Analysis of Particle Methods for Simultaneous Robot Localizéon and
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Abstract— This paper presents a new particle method, with ~ exploit sparsity in the information matrix, such as thin
stochastic parameter estimation, to solve the SLAM problem. junction trees, have allowed for significant increases @ th
The underlying algorithm is rooted on a solid probabilistic computational efficiency of the method [4]. However, the

foundation and is guaranteed to converge asymptotically, unlike . . .
many existing popular approaches. Moreover, it is efficient consistency issues of EKF-SLAM have started attracting the

in storage and computation. The new algorithm carries out attention of the research community recently, taking jsior
filtering only in the marginal filtering space, thereby allowing  over faster computation.

for the recursive computation of low variance estimates of |t is well known that the EKF linearization can lead to filter
the map. The paper provides mathematical arguments and divergence [5], [6], [7]. In the last few years, several work

empirical evidence to substantiate the fact that the new method h d techni i d the Ii i ationteff
represents an improvement over the existing particle filtering ave proposed techniques to reduce the linearizatontetiec

approaches for SLAM, which work on the joint path state space. Among these techniques are higher order approximations
with unscented transformations and changes of coordina-
| INTRODUCTION tes [8]1, [9], [10]. '_I'hough these tt_achn_iques re;:ult in some
. o improvement, the inherent approximations continue to €aus
_For many years, Simultaneous Localization and Mapsccumulation of errors and irreversible filter divergence.
ping (SLAM) has occupied the center-stage in robotics The introduction of particle filters (PFs) gave researchers
research [1], [2]. Probabilistic methods, such as Bayessilt the power and flexibility to handle nonlinearity and non-
have often been adopted to manage the uncertainty in tegyyssian distributions routinely [11]. Moreover, it ereabl
sensors and actuators. This sound approach in conjunctifftearchers to exploit conditional independence, usieg th
with considerable heuristic engineering has producedreasy;o-Blackwellized particle filtering (RBPF) variance re-
nable solutions; to the point that some researchers hawsbegyction technique, to obtain more efficient Monte Carlo
voicing the opinion _thatthe S_LAM problem is solved” schemes. RBPFs were applied to dynamic maps [12] and
While not endorsing the view that SLAM should occupysypsequently to static maps with the celebrated FastSLAM
the center—s'gage, it is thg thesis of this paper that theilegi_s algorithm [13]. The application of RBPF to dynamic maps is
SLAM solutions are built upon questionable assumptiongpy sensible inasmuch as one has a good model to describe
and procedures, including linearity, Gaussian distringi he evolution of thedynamicmap. On the other hand, the
treating static maps with dynamic models and neglecting t%p|ication of RBPF to static maps has come into question.
variance increase due to sampling in spaces of increasijgnas pecome popular knowledge that the approach can
(potentially unbounded) dimension. The paper providesesomyierge. The inconsistency of FastSLAM was indeed the
arguments as well as empirical evidence to substantiate t'i‘bpic of a recent robotics paper [14]. In loose terms, leagni
statgm_ent. Thg bpttom line is that there is an urgent need fgf;tic variables (the map) by conditioning on increasing
designing a principled SLAM framework so as to relax thesgjistories of the state variables results in an accumulation
assumptions and eliminate the need for brittle heuristics. ¢ pMonte Carlo errors and explosion of variance. Heuristic
is the intent of this paper_to tqke a step in this direction angpproaches to ameliorate the situation [15], [16] have been
to note that the problem is still open. proposed, but these do no solve the fundamental problem at
The first probabilistic treatment of SLAM dates backhang, We note that the problem of PF divergence resulting
to the seminal work of Smith et al. [3]. Having cast theqom |earning fixed variables by conditioning on increasing
SLAM problem as one of optimal filtering, a solution Waspaths was already described in as early as 1999 [17].
obtained with the extended Kalman filter (EKF-SLAM). This' Thjs |ack of statistical consistency of the most popular
solution, still popular, relies on linearization of the pess 5| AM methods has naturally created some justified concern.
and mgasurement f_uncfuons as well as the assumption thatinis paper, we present Marginal-SLAM, a novel approach
all the involved distributions are Gaussian. ~ with two key ingredients to ensumonsistencyThe first in-
Since then, we have witnessed a large proliferation Qfegient is to consider SLAM as a robot localization problem
EKF-SLAM implementations in indoors, outdoors, undeyyith unknown observation model parameters. Thus, the core
rwater and airborne domains. Sophisticated techniques tha i treat static maps as parameterahich by necessity
R. Martinez-Cantin and J.A. Castellanos are with DepartaroeGom- &€ learned using maximum likelihood (ML) or maximum a
puter Science and System Engineering, University of Zarag®0018 posteriori inference. The idea of treating maps as parasete
Zaragoza, Spaifr ncant i n, j acast e}@ini zar. es __is not new. It has been central to the incremental ML method
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University of British Columbia, Vancouver, BC V6T 174, Caaad [18]' However, this method resorts to an ML estimate of
nando@s. ubc. ca the state and hence fails to manage the uncertainty in the



