
Technical Report TR-2010-06

University of British Columbia

Where do priors and causal models come from?
An experimental design perspective

Hendrik Kueck and Nando de Freitas

April 7, 2010

Department of Computer Science, University of British Columbia
2366 Main Mall, Vancouver, BC Canada V6T 1Z4

Abstract

In this pedagogical note, we treat prior elicitation and experimental
design within a common decision making framework. This is contrary
to the standard practice of assuming that priors are already available
when performing Bayesian experimental design. We argue instead that
these processes are intertwined. We demonstrate our decision-theoretic
stance in the setting of learning a causal Bayesian network prior se-
quentially. We choose among a set of actions (consulting an expert,
observing more data and conducting interventions and experiments)
to maximize the gain in information.



1 Introduction

It is unquestionable that priors play an important role in machine learning,
artificial intelligence and statistical modeling (Bernardo and Smith, 1994;
Bishop, 2006; Gelman et al., 1995; Mackay, 2006; Russell and Norvig, 2002).
The question of prior formulation has also gained enormous momentum
in cognitive science in recent years; for excellent surveys see Griffiths and
Tenenbaum (2006); Tenenbaum et al. (2006); Shafto et al. (2008); Yuille and
Kersten (2006). Priors allow us to incorporate preferences (e.g. sparsity)
as well as subjective knowledge into the modeling process (Mackay, 2006).
Priors may even arise naturally as a consequence of modeling assumptions,
such as exchangeability (J. K. Ghosh, 2003). There are also theoretical
reasons in the study of admissibility of estimators, e.g. Stein’s paradox,
that motivate the existence of priors (Robert, 2007).

Probably the two most immediate ways in which priors are used are
inference and decision making. In inference, Bayes rule provides the math-
ematical tool for updating this prior belief in light of observed data:

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

where p(θ|D) is the posterior distribution, p(D|θ) is the likelihood of the
observed data and p(D) the marginal likelihood of the data. In the rational
approach to decision making, which is prevalent in game theory, experi-
mental design, control and reinforcement learning, one defines a function
u(y, d, θ) that measures the utility of an outcome y for decision d and model
parameters θ (von Neumann and Morgenstern, 1947). An agent expecting
to behave rationally must maximize its expected utility:

d∗ = arg max
d

∫∫
u(y, d, θ)p(y|θ, d)p(θ) dy dθ.

But, where do the priors come from?
Some have argued that priors (or sub-components of the priors) come

from experts. In this line of work, the task of ‘extracting’ a person’s be-
lief and expressing it as a probability distribution is known as prior elic-
itation (O’Hagan and Oakley, 2004). Often it will be an expert on the
particular system being modeled whose prior knowledge and beliefs need to
be elicited. The problem is that people do not internally represent their
beliefs and knowledge in terms of probability distributions. The represen-
tations and heuristics we employ to answer questions about our beliefs lead
to various types of biases and inaccuracies when making judgements about
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probabilities (Kahneman et al., 1982; Garthwaite et al., 2005). Despite these
difficulties, there has been a significant amount of research on the problem
of prior elicitation; see e.g. Jenkinson (2005); O’Hagan et al. (2006); Garth-
waite et al. (2005).

The difficult and time-intensive prior elicitation process is most typically
carried out in cases where the elicited expert beliefs are directly used as a
basis for decisions. However even in Bayesian inference and experimental
design, where the elicited distributions are used ‘just’ as a prior for analyzing
subsequently gathered data, the effort can be justifiable. This is the case in
settings where acquiring data is expensive and/or the model is not identifi-
able. Important applications include medical diagnosis, choice of treatment
and clinical trials in medicine, safety assessment in the nuclear industry as
well as applications in psychology (e.g. user studies (Myung and Pitt)),
economics, engineering and many other fields. That is, if gathering data or
conducting experiments is expensive, we want as much prior knowledge as
possible to guide the decisions and reduce costs.

