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Abstract— It is widely agreed that efficient visual search
requires the integration of target-driven top-down information
and image-driven bottom-up information. Yet the problem of
gaze planning – that is, selecting the next best gaze location
given the current observations – remains largely unsolved. We
propose a probabilistic system that models the gaze sequence
as a finite-horizon Bayesian sequential decision process. Direct
policy search is used to reason about the next best gaze lo-
cations. The system integrates bottom-up saliency information,
top-down target knowledge and additional context information
through principled Bayesian priors. This results in proposal
gaze locations that depend not only the featural visual saliency,
but also on prior knowledge and the spatial likelihood of locat-
ing the target. The system has been implemented using state-of-
the-art object detectors and evaluated on a real-world dataset
by comparing it to gaze sequences proposed by a pure bottom-
up saliency-based process and to an object detection approach
that analyzes the full image. The target-directed attention
system is shown to result in higher object detection precision
than both competitors, to attend to more relevant targets than
the bottom-up attention system, and to require significantly less
computation time than the exhaustive approach.

I. INTRODUCTION

Imagine a robot trying to find a laptop in an office. Most
likely, once it enters the room, it stops and starts exhaustively
scanning all locations in its field of view. In settings with
large amounts of image or video data, the shortcomings of
traditional approaches to object detection become apparent:
the system analyzes the input image at all pixel locations
either by filtering the full image [1] or by using a sliding
window classifier [2]. This approach is not only slow, but also
prone to producing many false positives at unlikely image
locations.

A more natural way of thinking about visual search is
a reasoning system that points the agent to those image
locations at which the target object is most likely to be. This
would reduce processing time since a high-quality object
detector only has to be employed at a small number of
promising image locations. In addition, such an approach
would reduce the false positive rate because unlikely – but
visually similar image locations – are never visited. Indica-
tions about likely target locations are available at large: low-
level attention [3] points to locations that are visually salient
based on bottom-up features; target-driven, top-down models
of the target (e.g. the interest model of Gould et al. [4] or
gist-like features [5] trained on the target object) provide
coarse, but fast information about the object likelihood; in

Fig. 1. Typical gaze sequences before and after gaze planning. The numbers
specify the gaze order. Green circles indicate detections of the high-quality
object detector. Red circles indicate non-detections (both true and false
negatives).

addition, information about the context of the target such
as spatial location priors [6] is available. This scenario is
particularly relevant for robots with a low-resolution, wide
field-of-view camera planning image acquisition for a high-
resolution, pan-tilt-zoom camera [4], [7].

We propose a target-directed attention system that reasons
about the next best location to attend to. The bottom plot
in Figure 1 shows a typical result. The goal is to plan a
gaze sequence in the image that attends to and subsequently
detects (i.e. recognizes) as many monitors as possible. After
gaze planning, the system attends to all three monitors in the
image, two of which are detected by the employed high-level
detector (more details in Section VI). The proposed system
integrates bottom-up saliency, top-down target information,
and spatial target context based on the information men-
tioned in the previous section. Furthermore, gaze sequences
are modeled as finite-horizon Bayesian sequential decision
process. This permits the system to plan the next best gazes
based on its knowledge about the world and its history of
previous gazes and observations.

In combination with state-of-the-art object detectors,
our approach is tested quantitatively on large, cluttered,
panoramic scenes of the Caltech Office DB [8]. We compare
our target-directed attention system to an attention system
that is based on bottom-up visual saliency only [9] (BU only)
and to a system that exhaustively analyzes the full image [1].
Our experiments show that target-directed attention results
in higher precision than both competitors. Our system also



attends to significantly more relevant targets than the BU
only approach. In addition, target-directed attention requires
only 25% of the computation time of the exhaustive system.

II. RELATED WORK

Our approach builds on the computational saliency model
of Itti and Koch [9]. The central aspect of their model is a
two-dimensional saliency map generated by analyzing low-
level image features (color, orientation, intensity). Compe-
tition among neurons results in a winning location, i.e. the
most salient location. Subsequent inhibitions of that location
(inhibition of return) makes the system shift to the next most
salient location, thus producing an ordered sequence of gaze
locations. Our system uses gaze sequences from this bottom-
up saliency map as proposal gazes.

