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Abstract— We propose efficient MCMC tree samplers for
random fields and factor graphs. Our tree sampling approach
combines elements of Monte Carlo simulation as well as exact
belief propagation. It requires that the graph be partitioned
into trees first. The partition can be generated by hand or
automatically using a greedy graph algorithm. The tree partitions
allow us to perform exact inference on each tree. This enables us
to implement efficient Rao-Blackwellised blocked Gibbs samplers,
where each tree is sampled by conditioning on the other trees.
We use information theory tools to rank MCMC algorithms
corresponding to different partitioning schemes.

I. INTRODUCTION

Undirected probabilistic graphical models play an important
role in spatial statistics, artificial intelligence and computer
vision (Besag 1986, Besag 1974, Kumar and Hebert 2003, Li
2001, McCallum, Rohanimanesh and Sutton 2003). Existing
MCMC algorithms for undirected models tend to be slow
and fail to exploit the structural properties of the undirected
graphical model (Geman and Geman 1984, Swendsen and
Wang 1987). In contrast, variational approximation schemes
(Yedidia, Freeman and Weiss 2000, Wainwright, Jaakkola and
Willsky 2003) do exploit structural properties, but may often
fail to converge.

In this paper, we extend the Rao-Blackwellised MCMC
algorithm for undirected probabilistic graphical models that
we proposed in (Hamze and de Freitas 2004) to factor graphs.
This algorithm exploits the property that graphical models can
be split into disjoint trees as shown in Figure 1. We use greedy
search algorithms to find these partitions (see (Rivasseau 2005)
for details), but in some simple cases such partitions are
obvious. For example, a Markov random field (MRF) can be
split into two disjoint trees. By carrying out exact inference
on each tree, it is possible to sample half of the MRF nodes
in a single MCMC step. Our theorem will show that this tree
sampling method outperforms simpler MCMC schemes. This
theoretical result is mirrored by our numerical examples.

II. TREE SAMPLING FOR MRFS
A. MODEL SPECIFICATION

For simplicity of presentation, we focus on the square-lattice
MREF but remind the reader that our algorithms apply to other
graphs, such as factor graphs and conditional random fields
(CRFs). We specify the MRF distribution on a graph G(V, £),
with edges £ and N nodes V as shown in Figure 2 left. The

Fig. 1.  Tree partitions of two Markov random fields (top) and a factor
graph (bottom) generated automatically. One can carry out exact inference on
each tree. We adopt a Rao-Blacwellised Gibbs sampler where one samples
one-tree-at-a-time efficiently.

clear nodes correspond to the unknown discrete states x €
{1,...,n}, while the attached black nodes represent discrete
observations y € {1,...,n,} (they could also be Gaussian).
According to this graph, the MRF distribution factorizes into
a product of local Markov positive potentials:

P(Xl:nyyl:n) = % H ¢(Xi>Yi) H ¢(Xi7Xj)

i€V (i,5)€E

where Z is the partition function, ¢(-) denotes the observation
potentials and 1) () denotes the pair-wise interaction potentials.
Our goal is to estimate the marginal posterior distributions
(beliefs) p(x;|y1.n) and expectations of functions over these
distributions.

As shown in Figure 2, an MRF can be partitioned into two
disjoint trees. The loops in the MRF model cause it to be
analytically intractable. However, belief propagation on each
of the two trees is a tractable problem. This idea leads naturally
to an algorithm that combines analytical and sampling steps.
In particular if we have a sample of one of the trees, we can
use belief propagation to compute the exact distribution of
the other tree by conditioning on this sample. The algorithm



Fig. 2. Atleft, illustration of a partitioned MRF; nodes in the shaded and white regions
are A, Ao respectively, with the small black circles representing observations. At right,
depiction of the two-stage sampler; sampled values are large black circles. Conditioned
on A1, the variables in Ay form a tree. Using this two-stage scheme, Rao-Blackwellised
estimators are guaranteed to outperform naive ones.

therefore alternates between computing the trees and sampling
them, as shown in Figure 2. Drawing samples in blocks (trees
in this case) is well known to have benefits over algorithms
that sample one node at-a-time. In Section III we will prove the
domination of estimators using this tree sampling algorithm in
comparison to other sampling schemes. Before this, we present
the algorithm in more detail.

