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Abstract

This paper addresses the problem of sampling
from binary distributions with constraints.
In particular, it proposes an MCMC method
to draw samples from a distribution of the set
of all states at a specified distance from some
reference state. For example, when the refer-
ence state is the vector of zeros, the algorithm
can draw samples from a binary distribution
with a constraint on the number of active
variables, say the number of 1’s. We motivate
the need for this algorithm with examples
from statistical physics and probabilistic in-
ference. Unlike previous algorithms proposed
to sample from binary distributions with
these constraints, the new algorithm allows
for large moves in state space and tends to
propose them such that they are energetically
favourable. The algorithm is demonstrated
on three Boltzmann machines of varying dif-
ficulty: A ferromagnetic Ising model (with
positive potentials), a restricted Boltzmann
machine with learned Gabor-like filters as po-
tentials, and a challenging three-dimensional
spin-glass (with positive and negative poten-
tials).

1 INTRODUCTION

Sampling from binary distributions with constraints
on the number of active variables is a problem of in-
terest in statistical physics and probabilistic inference.
In physics, the problem arises when adopting binary
probabilistic graphical models, known as conserved-
order-parameter Ising models, to study the properties
of lattice gases (Newman & Barkema 1999, Chapter
5). Here, fixing the number of active variables has the
physical meaning of holding the magnetization of the
system constant.

In probabilistic inference, constraints on the number of
active binary hidden variables in a Boltzmann machine
are often imposed to either control the complexity of
the coding scheme, regularize the problem or simulate
the effect of lateral inhibition in hierarchical models
of perception (Kappen 1995). In the model adopted
by Kappen the latent variables are independent of each
other given the observed variables and, hence, the con-
straint on the latent variables introduces interaction
among them. This type of restricted Boltzmann ma-
chine, albeit without this precise interaction term, has
become a popular building block in deep architectures
(Hinton & Salakhutdinov 2006).

There is also a remarkably large number of other
statistical inference problems, where one can apply
Rao-Blackwellization (Hamze & de Freitas 2004) to
integrate out all continuous variables and end up
with a discrete distribution. Examples include topic
modeling and Dirichlet processes (Blei, Ng & Jordan
2003), Bayesian variable selection (Tham, Doucet &
Kotagiri 2002), mixture models (Liu, Zhang, Palumbo
& Lawrence 2003) and multiple instance learning
(Kück & de Freitas 2005). In these domains, it might
sometimes be desirable to impose constraints on the
number of active topics, clusters, variables or models.
If such an avenue is pursued, then the MCMC method
proposed in this paper would provide a reasonable in-
ference engine for these constrained discrete sampling
problems.

This paper presents a specialized algorithm for equilib-
rium Monte Carlo sampling of binary-valued systems
with constraints. In particular, the proposed MCMC
method draws samples from a distribution defined on
the set of all states at a specified distance from a refer-
ence state. The method allows for large moves in the
state space. That is, many bits are flipped in a single
MCMC step.

Despite a great deal of interest on this problem in
statistical physics, by far the most popular exist-
ing algorithms are based on single pair-wise bit ex-



change moves. Examples include the Kawasaki al-
gorithm and the improved Metropolis bit-swap algo-
rithm (Kawasaki 1966, Newman & Barkema 1999)
that we discuss in the next section. As stated in
(Newman & Barkema 1999, Section 5.1), neither
single-variable-flip algorithms nor cluster algorithms,
such as Swendsen-Wang, can be easily applied to
conserved-order-parameter Ising models because it is
hard to ensure that the magnetization constraint is
not violated. The MCMC moves proposed here will
allow for many, as opposed to a single pair of, vari-
ables to change at each iteration without violating the
magnetization constraint.

We should also point out that sequential Monte Carlo
(SMC) methods, such as hot coupling and annealed
importance sampling, have been successfully used to
sample from Boltzmann machines without constraints
(Hamze & de Freitas 2005, Salakhutdinov & Murray
2008). Since such samplers often use an MCMC kernel
as proposal distribution, the MCMC sampler proposed
in this paper would be useful to extend the domain
of application of these SMC methods to Boltzmann
machines with constraints of the type considered here.