In Bayesian data analysis and experimental design the prior is usually
assumed to have been acquired before any data is collected.. While tradi-
tionally the expert’s belief would be elicited before any data is acquired,
we argue that this is not necessarily optimal. For example eliciting the full
belief of an expert about relationships of multiple variables in a complex
system is practically intractable. However it might be possible to gather
some data first and then use the knowledge gained from the data to ask the
expert directed questions about important relationships between parameters
which remain uncertain. The data can potentially narrow down the space
of possible models to a size where elicitation becomes more tractable.

In this technical note, we argue that it is beneficial not to treat elicita-
tion, inference and experimental design as separate stages, but to instead
handle them jointly. Just as the prior can inform the design of experiments,
available data can inform the choice of questions to ask an expert.

In recognizing this, we propose a decision theoretic approach to treat the
problems of Bayesian inference, elicitation and experimental design jointly.
The approach allows us to optimally decide whether to gather more data,
perform an intervention (and which) or ask an expert (and what question)
in the setup of learning a seemingly simple, but nonetheless very difficult,
probabilistic causal model.

The expert is assumed to provide indirect knowledge about the world.
That is, the expert provides answers about the state of the world and the
statistician can use these answers to update his own beliefs. Fundamentally
the expert’s answers in this framework are treated very similarly to the out-
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comes of experiments conducted in the system of interest. The qualitative
differences are (i) the expert can potentially provide information about the
system at a higher level of abstraction, (ii) because the expert’s answers are
(presumably) based on a significant amount of experience with the system,
one can hope to gain more information than from a small number of obser-
vations or experiments, and (iii) the cost of asking the expert differs from
the cost of conducting experiments. Depending on the setting it could be
significantly higher or lower. The cost will typically also vary for different
types of questions and experiments.

2 An application to causal discovery

We demonstrate the idea of interleaving prior elicitation and data acquisi-
tion via experiments using an illustrative causal discovery problem. Causal
discovery or structure learning in general is a very hard class of problems.
One of the reasons for this is that the space of all possible structures grows
super-exponentially with the number of variables in the system. For a sys-
tem with d variables there are O(d! 2(d

2)) possible DAGs (directed acyclic
graphs) (Robinson, 1973). As a consequence, eliciting an experts full prior
belief over all possible structures is infeasible except for very small numbers
(less than 4) of variables. In addition to the graph structure, the expert’s
opinion about the parameters of each network ideally would need to be
elicited as well, adding another layer of infeasibility.

In contrast to Bayesian networks, causal networks encode causal relation-
ships and not just independencies amongst the variables. This representa-
tion has many advantages (see Pearl (2000) for a comprehensive overview of
causal networks). One of them is that people tend to understand the world
in terms of causal relationships. Questions about causal links are there-
fore much more intuitive than questions about conditional independencies,
making these kinds of questions easier to answer with high confidence. For
example most people will be comfortable answering a question such as ‘Do
you think turning on the sprinkler will affect the wetness of the grass?’. On
the other hand they will likely have a harder time with a question like ‘Given
that the grass is wet, do you think the state of the sprinkler and the weather
are independent of each other?’

In the simple example presented in the following we are trying to learn
the causal relationships between 5 variables. Figure 1 shows the true exam-
ple network that our algorithm will be trying to reconstruct. This example
network is taken from Friedman et al. (1998) (also used in Eaton and Mur-

3



A

B C

D E

Figure 1: The example causal network that we are trying to reconstruct from
observations, experiments with interventions and questions to an expert.

phy (2007b)). The 5 variables take on binary values. We chose the causal
dependencies in our example network to be quite strong (the parameters
for the conditional Bernoulli distributions for the pairwise causal links in
the graph are 0.9 or 0.1). The 5 variables in the system are all assumed to
be observable. Even for only 5 variables, eliciting an expert’s belief on the
probability of all possible structures is prohibitive (there are 29281 possible
DAGs with 5 nodes).