robot state properly, as elaborated in [2]. A variation ldase If we had a set of samples (@articleg {xi’)}g\’zl from
on learning the distribution of the robot states and using(x:|y1.:), we could approximate the distribution with the
an ML estimator of the map as a function of the existindvlonte Carlo estimate

and growing state trajectoriesvas proposed in [19]. This 1 XN

approach unfortunately suffers from the same consistency pldx|y1.) = 725 o (dxy),

problems as FastSLAM. EM approaches have been proposed N -

[2], but they apply only when learning the map off-line. where J_:(dx;) denotes the delta Dirac function. This

The second key ingredient in Marginal-SLAM is being__.. t .
) I . estimate converges almost surely to the true expectation as
able to compute the filter derivative for the recursive ML. o ;
N goes to infinity. Unfortunately, one cannot easily sample

This has OT“V beqome poss@le very recently fqllowmg Ne% om the marginal distributiorp(x;|y1.¢) directly. Instead,
advances in particle simulation [20], [21], which will be_we draw particles fronp(x1.|y1.) and samplesc,,,_; are

presented in Section Ill.B. Static parameter estimation in . : .
) . . . . nored. This is a valid way to draw samples from a marginal
nonlinear, non-Gaussian dynamic models is a form|dabi§

challenge, so it comes as no surprise that probabilisticNSLA istribution and is at the core of most Monte Carlo statitic

has proved to be so demanding. We note that we adon}ethods. The u'nknown normalizing constant precludes us
rom sampling directly from the posterior. Instead, we draw

recursive ML estimates of the map because the problem o

. - : : . Samples from a proposal distributiop and weight the
doing efficient full-Bayesian recursive parameter estiamat . ) C o
has not been solved. particles according to the following importance ratio:

p(X1:t|Y1:t)
Il. PROBLEM FORMULATION wi(X1:4) = —————

q(X1:t|y1:t)

We present a general formulation of the problem th o .
is appIFi)cabIe o l?oth feature-based maps aﬁ d gri d-bas?.el.ge proposal distribution is constructed sequentially
maps. A more specific and detailed model appears in the q(X1:4y1:t) = ¢(X1:0-1|y1:6-1)q(Xe|yt, Xt—1)
experimental section. The unknown robot pose (location and . . .
heading)x; € X, is modelled as a Markov process of initial and, .hef‘ce' the importance weights can be updated recursi-
distribution p (x;) and transition priom (x;|x:—1), which vely in time
represents the motion modelhe observationsy; € ), are (1) = p(X1:4y1:t)
assumed to be conditionally independent given the proces&*\*1:*) = p(X16-1|y1e—1)a(Xe|ye, Xe—1

)wt—l(xl:t—l)-

{x:} and of marginal distributior,(y:|x:), whered is a ‘ 1)
vector describing the elements of the map. Hence, the modélven a set of N particles {xg’:i_l}f\gl, we obtain a set
consists of the following two distributions: of particles{ngi}fvzl by sampling fromq(xt|yt,x§1_)1) and

(xe|%e1) applying the weights of equation (1).
PiXel%e-1 The familiar particle filtering equations for this model are
po(yelx:) t=>1 obtained by remarking that