2 PRELIMINARIES

Consider a binary-valued system defined on the state
space S , {0, 1}M , i.e. consisting of M variables each
of which can be 0 or 1. The probability of a state x is
given by the Boltzmann distribution:

π(x) =
1

Z(β)
e−βE(x)

where β is an inverse temperature. An instance of
such a system is the ubiquitous Ising model of sta-
tistical physics, also called a Boltzmann machine by
the machine learning community (Ackley, Hinton &
Sejnowski 1985).

Consider a particular state c, which for now can be
considered arbitrary. We are interested in drawing
samples from the set of all states at Hamming Distance
n from c, which we call Sn(c). For example if M = 3
and c = [1, 1, 1], then S0(c) = {[1, 1, 1]}, S1(c) =
{[0, 1, 1], [1, 0, 1], [1, 1, 0]}, etc. Clearly, |Sn(c)| =

(

M

n

)

.
The partition function on Sn(c) is given by:

Zn(c) =
∑

x∈Sn(c)

e−βE(x)

S and Zn are understood to always depend on c, so
we can drop the explicit dependence in our notation.
The restricted distribution we want to sample from is
given by

πn(x) ,

{

1
Zn

e−βE(x) x ∈ Sn

0 otherwise
(1)

In particular, when c is the vector of zeros, the distri-
bution πn(x) has n variables set to 1. This corresponds
to the constant magnetization constraint mentioned
in the introduction, but it is clear that the proposed
sampling method applies to more general constraints.
Nonetheless, in all subsequent examples in the algo-
rithm description, we will assume for notational sim-
plicity that c is the vector of zeros.

We define the sets of bits in state x that agree and
disagree with those of c: let P(x) = {i|xi = ci} and
N (x) = {i|xi 6= ci}. Thus, P(x) ∪ N (x) = {1, . . .M}
and P(x) ∩ N (x) = ∅. Another useful definition is
that of the flip operator, which simply inverts bit i in
a state, F (x, i) , (x1, . . . , x̄i, . . . , xM ). We will rely
heavily on this notation when defining the proposal
moves.

In order to sample from the distribution (1), a pos-
sible Metropolis-type algorithm is to propose to flip,
with uniform probability, a bit from the set and un-
set bits respectively, and accept the move (swap)
with the Metropolis accept rule. For example, if
x = [1, 1, 1, 0, 0, 0, 0], we may propose state x′ =
[1, 1, 0, 0, 1, 0, 0], and accept it with probability:

α = min(1, e−β(E(x′)−E(x)))

This is a popular sampling scheme for these models
(Newman & Barkema 1999, Hadjiagapiou, Malakis &
Martinos 2006). While in principle correct, it can eas-
ily suffer from the usual troubles that beset MCMC
algorithms, namely the issue of local minima. The set
of allowable moves from x define its state space neigh-
bors, and if all such neighbors have a higher energy
than that of x, then at low temperatures (large β) the
sampler will remain at x for a long time. In the next
section we detail a potential way around this issue.

3 INTRACLUSTER MOVES

We begin by describing our novel Monte Carlo move
that allows for large changes of state and tends to pro-
pose them such that they are energetically favourable.
Subsequently, we show that the resultant algorithm
does in fact satisfy the theoretical requirements that
ensure correct asymptotic sampling. We call the pro-
posal the intracluster move (IM) as it generates states
within the “cluster” Sn. The name should not, how-
ever, generate confusion with “cluster-flipping” algo-
rithms, such as that of Swendsen and Wang (Swendsen
& Wang 1987, Gore & Jerrum 1997), which are unre-
lated.

Suppose that we have a state x0 on Sn. It is possible
to imagine taking special types of biased self-avoiding
walk (SAW) of length k in the state space, in other
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Figure 1: A visual illustration of the move process for up/down SAWs of length 3. The arrows represent
the allowable moves from a state at that step; the red arrow shows the actual move taken in this example.
From the system at state x0 = [1, 1, 1, 1, 1, 0, 0] on S5, the upward SAW begins. Bit 4 of x0 is flipped to
yield state u1 = [1, 1, 1, 0, 1, 0, 0]; the process is repeated until state y = [1, 0, 1, 0, 0, 0, 0] on S2 is reached.
From there, the downward SAW considers and selects sequences of states in an analogous manner (in this case,
d1 = [1, 0, 1, 0, 1, 0, 0] is visited from y, etc.) until the final state x1 = [1, 1, 1, 0, 1, 0, 1] is reached. The sequence
of states taken by the upward and downward SAWs are, respectively, σ = [4, 2, 5] and ρ = [5, 7, 2].