B. TREE SAMPLING ALGORITHM

Consider the 5x5 MRF graph shown in Figure 2 at left. We
have partitioned the nodes into two disjoint sets. Denote the
set of indices of the shaded nodes as A; and those of the
unshaded nodes as Ao, where of course, A1 UAs = I, the set
of all node indices. Let the variables indexed by these nodes
be Xa, 2 {X;|j € A1} and Xa, 2 {X,]j € As}. If we can
sample from the conditional distributions:

p(XA1|XA2,y) 1
(1

p(XAz |XA1 ) y)

then we have a two-stage Gibbs sampler called data augmenta-
tion, which has powerful structural properties that the general
Gibbs sampler lacks (Liu 2001, Robert and Casella 1999).
In particular, the two Markov chains in data augmentation

exhibit the interleaving property: X(At)z is independent of xg;l)

given xg)l; and (XXZ,XX;U) and (xgl,xg) are identically
distributed under stationarity.

Conditioned on set X a,, the variables X, form an acyclic
graph whose marginals are readily computed using belief
propagation (Pearl 1987). This enables us to sample effi-
ciently from the joint conditionals in (1) using the Forward
Filtering/Backward Sampling algorithm (FF/BS) (Carter and
Kohn 1994, Wilkinson and Yeung 2001). The details of our
extension of FF/BS to factor graphs appear in (Rivasseau
2005). The sampling cycle is graphically shown in Figure 2,
which makes it explicit that sampled values act as additional
“evidence” to the complementary graph. The algorithm is
shown in pseudocode in Figure 3.

In the pseudocode, we are adopting Rao-Blackwellised es-

Tree sampling

Initialize

e Set all sums S; =0
o Partition the set of all nodes I into disjoint, tree-connected sets
{A1, Az}
(0)

e for ¢ € I, randomly initialize X

fort=1...T

o foric Aq
— Apply belief propagation to compute the smoothing densities
t—1 . (t—1) :
p(xi\xAz ,¥), treating the samples A as evidence.
— Compute the expectations f(i.g,the Rao-Blackwellised estima-
-1 -1
tor ER(X)x% oyl =y h(Xop(eilx%, Y, y)
- Set §; — S; +E[A(X;)x% "V, y]
Sample XXZ ~ p(xa, \XX;I), y) using Forward filtering
/ Backward sampling.
o fori € Ag
Apply belief propagation to compute the smoothing densities
p(xi\xAl ,y), treating the samples A(lt) as evidence.
— Compute the expectationgfor the Rao-Blackwellised estima-
t
tor ER(X)|xW vl = 5, h(Xi)p(xilxX),y)
Set S; « Si +E[h(X:)|x) ]
Sample X(At; ~ p(xa, \xx)l,y) using Forward filtering /
Backward sampling.

Output Rao-Blackwellised estimates

o 3pp(h(X:)) = %S

Fig. 3.

Tree sampling.

Fig. 4. Alternative partitions of an MRF corresponding to data augmentation methods.
Again, the shaded nodes are called X . For the leftmost scheme, the elements of
A are separated by As, and so the conditional p(za; [TA,,¥y) is a product of the
conditionals of each node. In the rightmost partition there are no unconnected subregions
of either partition. The middle case is intermediate.

timators (Casella and Robert 1996, Gelfand and Smith 1990):

T
a(h(X0) = 7 S EIRCK), y)

where 1" denotes the number of samples and , in this case,
i € Ay. The alternative Monte Carlo histogram estimator is:

1 T
Se(h(X0) = 2 3 h(X)

Both estimators converge to E(h(X;), (Liu, Wong and Kong
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Fig. 5. Illustration of chessboard (top) and fully-connected (bottom) partitioning of
variables for a 2x2 MRF. In the top and bottom schemes, the shaded nodes delineate
variable sets Vo and Wy respectively. The chains beside each show the spatiotemporal
dependencies of variables in the resulting Markov chains for each scheme. Theory and
experiment reveal that the fully-connected scheme yields a superior RB estimator.

1994) have proved that sampling from data augmentation is
a sufficient condition for the Rao-Blackwellised estimator to
dominate(have lower variance.) To obtain estimates of the
node beliefs, we can simply choose h to be the set indicator
function, yielding:

T

N 1

Pxily) = 7 Y plxilxi).y)
t=1

where k = 1if ¢ € Ay or 2 if i € A;. Rao-Blackwellised
estimators are more expensive per sample as they require
exact computation of the expectations. In practice, the large
gain in variance reduction typically offsets this extra cost. Our
experiments will show this in our setting.