We denote byx;.; = {x1,...,x:} andyi.s = {y1,...,y:}, ¢
respectively, the robot state and the observations up te tim p(x1.t|y1.+) X p (X1:t,¥1:¢) = H p(¥i|xK)p(Xk|Xk—-1),
t, and definep(x;|xq) = p(x;) for notational convenience. k=1

In this formulation, we have usefl to describe the map given WhiCh, equation (1) becomes
only. Howeverg could be used to include other parameters in
the transition and measurement models, as well as, to iaclud
data association variables [2]. For simplicity of prestata
we will assume that the associations are given. o ) )

Our aim is to compute sequentially in time tfittering Thg,) |t2)rat|ve schem%) pro~d(lu)ces a .;/ve|ght_ed measure
distribution p (x| y1.:) and point estimates of the map {x1,w," Ly, wherew;” = @,” /3, w,”, and is known

as Sequential Importance Sampling (SIS).
IIl. PARTICLE METHODS It has been proved [22] théte variance of the importance
A. The Joint Path Space Approach weights in SIS increases over tinéis causes most particles
to have very small probability. A common strategy to solve
this degeneracy consist on using a resampling step (SIR)
after updating the weights to replicate samples with high
p(0,x1.4|y1:¢) = p(O|x1.t, Y1.0)p(X1:t|y1:t)- probability and prune those with negligible weight [23].

This is the procedure in common use by practitioners.
It can be deceptive: although only the state is being
updated every round, the algorithm is nonetheless impogtan
sampling in the growing joint path spacet’.

Formally, the resampling step should be done along the full

(@) ()N ; ;
1For clarification, we drop the action value or motion commandhfthe path {Xl:tj wy 4 ;2. Since dynamic systems forget the past
transition priorp (x| x;—1, ut) exponentially fast, several authors carry out resamplirey o

pye " x)) )

i i Wi—1-
Q(Xz(t )|yt7 XEJI)

{D,@ x

In classical Rao-Blackwellized patrticle filtering, one ffirs
notes the following decomposition of the joint posterior:

Consequently, given the state path,, we can solve for the
map# analytically. This leaves us with only having to carry
out particle filtering to compute the posterior distribatiof
the robot state(x1.¢|y1.¢)-



the marginal spac{axﬁ”,wt(”}g\’zl. This would be fine if, for To simplify the exposition later on, we introduce the fo-

example, we were interested in tracking dynamic maps. llowing notation [21]:
Static parameter estimation and model selection problems

do not necessarily exhibit an exponential forgetting beha- po(Xe|yi:t)

vior. For example, static maps depend on the whole state J€o(xe, yra)dx

trajectory. Resampling these trajectories in the jointhpatwhere¢ represents the unnormalized distribution.

space is guaranteed to deplete the past in finite time; sinceUsing equation (3) and Bayes rule, the unnormalized

there is only a bounded number of trajectories. Alternétjve filtering distribution can be expanded as follows:

resampling from the marginal space still leaves us with an

accumulation of Monte Carlo errors over time. The estimatés (x¢, y1:¢) = pe(yt|xt)/p(xt\xt,l)pg(xt,l|y1:t,1)dxt,1.

of the map will depend on this increasing sequence of errors.

Some implementations have introduced artificial dynamics o In order to obtain the gradient vector with respect to the

Markov chain Monte Carlo (MCMC) rejuvenation steps tomap variables, we apply standard differentiation rules to

reduce the severity of the problem, but these approaches @@uation (4), yielding:

N §G(Xt»}’1:t) (4)

not overcome the problem [24]n conclusion, whether we Volo(xt,y1:t)
resample or not, learning the static map as a function of a Vepe(Xtly1.:) = T (s v ds
growing path in Monte Carlo simulation is a bad idea. J €olx, yu)dxe
The same degeneracy problem arises if we try to obtain - pe(Xt|Y1:t)fvegG(Xt’ylzt)dXt~ ()
estimates of the filter derivativ€yp ¢ (x:|y1.:) for recursive S €o(xe, yr)dx,

(online) map estimation. To see this, [8pg(x1:¢[y1:t)  Similarly, using the expansions for the derivatives of logs
denote the gradient vector of the path posterior with retspeghe gradient oft(-) can be written as follows:
to the map. Then, we have