words sequences of states such that no state recurs in
the sequence. The first type we consider, where states
on sets {Sn−1 . . .Sn−k} are visited consecutively, is re-
ferred to as an upward SAW; the analogous case, where
the walk is set to visit states on {Sn+1 . . .Sn+k}, is
called a downward SAW. In the ensuing description,
we shall detail a joint move consisting of an upward
SAW followed by a downward one; the case of a move
with the two SAW types appearing in reverse order is
straightforward once the principles are understood.

From x0, the n single-flip neighbors on Sn−1 are spec-
ified by the set P(x0). We may select a bit to flip,
which we call σ1, from this set in an energy-biased
manner as follows:

fup(σ1 = i|x0) =

{

e−γE(F (x0,i))
∑

j∈P(x0) e−γE(F (x0,j)) i ∈ P(x0)

0 otherwise
(2)

The larger the value of the simulation parameter γ,
the more likely the proposal (2) is to sample the lower-
energy neighbors of x0; conversely if it is zero, a neigh-
bor on Sn−1 is selected completely at random. In prin-
ciple, the value of γ will be seen to be arbitrary; indeed
it can even be different at each step of the SAW. This
will be discussed further in Section 4, where we set γ
to be close to the inverse temperature β.

From the resultant state on Sn−1, the process can be
repeated to yield a state on Sn−2 and so on until some
state y on set Sn−k is visited via the sequence of bit
flips σ , (σ1, . . . σk). At that point the upward SAW
is said to be terminated, and the downward SAW may

begin. In a completely analogous manner to the up-
ward case, we may select a neighbor of y on Sn−k+1

by flipping bit ρ1 of N (y) according to:

fdown(ρ1 = i|y) =

{

e−γE(F (y,i))
∑

j∈N(y) e−γE(F (y,j)) i ∈ N (y)

0 otherwise

and so forth to yield the point x1 back on Sn via the
flip sequence ρ , (ρ1, . . . ρk). Again the value of γ is
tunable as it was in the upward case. The state y is
said to be a bridge point on Sn−k of x0 and x1.

The sequence of states visited in the up and down
processes are denoted, respectively, by (u0, . . . ,uk)
and (d0, . . . ,dk), with u0 = x0, uk = d0 = y, and
dk = x1. The set of bits that can flip with nonzero
probability are called the allowable moves at each step.
A diagrammatic depiction of the up/down SAWs is
shown in Figure 1. At this point it should be clear
why the term “self-avoiding” aptly describes the up
and down processes; by construction a state can never
occur twice at any stage within each process, though
of course in principle one that has been visited by the
upward SAW can appear in the downward SAW.

The motivation behind using such an energy-biased
scheme is that it may allow for large changes of con-
figuration and yet select final states that are “typical”
of the system’s target distribution. One can imagine,
say, to uniformly perturb a large number of bits, but
this is likely to yield states of high energy, and an
MCMC algorithm will be extremely unlikely to accept
the move at low temperatures. We will have more to



say about the choice of the biasing parameter γ as well
as the related issue of the SAW lengths in Section 4.

Note that by multiplying the SAW flipping probabil-
ities, we can straightforwardly obtain the probability
of moving from state x0 to x1 along the two SAWs
(σ, ρ), which we call f(x1, σ, ρ|x0):

f(x1, σ, ρ|x0) , δx1 [F (x0, σ, ρ)]

M
∏

i=1

fup(σi|ui−1)

×
M
∏

i=1

fdown(ρi|di−1) (3)

The delta function simply enforces the fact that the
final state x1 must result from the sequence of flips
in (σ, ρ) from x0. The set of {σ, ρ} such that
f(x1, σ, ρ|x0) > 0 are termed the allowable SAWs be-
tween x0 and x1.