Navalpakkam and Itti [10] extend [9] by introducing top-
down gains on the bottom-up saliency map. Statistical top-
down knowledge about target and background tunes the
bottom-up maps with the goal of maximizing the signal-
to-noise ratio. There is evidence that the approach is psy-
chophysically plausible [11]. However, it has not been eval-
uated on larger scale with datasets commonly used in vision
or robotics. Walther and Koch [12] propose a computa-
tional system that models attention to salient “proto-objects”.
Proto-objects are described as volatile, bottom-up units of
visual information that can be bound into objects if attended
to [13]. However, in [12] no integration with top-down target
information is implemented. Tsotsos et al. [14] model visual
attention on neuron level by selectively tuning the visual
processing network using attentional biases based on top-
down information. Instead of incorporating target-specific
information directly, Oliva et al. [15] combine bottom-up
saliency with contextual priors that model the relationship
between context features and the target. Walther et al. [16]
use bottom-up saliency to learn and identify particular ob-
jects in cluttered scenes.

Early work on selective vision using decision theory
includes the TEA-1 system by Rimey and Brown [17]. The
system exploits the spatial structure of a scene. Based on
handcrafted “goodness” functions, it sequentially collects
visual evidence. Similarly, Wixson [18] exploits spatial rela-
tionships of the target object with other objects to efficiently
search for objects in indoor scenes. Paletta and Pinz [19], and
Laporte and Arbel [20] explore decision making for active
object recognition and pose estimation. The task is to select
a viewpoint in 3D so as to decide on the object label (and
pose [20]) with as few views as possible. Due to the large
computational complexity of these decision systems, only
the approach in [19] is non-myopic. Minut and Mahadevan
[21] propose a two-layered architecture to simulate selective
attention for visual search tasks. The location of the next
gaze is primed coarsely using reinforcement learning and
subsequently more finely using bottom-up visual saliency.
Gould et al. [4] present a method using peripheral-foveal
vision for identifying and tracking objects in an easy dynamic
environment. Their approach uses a learned attentive interest
map and is based on a myopic policy.

Fig. 2. Inputs and outputs of our selective attention system. The inputs
consist of a new image and a prior over object locations, which is learned
off-line from a large image database. In addition, we have a likelihood
model from which observations (detections) can be simulated and a saliency
map [9]. The output of the planner is the sequence of gazes and the
posterior distribution. The posterior distribution can be used to focus the
computational resources for tasks like detection and recognition where the
posterior is high.

III. THE SEQUENTIAL GAZE PLANNING APPROACH

Our goal is to plan a sequence of gazes so as to minimize
the uncertainty in the posterior distribution over the location
of objects in the scene. To do so, we adopt a principled
Bayesian decision theoretic framework [22]. This approach
results in a concentrated posterior distribution over loca-
tions, which allows us to conduct subsequent tasks, such
as detection and recognition, more efficiently. As a result
of this process computational resources only need to be
allocated to parts of the image where the posterior is high.
Our experiments will show that sequential gaze planning is
indeed more computationally efficient than traditional sliding
window approaches widely adopted in computer vision.

Figure 2 is an overview of our approach combining
bottom-up and top-down information. In particular, the
Bayesian decision theoretic framework allows us to integrate,
in a statistically coherent way, the following elements:

1) A prior distribution, p(x0), over object locations, x0 ∈
R2. This prior is either learned from large collections
of images or is constructed using expert knowledge



1) Obtain proposal gaze sequence of length numGazes from
bottom-up, winner-take-all saliency [9].

2) Enumerate all possible gaze orderings: permutations(1 :
numGazes)

3) For k = 1 : NumberOfPossibleGazeOrders:
• For i = 1 : N :

– For t = 1 : T :
a) Select the tth gaze location x

(i)
t in the current gaze

order.
b) Generate detection observations as described in

Section V-C: y
(i)
t ∼ p(yt|x

(i)
t ) .

c) Update the object’s location posterior
p(xt|y(i)

1:t, π) using Bayes rule to combine
the prior (posterior at gaze t − 1) and the
likelihood.

– Evaluate the cost function Cπk,i.

• Evaluate the cost function Cπk = 1
N

∑N
i=1 C

π
k,i.

4) Choose the gaze sequence with the minimum expected cost.

Fig. 3. Pseudo-code of sequential gaze planning in the open-loop control
(OLC) setting. Here, N denotes the number of Monte Carlo samples and
T is the planning horizon. In replanning with open-loop feedback control
(OLFC), the system uses the present gaze location and the estimated
posterior distribution (instead of the prior) as the starting point for the
simulations. It is implicit in the pseudo-code that we freeze the random
seed generator so as to reduce variance.