Volo(xtly1:e) = Eo(yelxe)Valogpa(ys|x:)
Vopo(eralyre) = LV, o)
RO Lt po(X1:4|y1:t) Ot T Lt +P0(Yt|Xt)/P(Xt|Xt71)V0P9(Xt71|Y1:t71)dxt71 (6)
and, consequently the filter derivative, necessary forenli
map learning, is given by:

Vopo(x¢|yi:t) :/

xt—1 pe(X1:t|Y1:t)

2) Monte Carlo ImplementationWe are now ready to
present the particle algorithm of [21] for approximating
Vopo(X1:¢|y1:t) the filter derivative efficiently. Assume that at time
o Pe(Xulyr)dxii1 4 _ 1 we have a Monte Carlo approximations of

(2) the filter and its gradient. We denote the normalized
Using standard particle filters to approximate the filter der and unnormalized filter and gradient approximations by:
vative we are implicitly carrying out importance sampling 0 pg(x:—1|y1.t—1)=> wg’_)léxm ,fg(xt,yht)Z% > wg%xm
a vast growing space with proposa) (x;.¢|y1.¢) and weight ——— NG a0) !
Yopelauyis) This should be enough reason to call for av/‘g\m(xt”'yl:t_l) B Zi:lw_t‘l 1100, (X-1)
new éﬁgrlotach. Yet, the problem is even worse. Volo(xt,y14) = = Zﬁvzl ﬁf)5x<i>(xt). The integral in

The filter derivative is a signed-measure, and not a staegquation (3) is generally not solveable analytically, bots
dard probability measure. It consists of positive and rnegat we have the particle approximation, we can approximate it
functions over disjoint parts of the state space and it sunas the weighted kernel density estimate
to zero over the entire state space. A serious problem, when N
carrying out classical particle filtering to estimate thgned- — _ (4) (4
measure, is that particles with positive and negative wsigh Polxilyrie-) = ;wt’lp(xt‘xt*)’

will cancel each other, say, in parts of the space where the S
derivative is close to zero. This is wasteful and statiiica While we are free to choose any proposal distribution that

harmful. See Figure 1 of [21] for a beautiful depiction ofhas appropriate support, it is convenient to assume that the

this problem. marginal proposal takes a similar form, namely
The technique presented in the following section overco- N 4
mes these deficiencies. qo(X¢|y1e) = Zwﬁ@lqe(qut,xg’) ).
j=1

B. The Marginal Space Approach W v d cles f h | usi
. I ) Lo - e can easily draw particles from this proposal using
1) Marginal Filtering and Filter Derivative: To eliminate multinomial or stratified sampling and compute the new

the problems discussed in the previous section, we wi . . : X

perform particle filteringdirectly on the marginal distribution nnormalized |mportan§e Welghts.‘ -

p(Xt|y1:t) instgad of on the joint space _[29], [25], .[21]. To ) pe(ytlxy)) Zé\’:l wt(J_)1p(X§Z)|X§j_)1)

do so, we begin by noting that the predictive density can be wy " = B)

obtained by marginalization: qo(x; [y1:t)
3w ) 87y

qe(xi(:i) ‘yl:t)

Po(Xe|y1.e—1) = /P(Xt|Xt71)Pe(Xt71b’1:t71)dxt71 (3 ﬁ{ti) = '@ﬁ“Va logpg(yt|xgi)) +




Finally, substituting the above Monte Carlo estimates int

the expression for the derivative pfy in terms of&y, we Marginal-SLAM
obtain the normalized weights at tinte e Fori=1,..., N, sample the robot state from the proposal
(i i ~(7)
@ _ @ wl? P (i) 225 Pt
Y = 0 g = o) W ~(j) Zw a(xelye, x7)
2 Wy Zj > Wy Yt X

Note the advantages of marginal filtering. Firtste impor- e Fori=1,..., N, evaluate the importance weights
tance sampling process now happens in the marginal space NN () H1G)
In addition, the last integral in equation (6) can be expande 0 _ po(yelx”) Yo wip(x 1x7)

. ; L Y= -
using the score identity: q9<X§ )\ym)
/p(Xt|Xt—1)V9 log[po(xt—1ly1:t-1)po(Xe—1y1:0-1)dxs—1 <) ~(0) @) ijg)lp(xf”ng)l) t(i)l

py’ = 1wy Vologpo(ytlx,” W )