Simply observing the values that the nodes take on jointly makes it
possible to infer dependencies and independencies amongst the variables
but is not sufficient to determine the direction of all causal dependencies.
The 4 causal networks shown in Figure 2 are likelihood equivalent with the
true network from Figure 1. This means that even given an infinite amount
of observation data alone, it is not possible to distinguish between these
4 networks. In order to determine the direction of the causal links it is
necessary to either use additional information such as prior belief elicited
from an expert or to use experiments with controlled interventions.
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Figure 2: The likelihood equivalence class of the causal graph shown in
Figure 1. Using observations alone it is not possible to distinguish between
these 4 graphs.
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In our example we assume that we have access to an expert with good
knowledge of the system as well as the ability to carry out perfect interven-
tions in which we control the value of one variable in the system. We chose
to model the expert using the external approach, in which we are not trying
to explicitly reconstruct the expert’s internal probabilistic model. Instead
we assume that we can ask the expert questions about the system and that
she will provide us with answers which are with high probability correct. We
treat this learning problem as a sequential optimal design problem where at
each stage we can choose between 3 different types of actions:

• Ask the expert about the existence and direction of a specific causal
link.

• Run purely observational experiments.

• Conduct experiments with perfect intervention, in which one of the
variables in the system is controlled.

In total this yields 16 possible actions (10 possible edges to ask about and
5 possible nodes to intervene on). We take the myopic approach to optimal
design, which means that we only try to find the optimal next action based
on the information acquired so far but do not consider future effects. To
decide between these 16 actions at each stage we first need to choose a utility
function. In causal discovery the goal is often to understand the causal links
between elements of a system. A reasonable goal would then be to minimize
the uncertainty about the individual causal links, while also taking into
account the costs of different types of experiments/questions. We formalize
this next.

Let G ∈ G denote one particular causal network structure (out of the set
of all possible DAGs G) and let eij be the state of the edge between node i
and j in the graph:

eij(G) =


0 if there is no edge between nodes i and j in G,
1 if there is a directed edge from i to j in G,
2 if there is a directed edge from j to i in G.

If we have some previous data D (consisting of observation trials, outcomes
of experiments with interventions and expert answers to questions) then
p(G|D) is our posterior distribution over graphs. This induces a marginal
distribution over edge states

p(eij = s|D) =
∑
G∈G

δs,ei,j(G) p(G|D). (1)
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The entropy of the state of one particular edge in the posterior is then

H(eij |D) = −
2∑
s=0

p(eij = s|D) log p(eij = s|D). (2)

The goal in this example is to minimize the sum of the entropy of all edge
states

∑
i,j H(eij |D). That is, we want to collect data such that we are

maximally certain about the state of the individual causal links in the causal
network.

Let ζ denote one of the 16 possible actions and let y be a possible outcome
(answer to a question or outcomes of experimental trials). Each type of
action has a different cost c(ζ) associated with it. This reflects the fact that
it might for example be much more costly to perform an intervention in the
system than to just passively observe. For the example presented in the
following we used a cost of 1.0 for collecting a set of 20 observations, 3.0 for
an experiment involving intervention on one node (and also 20 trials) and a
cost of 2.0 for asking the expert about a specific edge.

The problem we are trying to solve is to choose the source of information
ζ that we expect to give us the most information (reduction in entropy) per
cost. The amount of information that an outcome y would provide about
the state of one specific edge between node i and j is given by the difference
in entropy between the belief distribution after and before observing y:

H(eij |D)−H(eij |D, ζ, y).

