 2005]. When using the transition
prior as proposal, the marginal filter and classical particle fil-
ter are equivalent[Khan et al., 2004], but this is no longer
true when computing the derivative of the filter as outlined in
[Poyadjiset al., 2005b] and this paper.

4 Multi-robot Implementation
Hereinafter, we focus on feature-based representations be-
cause our goal is to apply the method to visually guided mo-
bile robots[Lowe, 2004; Bayet al., 2006; Newmanet al.,
2006]. The robot motion model is based on simple differen-
tial drive vehicle

Xt = Xt−1 + dt cos(ψt−1)

Yt = Yt−1 + dt sin(ψt−1)

ψt = ψt−1 + αt,

wherext = [Xt, Yt, ψt] denotes the robot pose and heading
andut = [dt, αt] denotes the translation and rotation motion
commands (odometry) at timet with corresponding Gaussian
noisevt ∼ N (0, σRI), whereσR = [σd, σα]. The transition
model is Gaussian in terms ofut, but it involves a nonlinear
transformation betweenut andxt. Specifically, it is given by
the following expression:

p(xt|xt−1,ut) =
1

2πσdσα

exp

[
(dt − d̂t)

2

−2σ2
d

+
(αt − α̂t)

2

−2σ2
α

]
,

(9)
where

d̂t =
√
d2

x + d2
y

α̂t = arctan

(
−dx sin(ψt−1) + dy cos(ψt−1)

dx cos(ψt−1) + dy sin(ψt−1)

)
.

with dx = Xt − Xt−1 anddy = Yt − Yt−1. In the work,
we will use this transition prior as the proposal distribution.



Marginal-SLAM

• For i = 1, ..., N , sample the robot state from the pro-
posal

x
(i)
t ∼

NX
j=1

w
(j)
t−1qθ(xt|yt,x

(j)
t−1)

• For i = 1, ..., N , evaluate the importance weightsew(i)
t =

p θ(yt|x
(i)
t )
PN

j=1 w
(j)
t−1p(x

(i)
t |x

(j)
t−1)

q θ(x
(i)
t |y1:t)eρ(i)

t =
p θ(yt|x

(i)
t )

q θ(x
(i)
t |y1:t)

·

·
NX

j=1

w
(j)
t−1p(x

(i)
t |x

(j)
t−1) ·

· [∇θ log p θ(yt|x
(i)
t ) + β

(j)
t−1]

• Normalise the importance weights

w
(i)
t =

ew(i)
tP

j
ew(j)

t

w
(i)
t β

(i)
t =

eρ(i)
tP

j
ew(j)

t

− w(i)
t

P
j
eρ(j)

tP
j
ew(j)

t

• Update the map vector

θt = θt−1 + γt

P
j
eρ(j)

tP
j
ew(j)

t

• Update the learning rate γt.

Figure 1: The Marginal-SLAM algorithm at timet.

We do this for both Marginal-SLAM and FastSLAM so as
to provide a fair comparison. One can do better however by
adopting approximations of the optimal proposal distribution
that account for the latest observations. Typical approxima-
tions of this type include the extended and unscented Kalman
filters.

We assume a simple range and bearing sensoryt = [ρt, φt]
with a point feature detector:

ρ̂t =
√

∆2
x + ∆2

y

φ̂t = arctan

(
−∆x sin(ψt) + ∆y cos(ψt)

∆x cos(ψt) + ∆y sin(ψt)

)
,

where∆x = θx − Xt and∆y = θy − Yt, with [θx, θy] de-
noting the feature location. The sensor has white Gaussian
noisevt ∼ N (0, σI) in the measurement space, whereσ =
[σρ, σφ]. Hence, the observation likelihood for a single fea-

ture is:

p(yt|xt) =
1

2πσρσφ

exp

[
(ρt − ρ̂t)

2

−2σ2
ρ

+
(φt − φ̂t)

2

−2σ2
φ

]
(10)

The overall observation likelihood is given by a product of
the individual likelihood terms. The gradient of the log-
likelihood can be obtained by simple differentiation:

∇θ log(p(yt|xt)) =
1

ρt




∆x(ρt−ρ̂t)
σ2

ρ
− ∆y(φt−φ̂t)

ρtσ
2
φ

∆y(ρt−ρ̂t)
σ2

ρ
+ ∆x(φt−φ̂t)

ρtσ
2
φ


 .

(11)
One of the main SLAM difficulties is partial observability of
the parameters. The choice of learning ratesγt is affected by
this partial observability. In our case, we chose to implement
separate learning rates for each landmark. Each individual
rate depends on the number of times its corresponding feature
is observed. In addition, when there is no observation, the
likelihood function of the unseen features is assumed to be
uniform over the whole space, then∇θ log(p(yt|xt)) = 0.