As shown in Figure 4, we can partition MRFs into trees in
several different ways. (We address the theoretical advantages
of these and other partitioning schemes in Section III.) Thus
it is possible at each iteration of the MCMC sampler to
draw a uniform random variable and choose a particular
tree partition. In particular, if we consider two different tree
sampling algorithms with Markov transition kernels K; and
K and stationary distribution p(x|y), then the mixture kernel
Kpiz = aKy + (1 — @) Ks, with 0 < a < 1, also converges
to p(x|y) (Tierney 1994).

ITII. INFORMATION THEORETIC ANALYSIS

The question of what partitions should be adopted must
be addressed. As shown in Figure 4 one could partition the
graph using trees or, as proposed in (Greenwood, McKeague
and Wefelmeyer 1996), using a checker board. In this section,
we will show that our tree partitioning scheme results in lower
dependency between Markov chain samples.

The question of comparing different univariate sampling
schemes has been addressed in (Liu et al. 1994) using the
variance decomposition lemma and functional analysis of
Markov chains. Our problem is more complex in that the

samples are multivariate and conform to a specific graph
structure.

Our comparison will focus the checker-board (CB) and two-
tree sampling (TS) schemes shown in Figure 4. We define the
index sets of the fully-connected and checker-board schemes
to be (Wy,Ws), (Vi,V2) respectively (again, W7 U Wy =
Vi U Ve = I). Figure 5 shows a very simple 2x2 MRF
sampled using the TS and CB schemes. Adjacent to each is a
corresponding “unrolled” sampling sequence showing the spa-
tiotemporal relationships of the sampled variables in the usual
manner of graphical models. In the ovals are the variables
corresponding to the sampling blocks; the superscripts denote
the time indices of the samples. Arrows indicate the sampling
direction and reveal the “parent/child” temporal dependencies
between variables. The undirected links in the ovals of the
TS case reflect the spatial dependence of the variables in the
blocks. In this example, our samples are multivariate. Hence,
we need to compare functions of all the variables in a block,
say h(x1,x4) in TS against h(zxq,z2) in CB sampling. Here,
there is the additional difficulty that the variables are shuffled
to different times in the sampling schemes (e.g. x4 in TS does
not match x5 in CB directly).

Instead of using correlations as a measure of dependency
between samples (the standard approach in statistics), we
propose the use of information theory measures to assess this
dependency. The following theorem demonstrates how we can
use information theory measures of dependency to compare
MCMC sampling schemes.

Theorem 1: Under the stationary distribution, the mutual
information between samples generated from CB is larger than
that between samples from TS:

ICB(X(t+1);X(t)) > [TS(X(tJrl);X(t))
Proof: See appendix.
That is, by integrating out variables in long chains (trees),
we reduce the dependency between the Markov chain samples.

IV. NUMERICAL RESULTS
A. IMAGE RECONSTRUCTION

Our first experiment was the classic “reconstruction” of
states from noisy observations. We used a 50 x50 pixel “patch”
image (consisting of shaded, rectangular regions) with an
isotropic 11-state prior model. Noise was added by randomly
flipping states. Each sampler was run for 1000 iterations on
each of 50 separate trials. An important aspect to assess is
the sensitivity of the estimator, that is, is our good estimate a
matter of luck or is it robust over trials? The plot in Figure 6
shows the median reconstruction error as a function of compu-
tation time showing that the gain is considerable. In fact in this
case, the checker-board (CB) sampler is hardly distinguishable
from plain Gibbs (PG), again a predictable consequence of
the theoretical considerations. For larger graphs, far from
expecting any kind of breakdown of these results, we predict
that the difference will become even sharper. The error bars
show that the low reconstruction error of our sampler is highly
robust across trials compared to that of PG and CB. We also
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Fig. 6. Reconstruction error against computation time for a 50 x 50 pixel 11-state
image corrupted with noise. The 3 plots show the median reconstruction error history of
PG, CB and our sampler over 50 runs. The bars represent the standard deviation of the
error across these runs. Clearly, aside from achieving a lower error, our sampler is more
robust, that is, consistently achieves these results. The gain of CB over PG in this case
is negligible, again predictable from the theory of Rao-Blackwellisation

ran loopy on these images, which took about the same number
of iterations (around 30 passes through the MRF) to achieve
the same error reduction as our method, suggesting that our
method might be computationally comparable to loopy but
guaranteed to converge. It is very important to realize that
the gain is not merely due to “blocking”; the CB sampler is
also a 2-block Rao-Blackwellised scheme, but does not take
advantage of RB as well.