The overall expected information gain per cost for a particular source of
information ζ is then

EU(ζ) =
∑
y

p(y|ζ,D)

∑
i,j H(eij |D)−H(eij |D, ζ, y)

c(ζ)
, (3)

and the goal is to choose ζ∗ = arg maxζ EU(ζ).
Computing the posterior distribution p(G|D, ζ, y) (incorporating the ev-

idence from the different types of data) is fairly involved and we cannot
describe it in full details here. We use a uniform prior p(G) on structures
and the BDeu prior (Heckerman et al., 1995) on the parameters, which allows
for closed form computation of the marginal likelihood of experimental data
(with or without interventions), and build on the computational approach
presented in Eaton and Murphy (2007b).

Computing the expected utility of asking about an edge according to
Equation (3) involves only 3 possible outcomes and is computationally fea-
sible to do exactly. However in the case of experimental trials, we resort to
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Figure 3: The marginal distributions p(eij |D) over the existence and direc-
tion of causal links between any two nodes in the graph. The data D here
consists of a first round of observations, consisting of 20 measurements of
all variables. (Best viewed in color.)

sampling to simulate hypothetical data from p(y|ζ,D) by first sampling a
structure G from p(G|D) and then sampling the outcomes y of experimental
trials (taking into account possible interventions). Equation (3) is then ap-
proximated using these samples. For the small example network used here
the distribution p(G|D) can actually be computed and stored exactly. For
larger networks the technique proposed in Eaton and Murphy (2007a) could
be used to efficiently sample from p(G|D).

Given the completely uninformative prior and the costs of the experi-
ments as given above it turns out that at the very beginning of the sequential
learning process collecting observational data is the option expected to be
most cost-effective. Figure 3 shows the edge marginals p(eij |D) after a first
round of collecting a set of 20 observations. Using these observations alone
we see that there is basically no uncertainty left about the existence of an
edge between A and B and C and E. However the direction of these edges
is completely unclear. Based on the information gained from these first 20
observations we then evaluate the expected utility (information gain per
cost) of all possible 16 actions. Figure 4 plots these expected utilities. In
this case an intervention on node A promises to yield the highest amount of
information per cost. Figure 5 shows the following rounds of the sequential
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Figure 4: The expected utility (Equation (3)) of choosing one of the 16
possible next actions after an initial round of observations. The brown bar
represents the expected utility of choosing additional observations. The red
bars correspond to experiments with a perfect intervention on the specified
node, while the orange bars show the expected utility of asking the expert
about the state of one specific edge. In this case an experiment with inter-
vention on variable A promises the highest payoff and is thus chosen as the
next action.

learning procedure. We can see that the intervention on A removed close to
all uncertainty about the edges connecting node A to B and C. This informs
the action selection at the next step. For example the expected utility of
asking the expert about edges A−B or A−C is now very low (as one would
expect). For this particular example and choice of parameters and utility
function it turned out to be optimal to only ask the expert towards the end,
when little uncertainty remained.

We believe that this illustrative example already enjoys the benefits of
using information from experimental data to inform the choice of questions
posed to an expert. Treating belief elicitation and experimental design as a
joint decision problem allows making more efficient use of the given resources
(both the expert’s and the experimenter’s time and other associated costs).
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Figure 5: Marginal distributions of edge states (right column) and the ex-
pected utilities of the next experiments/question (left column) for rounds
2 to 8 of the sequential learning procedure. Please refer to the legend and
captions in Figures 3 and 4 for explanations of the graphs. The titles of the
plots on the left indicate the experiment or question chosen at the previous
step.

3 Conclusions

To the best of our knowledge the combination of prior elicitation and exper-
imental design into a joint sequential learning task has not been proposed
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in the literature before. Even though in many applications the separation
of prior elicitation and experimentation/data collection is likely inevitable
due to practical constraints.

We plan to further explore the behavior of the approach for different
utility functions. For example one might want to simply answer the question
whether there exists any directed path going from node B to E. One would
expect that in this case the optimal first action might be to ask the expert
about the edge B −E or to conduct an experiment with intervention on B.

Finally, the extension to continuous variables is also worth pursuing.
The approaches discussed in Kueck et al. (2006); Myung and Pitt are likely
to bear fruit in this context.
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