4.1 Non-Stationarity and Estimate Recovery
Although our goal has been to develop a method for static
maps using decreasing learning rates, it is possible to adopt
small constant learning rates to estimate time-varying para-
meters (maps). This enables us to attack maps that contain
some moving parameters, such as chairs and doors[Martinez-
Cantinet al., 2006].

The same strategy for dealing with non-stationarity can
also be adopted to correct for modelling errors. For exam-
ple, the ability to track moving features enables Marginal-
SLAM to recover from errors in data association,provided
that the correct correspondences are obtained in subsequent
steps. This is crucial because in the early steps of the al-
gorithm there aren’t enough observations to guarantee global
map consistency. Figure 6 in the experimental section, illus-
trates how Marginal-SLAM is robust with respect to reason-
able errors in matching.

4.2 Map Merging
Our goal is to merge the map estimates of each robot into
a single global map. When the relative robot locations are
known, the problem is simple and reduces to standard mono-
lithic SLAM. In practice, however, we do not know the trans-
formations of coordinates that would allow all the robots to
have the same reference frame for the global map. We must
therefore estimate the parameters of these linear transforma-
tions (rotation and translation) between the poses of the vari-
ous robots.

Some authors simplify this problem by only carrying
out the map merging step when two robots make “eye-
contact”[Howard, 2005]. In general, however, the only infor-
mation available is the data association between common fea-
tures in both maps. In this setting, some authors have adopted
Monte-Carlo localization using joint path sampling[Fox et
al., 2006]. However, as we have argued in earlier sections,
this approach could easily result in degeneracy of the filter.
We point out in passing that map merging is only one of the



Multi-robot Marginal-SLAM at step t

1. For each robot, compute their pose and map:

• For i = 1, ..., N , particles

1. Sample new particles from the prior mixture pro-
posal:

(a) Select mixture components using stratified re-
sampling:�
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2. Evaluate the importance weights using the expres-
sions in equations (9), (10) and (11) for the transi-
tion prior (odometry), likelihood and gradient:ew(i)
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• For i = 1, ..., N , normalise the importance weights:
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• Update the individual map vector:

θt = θt−1 + γt

P
j
eρ(j)

tP
j
ew(j)

t

• Update the learning ratesγt.

2. If maps share features:

• Compute the relative linear transformation between the
coordinates of both robots.

• Transform all maps to a common reference frame using
the estimated linear transformations.

• Place all transformed features in a common global map.
All robots use this map at stept+ 1.

Figure 2: The multi-robot Marginal-SLAM algorithm at time
t. This version uses stratified resampling to sample from the
mixture proposal. The proposal in this case is simply a mix-
ture of transition priors.

components of the more general approach presented in[Fox
et al., 2006].

Here, we adopt standard vision algorithms to compute the
correspondences between features[Hartley and Zisserman,
2000; Brown and Lowe, 2005]. In order to simplify the pre-
sentation, let us for the time being consider only two robots:
R1 andR2. When the two robots share a common set of map
features for which we have computed the correspondences,
we apply standard algorithms to estimate the transformation
of coordinates between the poses orR1 andR2. (We refer the
reader to either[Castellanos and Tardós, 1999, Appendices A
and B] for a detailed explanation or[Brown and Lowe, 2005]
for a brief yet comprehensive explanation on how to carry out
feature matching and estimation of transformations between
different reference frames.)

Once we know the transformation of coordinates, we map
R2’s pose to the reference frame ofR1. We now have a com-
mon reference frame for the poses of both robots. We also
transform the estimates of the location of map features to this
common reference frame. Finally we merge the estimates of
the map feature locations of both robots in order to produce
the common global map.

As mentioned previously in Section 4.1, we noticed that
Marginal-SLAM was able to converge empirically to the true
map, even in the presence of errors in the estimates of the
relative transformations.

The multi-robot Marginal-SLAM algorithm is detailed in
figure 2. For clarification, the pseudo-code is based on the
robot and sensor models presented in this paper, but it can be
easily modified to treat other models.

5 Experiments
In this preliminary work, experiments are based on simula-
tions in a controlled environment, where all the error sources
and data associations are known. This simulated environment
allows us to carry out experiments for one and multiple robots
using different sensor and motion noise models.

We first present a brief comparison of Marginal-SLAM and
FastSLAM. For a more detailed comparison, see[Martinez-
Cantin et al., 2006]. Figure 3 shows a comparison be-
tween the number of effective particlesNeff = 1/

∑N
i=1 w

2
i

using Marginal-SLAM and FastSLAM. This quantity mea-
sures the degeneracy of sequential Monte Carlo algorithms.
To obtain a fair comparison, we use the same transition
prior p(xt|ut,xt−1) as the proposal distribution in both algo-
rithms. Clearly, the marginal particle filter reaches a steady
state, but FastSLAM loses particle diversity at a very fast rate.
These results are based on the following parameter settings:
L = 200, σd = 0.1m,σα = 0.5deg, σρ = 0.025m,σφ =
3deg, whereL denotes the number of landmarks.