Ideally, to implement a Metropolis-Hastings (MH) al-
gorithm using the SAW proposal, we would like to eval-
uate the marginal probability of proposing x1 from x0,
which we call f(x1|x0), so that the move would be ac-
cepted with the usual MH ratio:

αmar(x0,x1) , min

(

1,
πn(x1)f(x0|x1)

πn(x0)f(x1|x0)

)

Unfortunately, for all but small values of the walk
lengths k, marginalization of the proposal is in-
tractable due to the potentially massive number of al-
lowable SAWs between the two states.

To assist in illustrating our solution to this, we recall
that a sufficient condition for a Markov transition ker-
nel K to have target πn as its stationary distribution
is detailed balance:

πn(x0)K(x1|x0) = πn(x1)K(x0|x1) (4)

One special case is obtained if we use the marginalized
proposal f(x1|x0) followed by the MH accept rule,

Kmar(x1|x0) , f(x1|x0)αmar(x0,x1) (5)

As we cannot compute f(x1|x0), we shall use a kernel
K(x1, σ, ρ|x0) defined on the joint space of SAWs and
states, and show that with some care, detailed balance
(4) can still hold marginally. It will be clear, though
that this does not mean that the resultant marginal
kernel K(x1|x0) is the same as that in (5) obtained
using MH acceptance on the marginal proposal .

Define the sequence reversal operator R(σ) to simply
return a sequence consisting of the elements of σ in
reverse order; for example R([2, 3, 1, 4]) = [4, 1, 3, 2].
One can straightforwardly observe that each allow-
able up/down SAW pair (σ, ρ) from x0 to x1 can

be uniquely mapped to the two allowable SAWs
(R(ρ), R(σ)) from x1 to x0. For example in Figure
1, the SAWs (R(ρ) = [2, 7, 5], R(σ) = [5, 2, 4]) can be
seen to be allowable from x1 to x0. Next, we have the
following somewhat more involved concept:

Definition 1. Consider a Markov kernel
K(x1, σ, ρ|x0) whose support set coincides with that
of (3). We say that pathwise detailed balance holds if
πn(x0)K(x1, σ, ρ|x0) = πn(x1)K(x0, R(ρ), R(σ)|x1),
for all σ, ρ,x0,x1.

It turns out that pathwise detailed balance is a
stronger condition than marginal detailed balance. In
other words,

Proposition 1. If the property in Definition 1 holds
for a transition kernel K of the type described there,
then πn(x0)K(x1|x0) = πn(x1)K(x0|x1)

Proof. Suppose, for given x0,x1, we summed both
sides of the equation enforcing pathwise detailed bal-
ance over all allowable SAWs {σ′, ρ′} from x0 to x1,
i.e.
∑

σ′ρ′

πn(x0)K(x1, σ
′

, ρ
′|x0)=

∑

σ′ρ′

πn(x1)K(x0, R(ρ′), R(σ′)|x1)

The left-hand summation marginalizes the kernel over
allowable SAWs and hence results in πn(x0)K(x1|x0).
The observation above that each allowable SAW pair
from x0 to x1 can be reversed to yield an allowable pair
from x1 to x0 implies that the right-hand side is simply
a re-ordered summation over all allowable SAWs from
x1 to x0, and can thus be written as πn(x1)K(x0|x1).

We are now ready to state the final form of the algo-
rithm, which can be seen to instantiate a Markov chain
satisfying pathwise detailed balance. After proposing
(x1, σ, ρ) using the up/down joint process, we accept
the move with the ratio:

α(x0,x1, σ, ρ) , min

(

1,
πn(x1)f(x0, R(ρ), R(σ)|x1)

πn(x0)f(x1, σ, ρ|x0)

)

(6)

The computational complexity of evaluating this ac-
cept ratio is of the same order as that required to
sample the proposed SAWs/state; the only additional
operations required are those needed to evaluate the
reverse proposal appearing in the numerator, which
are completely analogous to those involved in calcu-
lating the forward proposal.