(Section V-B).
2) A model of the sensors (detectors). This likelihood

model, p(yt|xt), indicates the probability of positive
(yt = 1) and negative (yt = 0) detections at a specified
location xt during the tth gaze (Section V-C).

3) An estimate of the posterior distribution, p(xt|y1:t),
over object locations given the information gathered
in gazes 1 to t. Since the the domain of x is two-
dimensional, a sensible strategy for computing the pos-
terior is to discretize this domain. If we are planning T
steps into the future, this posterior update is repeated
T times.

4) A policy π. The policy is a sequence of gaze actions.
In particular, we consider all permutations (that is,
sequences of gazes) of the most promising locations
recommend by a saliency map [9]. The learned policy
corresponds to the most promising sequence (Sec-
tion V-A).

5) A cost function, Cπ , that encodes the objective of
increasing the information in the posterior distribution
as quickly as possible. This cost function is discussed
below.

Having defined the problem as one of quickly improving
the information in the posterior distribution, the following is
a natural cost function:

Cπ = Ep(x0:T ,y1:T |π)

[
T∑
t=1

λt−1∆H

]
(1)

∆H = H(p(xt|y1:t, π))−H(p(xt−1|y1:t−1, π)), (2)

where H(p(xt|y1:t, π)) denotes the entropy of the poste-
rior distribution at time step t and λ ∈ (0, 1] is a discount
factor. This cost function is expensive to evaluate and hides

an enormous degree of complexity since it is a function of
an intractable filtering distribution p(xt|y1:t, π).

In summary, the policy π is a sequence of possible gaze
locations, each of which will entail a specific cost Cπ .
Finding the policy which minimizes the cost is a search prob-
lem. We carry out this search using well-accepted methods
from sequential decision making, in particular a simulation
approach often referred to as direct policy search [23], [24].
This simulation method for reinforcement learning has led to
significant achievements in control and robotics [25], [26],
[27]. In our setting, given the current policy π, we sample
N sequences of observations and corresponding posterior
distributions using the PEGASUS methodology [24]. The
cost function can then be approximated with the following
Monte Carlo estimator:

Cπ ≈ 1
N

N∑
i=1

T∑
t=1

λt−1∆H. (3)

The algorithm used for this simulation is shown in
Figure 3. We obtain Monte Carlo estimates of the cost
function for each sequence of gazes and, finally, choose
the sequence of lowest cost. The pseudo-code in Figure 3
states that given an unseen image, the system generates
first a set of numGazes proposal gaze locations (see Sec-
tion V-A), which result in permutations(1 : numGazes)
possible gaze orderings. The performance of the system
numGazes = min(T, numGazes) does not improve for
values large than 4. So, using an exhaustive list of permu-
tations is computationally feasible. For larger numGazes
or planning horizons T , approximative methods need to be
employed [24]. Each of these possible gaze orderings is
simulated N times, the cost of each simulation is recorded,
and the gaze order with the minimum expected cost is
selected. During simulation, the object’s location posterior
is computed from the object’s location prior (Section V-B)
and the object likelihood (Section V-C).

After the gaze planning system decides on the next best
gaze location, the focus of attention is directed to that
location and an expensive object detector (see Section V-D)
is employed to decide whether the target object is present at
that location.

IV. REPLANNING AND OPEN-LOOP-FEEDBACK CONTROL

In the previous section, we discussed the algorithm for
gaze planning in general. Now, as we progress in the gaze
sequence, it is possible to use the newly gathered observa-
tions (by running an actual detector; see Section V-D) to
update the posterior distribution. This distribution can then
be used as the prior for subsequent planning and simulation
steps. This process of replanning is known as open-loop
feedback control (OLFC) [28]. We can also allow for the
planning horizon to recede. That is, as we progress along
the sequence of gazes, we keep planning T steps ahead of
the current position. This control framework is also known
as receding-horizon model-predictive control [29] and is the
approach taken in the following experiments.



Fig. 4. Image and corresponding object likelihood as obtained with gist
features and SMLR classifier

V. IMPLEMENTATION DETAILS

In order to simulate the excessive amount of information
necessary to be processed by an agent when performing
visual search in a new environment, we use 40 randomly
selected images from the Caltech Office database [8] for
testing and evaluation. The images are 280×1960 pixels and
show panoramic (360◦) views of office scenes simulating the
information available to an agent with an omnidirectional
camera. The size of the images makes it unfeasible to
analyze them fully in real time. The goal of the experiments
is to locate monitors and computer screens in the scenes
by minimizing the uncertainty in the posterior distribution
of object locations. With this task in mind, we adopt the
following implementation of the various elements of the
sequential gaze planning approach.