In the multi-robot case, we used only 50 landmarks to en-
sure that we have a demanding testing scenario. That is, the
robots share very few features in common. For simplicity, we
use only two robots, but the algorithm extends naturally to
more robots.

We assume that the initial relative robot location is un-
known. As shown in Figure 4, we have to learn the linear
transformation (rotation and translation) of coordinatesbe-
tween the two robots using standard geometry. When the ro-
bots detect common features, the estimated linear transforma-



0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

Steps

E
ff

e
ct

iv
e

 p
a

rt
ic

le
s

MarginalSLAM

0 500 1000 1500 2000 2500 3000
−20

0

20

40

60

80

100

120

Steps

E
ff

ic
ie

n
t 

p
a

rt
ic

le
s

FastSLAM

0 50 100 150 200 250 300
−20

0

20

40

60

80

100

120

Steps

E
ff

ic
ie

n
t 

p
a

rt
ic

le
s

FastSLAM

First steps inset

t

Figure 3: Average number of effective particlesNeff , with corresponding confidence intervals, for 25 simulations. The number
of particles is 200 in both cases. The left plot corresponds to Marginal-SLAM, where the filter achieves a steady state with
a 25% effective number of particles. The middle plot shows the same experiment for FastSLAM. The effective sample size
quickly drops and FastSLAM fails to maintain particle diversity after 200 steps. The right plot is a zoomed view of the middle
plot.
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Figure 6: Loop closing in Multi-robot Marginal-SLAM with two robots. Despite the error introduced during map merging,
the robot is able to close the loop (left plot). Although the map estimate after loop closing is still inaccurate (middle plot),
Marginal-SLAM is able to minimize the average error and converge to the true solution. The right plot displays the estimate
and true maps map after 10 loops. The blue stars represent thetrue map and the black circles correspond to the most recent
map estimate. The red diamonds are the current observations.

tion is used to represent both maps with respect to a common
reference frame (robotR1’s position in our case). The two
maps are then merged into a single global map. This is illus-
trated in Figure 5. In this figure, the estimated transformation
is biased, because the estimates of the maps have not con-
verged and the observations are very noisy. Therefore, the
map merging step introduces some error in the global map.
However, as discussed in Section 4.1, Marginal-SLAM is able
to recover from these errors. Figure 6 reveals howR1 andR2

close the loop and keep updating the shared map, while re-
ducing the error introduce in the map merging step. The plots
are with respect toR1’s location. There is no need for ab-
solute location or reference information.

Finally, Figure 7 shows the average mean Euclidean dis-
tance of the landmarks estimate with respect to the true loca-
tion after ten repetitions of the experiment. We use a robocen-
tric representation based on the expectation of the first robot’s
location. The peaks represent points with high heading error

in the loop closing area for this robot. The convergence of the
filter is empirically verified in this last experiment.

We close this section by stating that Marginal-SLAM is
able to build accurate maps with large range and bearing
noise. However, very large sensor noise (for example sonar)
demands a high number of particles to ensure convergence.
In addition, many update steps are required to obtain reason-
able errors. We believe that data driven proposals and adap-
tive stochastic approximation could be applied in the future
to confront this problem and speed up the convergence rate.

6 Conclusions
The experiments and arguments in this paper and[Martinez-
Cantinet al., 2006] indicate that Marginal-SLAM is an im-
portant new direction in the design of particle methods for
SLAM. It is clear that algorithms designed to work on the
marginal space behave better than the ones designed to work
on the path space. They also lend themselves naturally to the
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Figure 4: In the first iteration of the multi-robot experiment,
the unknown relative position of the robots is modelled in
terms of an unknown linear transformation. The upper plot
represents the true robot locations. The lower plot shows the
robot locations, while emphasizing that we don’t know the
linear transformation of coordinates at this early stage. The
blue stars represent the true map and the black circles corre-
spond to the most recent map estimate. The red diamonds are
the current observations.

global map estimation in the multi-robot setting.

Marginal-SLAM seems to be robust with respect to errors
introduced during the map joining step. This is important
as computer vision matching algorithms are not perfect. We
are planning to deploy Marginal-SLAM using the visual fea-
tures and matching procedure presented in[Brown and Lowe,
2005]. This will enable us to obtain 3D maps of the environ-
ment.

In future work, we plan to adopt better proposal distrib-
utions using extended and unscented Kalman filters and to
implement Hessian updates so as to potentially maximize the
predictive likelihood more efficiently.
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Figure 5: Map merging in multi-robot Marginal-SLAM. The
unknown relative robot location is recovered using the es-
timated transformation between common features in both
maps. In the lower plot, maps have been merged. The re-
sulting map is biased because of the poor relative location es-
timate at this early stage. Again, the blue stars represent the
true map and the black circles correspond to the most recent
map estimate. The red diamonds are the current observations.
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