Before proceeding to the experimental validation, let
us take a closer look at the marginal transition kernel
K(x1|x0). We can factor the joint proposal into:

f(x1, σ, ρ|x0) = f(x1|x0)f(σ, ρ|x0,x1)



Of course, if we are assuming that f(x1|x0)
is intractable to evaluate, then the conditional
f(σ, ρ|x0,x1) must be so as well, but it is useful to
consider. If we now summed both sides of the joint
probability of moving from x0 to x1 over allowable
paths, we would observe:

∑

σ′ρ′

πn(x0)K(x1, σ
′, ρ′|x0) =

πn(x0)f(x1|x0)
∑

σ′ρ′

f(σ′, ρ′|x0,x1)α(x0,x1, σ
′, ρ′)

The summation on the right-hand side is thus the con-
ditional expectation of the accept rate given that we
are attempting to move from x0 to x1; we call it

α(x0,x1) ,
∑

σ′ρ′

f(σ′, ρ′|x0,x1)α(x0,x1, σ
′, ρ′)

and it defines an effective acceptance rate between
x0 and x1 under the sampling regime described since
K(x1|x0) = f(x1|x0)α(x0,x1). Clearly, α(x0,x1) 6=
αmar(x0,x1), i.e. the marginal accept rate for the joint
proposal is not the same as the one we get when using
the marginalized proposal.

Before proceeding to the experiments, we briefly touch
on some implementation considerations; a detailed dis-
cussion will appear in a longer report. The bulk of the
computational time of the IM algorithm is spent in
generating states with the SAW proposal. At each step
of the process, a component from a discrete probabil-
ity vector, corresponding to the variable to flip, must
be sampled. Naively, the time needed to do so scales
linearly with the length l of the vector. In graphical
models of sparse connectivity, however, it is possible to
achieve a dramatic computational speedup by storing
the vector in a binary heap. Sampling from a heap is of
O(log l), but for sparsely connected models, updating
the heap in response to a flip, which entails replacing
the energy changes that would result if the flipped vari-
able’s neighboring variables were themselves to flip,
is also of logarithmic complexity. In contrast, for a
densely connected model, the heap update would be of
O(M log l), while recomputing the vector in the naive
method is O(M). The simple method is thus cheaper
for dense models.

4 EXPERIMENTS

Our experimental validation will consist of comparing
the popular Metropolis algorithm defined on the re-
stricted sets discussed in Section 2 to the IM sampler.
Three types of binary-valued systems, all belonging to
the general class of undirected graphical model called
the Ising model, were used. The energy of a binary

state s, where si ∈ {−1, 1} is given by:

E(s) = −
∑

(i,j)

Jijsisj −
∑

i

hisi

(One can trivially map xi ∈ {0, 1} to si ∈ {−1, 1}
and vice-versa.) The interaction weights Jij between
variables i and j are zero if they are topologically
disconnected; positive (also called “ferromagnetic”) if
they tend to have the same value; and negative (“anti-
ferromagnetic”) if they tend to have opposite values.
The presence of interactions of mixed sign, as routinely
occurs in Boltzmann machines, restricted or otherwise,
can significantly complicate Monte Carlo simulation
due to the proliferation of local minima in the energy
landscape. Interaction weights of different sign pro-
duce unsatisfiable constraints and cause the system to
become “frustrated”.

The first set of experiments will consider the behavior
of the two algorithms on a ferromagnetic Ising model
on a planar, regular grid of size 60 × 60, where all Jij

were 1 and all hi were 0. The target set Sn was the
collection of all states with exactly half of the {si}
having values of 1 and the remaining ones having val-
ues of −1. β was set to 1/2.27, corresponding to
the so-called critical temperature, where many inter-
esting phenomena arise (Newman & Barkema 1999)
but where simulation also becomes quite difficult. It
is worth mentioning that the set constraint makes it
not at all obvious how to apply methods known do
do well in the unconstrained ferromagnet case, such as
variational inference and Swendsen-Wang.

The second batch of experiments will compare the al-
gorithms on an Ising model where the variables are
topologically structured as a 9×9×9 three-dimensional
cube, Jij are uniformly sampled from the set {−1, 1},
and the hi are zero. β was set to 1.0, corresponding to
a lower temperature than the value of 0.9, at which it
is known (Marinari, Parisi & Ruiz-Lorenzo 1997) that,
roughly speaking, regions of the state space become
very difficult to visit from one another via traditional
Monte Carlo simulation. Sn was specified to be the
set of states with 364 of the 729 si = 1.