That is we sample from the marginal filtering distribution qo(x;" |y1:t)
and weight with3 £ Vg log[pg(x;_1|y1.+_1)]. Contrast this « Normalise the importance weights
with equation (2). The other thing to note, as pointed out in &0 (i) 5,7 )
[21] is that the marginal filter derivative allows us to obtai w = —t . gl = Pr__ 19
a particle approximation of the Hahn-Jordan decompositior Zj @t Zj vﬂfﬂ) Zj {Et(”
This implies that we can surmount the problem of particles o update the map vector
of opposite signs cancelling each other out in infinitesimal
neighborhoods of the state space (see Figure 1 of [21]). 0, —0, .+ Z

3) On-Line Map Learning: Armed with Monte Carlo t= 1T _w(a)

. . . . g Ut
estimates of the filter derivative, we can now attack the .

. . . e Update the learning rate ~:.

problem of developing recursive map estimators. Here, we
choose to maximize the predictive likelihood (also known as
the innovations or e\”dence): Fig. 1. The Marginal-SLAM algorithm at time.

pe(}’t|}’1:t—1) :/ﬁe(}’t\Xt)p(Xt|Xt—1)p9(Xt—1 |Y1:t—1)dxt—1-t

To accomplish this, we adopt the following stochastic appro
xXimation algorithm:

explored until the introduction of fast methods [20]. When
using the transition prior as proposal, the marginal filted a
classical particle filter are equivalent, but this is no leng
0y =01+ Vologpo(yelyit—1) true when computing the derivative of the filter as outlined

in [25] and this paper.
Provided that the step sizg satisfies standard stochastic (23] pap

approximation criteria, see for example [26], it can be smow IV. EXPERIMENTS
that 6, converges to true parameters which are the global

. We compare Marginal-SLAM and FastSLAM in a large
maxima of{(#), where [21] b g g

scale, highly noisy simulated environment with known data

association. The environment is a square-like corridoh wit

1(0) Zlogpe Velyii—1) point landmarks in the walls. For simplicity, we use the tran
sition prior as the proposal distribution for both techragu

A detailed analysis is presented in [27]. The only remaining future work, optimal proposals could be considered like

detail is to derive the Monte Carlo approximation of thén FastSLAM 2.0.

gradient of the predictive distribution The robot motion, that is, the transition model, is based

on a simple differential drive vehicle

= lim
k—>ook—|—1

VePe(Ytb’l t— 1)

Vo logpe(ytbﬁ t— 1) m = X, X; 4 d; COS(¢t_1)
_— N ~(4) Yl-f = }/tfl + dt Sin(d)t,l)
_ J Volo(xe, y1:a)dxy _ > =1 P Uy i1 oy
[ €o(xe, y1:0)dxy Zé\’:l @t(]) wherex; = [X;, Y;, ;] denotes the robot position and orien-

4) Pseudo-Code for Marginal-SLAM:The Marginal- tation andu; = [d, o] is the motion command (displacement

SLAM algorithm is depicted in Figure 1. Note that it is IinearanCI heading)‘ at time with correspondin_g Gaussian noise
in the number of features. It has @(N?) complexity in Yt "~ N0, diag(og,0a)). The observations are gathered
terms of the number of samples, but this can be reduced f§N9 range and bearing sensgrs = [p, ¢] with a point
O(N log N) using the fast multipole expansions and metri eature detector

tree recursions proposed in [20]. { R } AZ + A2

The marginal particle filter is an old idea [28], [29]. Yet, o
because of its large computational cost, it was not fully

— : R R
arctan ( Ay sin(8;')+Ay cos(6; ))

Ay cos(0t)+A,, sin(6])
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Fig. 2. The plots represent the average number of effectiviicles V. ¢ ;, with corresponding confidence intervals, in 25 long termuations. The
total number of particles is 200 in both cases. The left plotesponds to Marginal-SLAM, where the filter achieves adtestate with a 25% effective
number of particles, allowing to update the same are for inleftma. The middle plot shows the same experiment for FastSLAMuickly drops in

every simulation and fails after 200 steps. Just few readimatsurvive more steps. The right plot is a zoomed view of thedhaiglot.