A. Generating proposal gaze locations

The input to the gaze planning system is an ordered set
of candidate gaze locations. In our experiments, we use the
first numGazes salient locations proposed by the attention
system of Itti and Koch [9] (details on in Section II). We use
the implementation of bottom-up attention in the Saliency
Toolbox of Dirk Walther [12]. After a particular gaze is
executed, the corresponding location is inhibited as in the
inhibition-of-return in the bottom-up attention system of [9].

B. Estimating the location prior

The location prior is a two-dimensional distribution of
likely object locations before any object detection. During
gaze planning, the object prior is updated using the simulated
observations and the object likelihood and becomes the
object posterior. The current object posterior is used as the
object prior in the next round of gaze planning. The location
prior is estimated through kernel density estimation with a
Gaussian kernel from a training set of the Caltech Office
database. Figure 5 (top) shows that monitors are most likely
to appear in a horizontal band around the center of the image.

C. Likelihood model

The object likelihood encodes the probability p(yt|xt), the
probability that the region around a particular image location
xt is indicative of the target object. Clearly, this probability
could be provided by a full-fledged object detector. But that
approach would be too slow for a reasoning system that
considers many possible object locations. The main goal at
this point of the system is to get a very fast, crude estimate
of the object likelihood similar to humans who catch the

“gist” of a scene or an image region within milliseconds
and in the near absence of attention [30]. Inspired by this
behavior, we use the computational implementation of the
gist as described in [5] and the sparse multinomial logistic
regression classifier (SMLR) of Krishnapuram et al. [31].
Gist feature computation From the training set of the
Caltech Office database, we generated 7500 training patches
of size 140 × 140 pixels. This size corresponds to half the
height of the image. The training images are gray-scaled
and down-sampled by a factor of 2 in order to simulate the
coarse spatial information available when quickly scanning a
room. For each image, a steerable pyramid transformation is
computed (6 orientations and 3 scales), the image is divided
into a 4x4 grid, and the average energy of each channel
in each grid cell is computed, resulting in 288 features.
Subsequently, the dimensionality is reduced by performing
PCA and retaining 80 dimensions.
Training the SMLR classifier Of the training set described
above, we use 600 positive (i.e. containing monitors of
various sizes) and 600 negative patches to train a SMLR
classifier with RBF kernel. Inputs are the 80 PCA features.
The classification rate on a validation set is 62%.
Computing the object likelihood (Step 3(b) in Figure 3)
Around each location x that the gaze planning system is
reasoning about, a window of 140× 140 pixels is extracted
and downsampled. Gist features as described above are
extracted and projected onto the PCA basis. Using these
features, the image window is classified with the trained
SMLR classifier. The classifier returns a confidence mea-
sure between 0 and 1 that can directly be used as object
likelihood. The gaze planning system only computes the
likelihood at locations relevant for its reasoning. However,
for illustrative reasons, Figure 4 shows the likelihood map
for a full image. Note the fact that besides locations on
and around monitors, the classifier marks general “desk-
like clutter” with higher probabilities. This makes sense as
monitors are usually located on desks. The computation time
per image window is around a tenth of a second.

Obviously, the better the estimated or computed object
likelihood is, the better the gaze planning system will per-
form. This is a trade-off between available feature informa-
tion, accuracy, and computation time. We will discuss some
ideas regarding the object likelihood in Section VII.

D. Object detector during replanning

Once the gaze planning system has selected a gaze loca-
tion, a full-fledged object detector is employed in a window
of 200x200 pixels around that location. At this stage, any ob-
ject classifier may be used since the gaze planning system is
independent of the gaze execution stage. We use the boosted
detector described in [1] with the Matlab implementation
provided by A. Torralba [32]. The classifier has been trained
for frontal monitors on 400 training images of the LabelMe
database [33]. During execution, the detector is run on three
scales (scalefactor = 0.7) and all detection scores above a
threshold are counted as positives. The detection threshold
of detThres = 50 has been set using a validation set.