While the three-dimensional-cube spin-glass is a much
harder problem than the ferromagnet, it represents a
worst case scenario. One would hope that problems
arising in practice will have structure in the potentials
that would ease the problem of inference. For this rea-
son, the final experimental set consisted of runs on a
restricted Boltzmann machine (Smolensky 1986) with
a constraint on the number of active units. RBMs
are bipartite undirected probabilistic graphical mod-
els. The variables on one side are often referred to
as “visible units”, while the others are called “hidden
units”. Each visible unit is connected to all hidden



units. However there are no connections among the
hidden units and among the visible units. Therefore,
given the visible units, the hidden units are condition-
ally independent and vice-versa. Our model consisted
of 784 and 500 visible and hidden units respectively.
We chose weights corresponding to local Gabor filters
to purposely capture regularities corresponding to the
natural statistics of many perceptual inputs, such as
natural images (Hyvarinen, Hurri & Hoyer 2009). The
parameter β was set to one, and Sn was the set of
states with 1/3 of the {si} having value 1. The total
number of variables and edges in the graph were thus
1484 and 392000 respectively. It is worth mentioning
that the constraints prohibit us from using the stan-
dard blocked Gibbs samplers that exploit conditional
independence for inference in standard RBMs.

The experimental protocol was roughly the same for all
models: For 10 independent trials, run the two sam-
plers for a certain number of iterations, storing the
sequence of energies visited. Using each trial’s en-
ergy sequence, compute the autocorrelation function
(ACF.) Comparison of the two algorithms consisted
of analyzing the energy ACF averaged over the trials.
Without going into detail, a more rapidly decreasing
ACF is indicative of a faster-mixing Markov chain; see
for example (Robert & Casella 2004).

Before moving on to the results, it is crucial to dis-
cuss the issue of fairness in comparing the constant-
set Metropolis algorithm to the IM sampler. One con-
cern is that the SAW proposal takes considerably more
computational time to propose a candidate state than
the Metropolis algorithm’s method of uniformly flip-
ping and “unflipping” a variable. In all our experi-
ments, we systematically allowed Metropolis to have
more iterations so that it consumed the same com-
putational time as IM at a given set of parameters.
To compute the energy ACF generated by Metropolis,
however, we subsampled the energy sequence: For ex-
ample, if a fair comparison necessitated that Metropo-
lis be given ten times more iterations than those given
to IM, every tenth sample from the Metropolis’ output
sequence was taken when computing the ACF. Thus,
as a just comparison requires, we calculated the ACF
as a function of computational time lag instead of as a
function of Monte Carlo iteration lag, the latter which
may unfairly inflate the correlation of the computa-
tionally cheaper Metropolis algorithm.

For the first two models, which were of sparse connec-
tivity, the SAW proposals were implemented using the
efficient binary heap procedure discussed in Section 3.

Figure 2 displays the results of the two samplers on
the ferromagnetic Ising model at the critical tempera-
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Figure 2: (Color online) Energy trajectory (a) and au-

tocorrelation function (b) of the IM and Metropolis algo-

rithms on the 2D 60 × 60 ferromagnetic Ising model as a

function of computational time. Bars show the variance

of the samples over 10 trials and are to aid in visualizing

the spread of the samples generated at the corresponding

points, not as “errors.” See text for discussion of results

and on how a fair comparison was made.

ture. For IM, the SAW length of the proposal was set
to 90, and the up/down SAW biases γ were set to the
system’s value of β. 105 moves were attempted. To
allow for computational parity, the Metropolis algo-
rithm was given 5× 106 move attempts. The progress
of the energy generated by the two samplers is shown
in Figure 2 (top); both samplers are exploring the same
range of the energy space, but IM’s energy trajectory is
clearly less correlated than that of the Metropolis algo-
rithm at a given point in computational time. The al-
gorithms’ ACFs shown below show a marked decrease
in the mixing time when using IM.