where A, = 0, — X, and A, = 6, — Y;; with [6,,0,] movements can lead to inconsistent maps. Figure 4 shows
denoting the feature location. The sensor has white Gaussithe evolution of a parameter estimate when the true landmark
noisev; ~ N(0, diag(o,,04)). location changes. This ability to track moving featureoals
Hence, the likelihood function for a single feature is implies that it would enable Marginal-SLAM to recover
_ . s from wrong Qata association, biased map merging anq loop
p(p, BIx) = 1 eap 1 ((p—p) n (¢ —9) closing, provided that the correct correspondences a-obt
\/ﬂap% 2 o2 ‘735 ned in subsequent steps. The selection of the learning ratio

depends on the required accuracy, the convergency speed and
Thus, the gradient of the log-likelihood corresponds to thepability to trackqobjects. Y gency sp

Bo(p=p) _ 2y(@70) V. CONCLUSIONS

1 o po
— P b
Viog(p(p, ¢)) p Ay(p;ﬁ) + AI(¢;¢) The experiments and arguments indicate that Marginal-
L 7o P SLAM is an important new direction in the design of

We carried out several simulations by varying the amourRarticle methods for SLAM. Algorithms designed to work
of sensor and motion noise, landmark density and loop sizen the marginal space appear to behave better than the ones
The system is able to close large loops with large range afigsigned to work on the path space.
bearing noise. However, very large sensor noisg.6onar) In this preliminary work, Marginal-SLAM exhibits nice
in large loops is still a difficult task. Data driven propasal properties, such as being able to track slowly moving object
could be adopted in the future to eliminate this problem. and potentially being able to recover from erroneous data-

Figure 2 shows a comparison between the number @gsociation. Marginal-SLAM does not suffer from some
effective particlesV,;; = 1/ .Y | w? in Marginal-SLAM  shortcomings of existing particle methods for SLAM. When
and FastSLAM. Clearly, the marginal particle filter reachesmapping known areas, the algorithm reaches an accurate
a steady state, but FastSLAM quickly loses particle divgrsi Steady state without diverging. However, efficient conver-

The final map using both approaches is shown in Figure gence in large-scale SLAM domains is still an open question.
In the Marginal-SLAM plot, the relative locations of the The presented method requires a considerable amount of
landmarks and the robot converge to the true solutiofformation to converge to the solution, which is a strong
However, the global location is biased with respect to th@ssumption in SLAMWhat is missing is a fully Bayesian
ground truth. This is due to the observability assumptions iway of estimating the static map parameters, while integra-
our SLAM model. The robot location can only be measureéing over the states recursively in time.
through the landmark location. The final map is valid up to In future work, we plan to test the algorithm more tho-
an isometric transformation (translation plus rotatioffjis ~ roughly in real domains and introduce known improvements
effect can be reduced if we fix a landmark location. like the N-body methods or the more efficient Hessian based

Although our goal has been to develop a method for statfaximum likelihood. We also plan to focus on solving
maps using decreasing learning rates, it is possible totaddpe Problem of designing efficient full-Bayesian recursive
small constant learning rates to track slowly changing maparameter estimators for nonlinear state spaces.
features. Mapping in real scenarios requires the ability to VI. ACKNOWLEDGMENTS

deal with pseudo-dynamic objects, like chairs and doors.
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2Results are based on the following parameter settings: 200, o4 =
0.1m, 04 = 0.5deg, 0y = 0.025m, 04 = 3deg.
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Fig. 3. a) Particle degeneracy in FastSLAM prevents it frdosiag the loop. b) Marginal-SLAM is able to close the looglaonverges to the true map
after 10 laps. Although the map seems rotated, the relativitot of the features and the robot location is almost perfgcMarginal-SLAM after 10

laps in a bigger loop with high motion and observation neise= 10deg, o4, = 10deg. The loop is closed but the convergence is slow.
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Fig. 4. Tracking a moving map feature with Marginal-SLAM witty =
0.01m, 0o = 0.05deg, 0, = 0.1m, 04 = 0.5deg. Black thick line: true
location. Blue thin line: estimated location.