Fig. 5. Object prior and expected object posterior for the two gaze
sequences in Figure 1

VI. RESULTS

The goal of the experiments is to detect a maximum
number of objects with a minimum number of false positives
by minimizing the uncertainty in the posterior distribution
over the location of objects in the scene.

In the following, we compare our proposed gaze planning
system (GP) to a system that also analyzes only selected
locations in the input image, but does not employ any target
specific top-down or context information [9]. This bottom-up
only system (BU) returns a sequence of generally visually
salient locations, but the selection is independent of the task.
In addition, we compare gaze planning to object detection
by analyzing the full image of 280 × 1960 pixels (Full
images, FI). Here, we use the same object detector with the
same parameters (number of scales, scale-factor, detection
threshold) as for the localized object detection in Section
V-D.

Our hypothesis is that gaze planning is considerably faster
than full image analysis and results in less false positives
while generating a similar amount of detections propor-
tionally to the number of gazes. This is confirmed by the
experiments.
Qualitative results Figure 1 shows typical outputs of the se-
lective attention systems. In both cases, three image locations
are analyzed. In the top plot, the system attends to the three
most salient image locations based on bottom-up features
only and runs the object detector on regions around these
locations. All three detections are negative as indicated by
the red circles (one miss). In the bottom plot, gaze planning
based on top-down and context information in addition to
bottom-up information is employed. Here, both the gaze
order and the image locations that the system attends to
change in a successful way: all three gazes attend to target
objects. The object detector correctly detects two of those
(green circles) and misses one (red circle).

The example is typical in that gaze planning leads to an
increased number of targets being attended to. Depending on
the quality of the object detector, most of these targets are
also detected.

Figure 5 depicts the difference in the object posterior
for the two gaze sequences. The top plot shows the object

Fig. 6. Attention rate in % when using only bottom-up saliency (BU) or
when using gaze planning (GP). Both systems analyze the images at 2, 3, 4,
and 5 locations (gazes). Gaze planning uses a planning horizon of T = 4.

prior. In the middle, the object posterior after executing
the BU gaze sequence can be seen. Three expected non-
detections did not change the uncertainty about the object
location much. The bottom plot shows the posterior after
gaze planning. Here, the entropy of the posterior relative to
the prior is clearly lower thus leading to the selection of
this particular gaze sequence because the uncertainty in the
object location has been reduced most.
Quantitative results In Figures 6, 7, and 8, we compare
the performance of the attention system based on bottom-up
saliency, the gaze planning system, and the detection on full
images quantitatively. All data points with box-whisker plots
have been repeated 20 times in order to analyze statistical
significance. Both the system based on bottom-up saliency
only and the full image analysis are deterministic systems
and thus do not generate box-whisker plots.

Figure 6 depicts the attention rate (percentage of relevant
objects being attended to) of the selective attention systems.
This is the most relevant performance measure for our
system because it is a measure that is independent of the
subsequently employed high-resolution object detector. It
shows that our gaze planning system attends to more relevant
objects in the scene than the BU system. The figure also
shows that the attention rate increases when the systems
attend to more locations in the image. E.g. , the systems
attend to five distinct image locations in the right-most plot.
In all four cases, gaze planning significantly outperforms the
system using bottom-up saliency only.

Figure 7 shows that gaze planning consistently detects
more relevant objects than BU saliency. The fact that full
image analysis achieves a higher detection rate is not sur-
prising because the attention systems only analyze up to five
(!) locations in the image. Note that gaze planning with five
gazes in Figure 6 attends to a higher percentage of relevant
objects than the full image analysis detects in Figure 7. So
gaze planning with a large number of attended locations



Fig. 7. Detection rate in % when using bottom-up saliency only (BU),
when using gaze planning (GP), or when analyzing the full image (Full
images). Both selective attention systems analyze the images at 2, 3, 4, and
5 locations (gazes). Gaze planning uses a planning horizon of T = 4.

Fig. 8. Precision in % when using bottom-up saliency only (BU), when
using gaze planning (GP), or when analyzing the full image (Full images).
Both selective attention systems analyze the images at 2, 3, 4, and 5
locations (gazes). Gaze planning uses a planning horizon of T = 4.

using a higher-quality object detector is expected to reach
the performance of full image analysis in Figure 7.