We now present the results on the more challenging
case of the spin-glass. In fact this set of experiments
illustrates some of the potential issues in using the IM
algorithm (or any other algorithm) in this challenging
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Figure 3: (Color online) Energy trajectory (a) and au-

tocorrelation function (b) of the IM and Metropolis algo-

rithms on the 3D 9× 9× 9 Ising spin-glass as a function of

computational time. Bars show the variance of the samples

over 10 trials and are to aid in visualizing the spread of the

samples generated at the corresponding points, not as “er-

rors.” The Metropolis algorithm is clearly not converging

to the same statistical ensemble as that reached by IM.

problem. Unlike the case of the ferromagnetic model,
we found that using a single SAW length for the du-
ration of the simulation was not ideal; we uniformly
sampled a SAW length in the range [1, 25] prior to
each move attempt. Additionally, the SAW bias pa-
rameter γ was set to 0.8β = 0.8. This latter choice,
along with the shorter SAW lengths relative to those
used in the ferromagnetic model, are consequences of
the extremely rugged energy landscape of these spin
glass models and merit some closer consideration. We
recall that in IM, the move is accepted with proba-
bility given by Equation 6, which is a function of the
difference in energies of the initial and final states, but
crucially in this case, also of the ratio of the reverse
to forward path proposal probabilities. It turns out
that for spin glasses, if the SAW length is too long, it
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Figure 4: (Color online) Energy trajectory (a) and energy

autocorrelation function (b) of the IM and Metropolis al-

gorithms on the RBM Ising model as a function of com-

putational time. Bars show the variance of the samples

over 10 trials and are to aid in visualizing the spread of

the samples generated at the corresponding points, not as

“errors.” See text for discussion of results and on how a

fair comparison was made.

becomes exceedingly less likely that state s0 is sam-
pled from s1 along the reverse SAW to the one that
resulted in s1 from s0. In other words, a SAW from
s1 would rather go elsewhere than back to s0. Unless
the energy of s1 is so low (relative to that of s0) so
as to overwhelm this effect, moves will then be mostly
rejected. Setting γ to be too large has a similar effect
for the same reason. Conversely, letting γ to be too
low will yield high rejection due to the high energy of
the final state. The SAW lengths we used and setting
γ to be slightly below the one at which the state space
becomes difficult to explore were a good trade-off that
allowed the sampler to function satisfactorily.

A total of 105 moves were attempted by IM, while
106 were given to Metropolis. Figure 3 shows the re-
sults. We can see once again from both the plots of



the energy and of the ACF that IM mixes considerably
faster than the Metropolis algorithm. Indeed from the
energy plot one can see that the Metropolis algorithm
has not settled into the same statistical ensemble as
that of IM by the end of the simulation, while at least
in the ferromagnet, despite the high sample correla-
tion, the Metropolis algorithm appears to have equi-
librated. Thus in the ferromagnet, due to the high
correlation Metropolis is giving fewer “effective” sam-
ples from the target than IM, but correct ones, while
in the spin glass, Metropolis is not yet even sampling
the same distribution as the one reached by IM, which
is a much more serious problem.

Finally, Figure 4 shows the simulation results for the
RBM. The SAW length for IM was uniformly sampled
prior to each move attempt in the range [1, 20], γ =
0.8. 104 and 105 moves were attempted by the IM and
Metropolis algorithms respectively. We can see again
that the performance of IM is markedly superior to
that of the Metropolis algorithm; as in the case of the
spin glass, the ensemble sampled by Metropolis has
not converged to the one that IM reached quite early
in the simulation. The parameters we have chosen
cause an especially rapid drop-off in the ACF of IM.
Please note the vertical scale in the autocorrelation
plots. In the RBM, it decreases quickly to 0 and not 0.1
as in the previous models. This seems to indicate that
potentials corresponding to regularities in perceptual
signals (e.g. natural image statistics) can be easier to
treat during the inference process.

5 CONCLUSION

We presented a novel MCMC method for sampling
from binary distributions with particular types of con-
straints. The experiments demonstrated, in three Ising
models of varying difficulty, that the new sampler out-
performs the popular algorithm in the literature by a
significant margin. Energy and autocorrelation plots,
showed that the new sampler converges faster to the
stationary regime and that it produces more indepen-
dent samples. Although we focused on Ising models
for demonstration purposes, the algorithm applies to
arbitrary binary distributions. Testing the algorithm
in these other distributions is a good avenue for future
work. We tuned the SAW length and the proposal pa-
rameter γ to obtain good acceptance rates. Although
this is fairly easy to do, it would also be a good idea to
do this automatically using standard adaptive MCMC
tools.
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