B. OMR DATABASE

Our second experiment was conducted on the QMR (Quick
Medical Reference) factor graph. Here, the interaction poten-
tials, ¢, represent the priors over binary random variables
(corresponding to diseases), and v represent the potentials
associated with positive findings. Note that in factor graphs,
the spatial priors are no longer defined only over pairs of
variables as in the simple MRF, but over graph cliques C;:

dilxe) =1— [ (1—ao) [[A-a)™ |, @

JEC;

where g;0 and the g;; are the parameters of the model. The
parameter ¢;o represents the /eak probability for the finding
1. This is the probability that the finding is caused by other
diseases than the ones included in the model. ¢;; is the
probability that disease j, if present, will cause a positive
finding <.

The model in our experiment consisted of 40 diseases and
14 potentials (findings). We kept the model relatively small
so that we could carry out exact inference for evaluation
purposes. A Bernoulli prior was chosen for every disease,
with a parameter of 0.01 for the presence of the disease. We

used 15 runs in each experiment. For each run, we chose the
graph parameters uniformly at random between 0 and 1, and
generated the QMR graph randomly. We obtained the true
marginals (posteriors) of the variables via the junction tree
algorithm. Figure 7 shows that the tree sampling algorithm
outperforms naive methods such as Gibbs Sampling and loopy
belief propagation (LBP).
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Fig. 7.  Performance comparison on a medium-leak QMR network. All
algorithms obtain the correct marginals (even if LBP and Gibbs have much
higher errors than tree sampling). Tree sampler is clearly the fastest mixing
method.

V. CONCLUSION

We presented efficient MCMC algorithms for pairwise undi-
rected graphical models and factor graphs. We showed that
information theory measures can be applied to the analysis of
MCMC algorithms. In particular, we showed that the mutual
information between samples from CB is higher than the one
for TS. Our experimental results confirmed these assertions.
More experiments, details of implementation of the forward
filtering backward sampling algorithms for undirected Markov
models and factor graphs and, finally, details of implemen-
tation of the greedy algorithms for finding automatic tree
partitions appear in (Rivasseau 2005).

APPENDIX: PROOF OF THEOREM 1

We show this for the small 2x2 MRF shown in Figure 5;
the extension to larger MRF's is inductive. The proof depends
on the decomposition of the transition kernel in both cases;
it will turn out that we can do a term-by-term analysis of the
resulting decompositions and show that some of the TS terms
are CB terms with additional integration.

Let the respective joint/conditional probabilities under CB
and TS be pcp and prgs. For the CB sampler, the one-step



transition kernel of the joint chain is:

Kep(®, W) = pop(atM el <°>>pCB<x;>|x1 ,z3")
x pep(as et 2N pep @M |z, 2(”)

while for the TS sampler, the kernel is:

eW) =prs(@V|zy”, o )prs(as” e, )

x prs(@y’ e, i )pr z$)

KTS ($(0)7
prs(ai”]ay”

Using the reversibility of the augmentation chains, the
assumption of stationarity, and the spatial properties of the
graph, we see that all of the above conditional distributions
are conditionals from T, the stationary distribution. For

example pCB(xél)|xgl),xil)) = mw(x2|x1,24). Also note that

pCB( (1)‘x§1()1)x511())) _(O? ( ] )|x(1) : ()1) :(1) (1.(21|)1’1’x4)
and pop(ay vy’ af)) = pr 5(334 | ) =
m(x4|ze, 23). By applylng the spatial Markov property

in “reverse,”

1 0 0 0 0
m(af ey, 2y") = w(ai 2y 2, )
and
1 1 1 1
m(alef”, 28) = ey 2t 2, )

If we define the following functions (for conciseness domain
variables are omitted.)

o= w2, ()
jo = w(adlztV “’)
j3 = ﬂ( |x(1) (1) ())
ja o= mw(x (1)|x(0) (0))
and:
- / (@), ¢)dz?
ke = m(ay))zV, ()
ky = /jsﬁ( D130 5 (10) 45O
ke = m(z{ |, 2l))

then we can write the transition kernel of CB as:

Kep(@®,2W) = jij2j3ja €)]
and that of TS as:
Krg(@®, 20 = kikokaks “

Now let the conditional entropies be

Hrs 2 HXG, XX, X0) = Hrs (XD x0)
A
Hes 2 H(XP,X (1)|X<o> X0 = Hep(XO|X©)

Using the expressions for Kop(x©, M) Kpg(z(© 2(1)
and the fact that conditioning reduces entropy, it follows that

Hrs > Heop

Under stationarity, the marginal entropy H(X®) of both
schemes is the same. Hence by the decomposition of mutual
information in terms of marginal and conditional entropies,
we have our final result:

ICB(X(I);X(O)) > ITs(X(l);X(O))
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