Another advantage of gaze planning is that it reduces the
number of false positives significantly by analyzing only
selected image locations. This results in the high precision
of our system shown in Figure 8. With a precision of around
90%, gaze planning outperforms both bottom-up attention
and analysis of full images. Since the number false positives
is so low (< 10 false positives out of 200), small changes in
the false positive rate make the precision vary in Figure 8.
Computational complexity Table I shows the difference in
computation time of the three approaches. Analyzing the
full images takes about four times longer than analyzing
the images at only four selected locations whereas gaze
planning takes only about 30 seconds longer than BU only.

bottom-up only 183 seconds
gaze planning 214 seconds

full images 826 seconds

TABLE I
COMPARISON OF THE AVERAGE COMPUTATIONAL COMPLEXITY PER

IMAGE OF THE THREE APPROACHES. BOTH SELECTIVE ATTENTION

SYSTEMS ANALYZE THE IMAGE AT 4 LOCATIONS (GAZES). GAZE

PLANNING USES A PLANNING HORIZON OF T = 2.

BU T = 1 T = 2 T = 3 T = 41

182 205 214 241 248

TABLE II
COMPUTATION TIME IN SECONDS FOR ATTENTION USING ONLY

BOTTOM-UP SALIENCY (BU) AND GAZE PLANNING (PLANNING

HORIZON T = 1, T = 2, T = 3, AND T = 4).

The approaches have been tested on a 3GHz Linux machine
with 2GB of memory and averaged over 40 images.
Dependency on the planning horizon In our experi-
ments with gaze planning, we implemented receding-horizon
model-predictive control (Section IV): After each planning
step, the system runs a detector on the first gaze of the
planned gaze sequence, updates its object posterior, and uses
it as prior in its next planning step. The planning horizon T
specifies the number of steps that the system is planning
ahead. Although a larger planning horizon does not increase
computation time significantly (Table II), it is still rewarding
to analyze the benefit of larger planning horizons.

Figure 9 depicts the dependency of the precision on the
planning horizon T . For comparison, the figure also shows
the performance of the system based on bottom-up saliency
only having no planning horizon and being myopic and the
analysis of the full images. At any time during planning, the
gaze planning system is selecting from four possible proposal
gazes. Under these conditions, the experiments show that an
increase of the planning horizon results only in moderate
performance improvement. The largest performance increase
appears between T = 1, i.e. myopic planning, and T = 2.
So there is a slight advantage of not being myopic. We
expect that the improvement due to longer planning horizon
increases when the system selects from a larger set of
proposal gazes. This will be the case as the complexity of the
task increases. We plan to investigate this further in future
work.

VII. DISCUSSION AND FUTURE WORK

We presented a framework for gaze planning using se-
quential decision-making and integrating various kinds of
information probabilistically (bottom-up, top-down, context).
The system demonstrates visual search on a real-world
dataset and is shown to result in a higher precision than
both an attention system based on bottom-up information
only and a system that exhaustively analyzes images. In
addition, our system attends to significantly more relevant



Fig. 9. Precision in % using bottom-up saliency only (BU), gaze planning
with planning horizons T = 1, T = 2, T = 3, and T = 4, and full
image analysis (FI). Both selective attention systems analyze the images at
4 locations (gazes).

objects than the BU only attention system. Also, the proposed
gaze planning system is four times faster than the traditional
approach of analyzing the image exhaustively. The presented
framework is principled in that it is independent of particular
object likelihoods or object detectors. Very specific object
knowledge (i.e. looking for red mugs or striped animals)
would permit to specify a very accurate object likelihood
and would thus increase the attention rate. Better high-
quality object detectors will improve the detection rate at the
attended locations. After the training of the object detectors,
gaze planning does not require any additional training and
is thus complementary to existing approaches to object
detection.

Besides being computationally more efficient and more
precise, target-directed attention also relates to the human
visual system. Research has shown that human visual at-
tention integrates bottom-up, image-driven and top-down,
target-based components [34], [3]. So our gaze planning
system might also be interpreted from the perspective of
human perception. The system combines low-level vision
(bottom-up saliency [9]) with coarse scene layout/gist to
guide focused attention as conceptualized in the “triadic
architecture” by Rensink [13]). Psychophysical experiments
to study these conjectures are within our future research
goals.

Other future projects include the learning of relevant low-
level input features (see [10]) or the object likelihood during
gaze planning, and the implementation of the system on
a robot with a pan-tilt-zoom unit. Our Bayesian sequential
decision approach also allows naturally for the inclusion of
dynamic models so as to treat moving objects. This will be
important when considering robotic applications.
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