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Abstract

Additional mathematical details to supplementOSBORNE,
et al. (2012).

Fault Bucket
We propose an algorithm that is designed to deal with faults
of many different, unspecified types. We use a sequential
scheme, applicable for ordered data such as time series, par-
titioning the data available at any point into old and new
halves. We then approximately marginalise the faultiness of
old observations, storing and then updating our results for
future use. This gives rise to an efficient and fast algorithm.
In order to effect our scheme, we make four key approxima-
tions:

1. Fault bucket: Faulty observations are assumed to be gen-
erated from a Gaussian noise distribution with a very wide
variance.

2. Single-Gaussian marginal: A mixture of Gaussians,
weighted by the posterior probabilities of faultiness of old
data, is approximated as a single moment-matched Gaus-
sian.

3. Old/new noise independence:We assume that noise con-
tributions are independent, and that the contributions for
new data are independent of old observations.

4. Affine precision: The precision matrix over both old and
new halves is assumed to be affine in the precision matrix
over the old half.

Approximation 1 represents the state-of-the-artDERESZYN-
SKI and DIETTERICH (2011). However, using it alone will
not give an algorithm that can scale to the real-time prob-
lems we consider. Our novel approximations 2-4 permit very
fast, fault-tolerant inference. We will detail and justifythese
approximations further below.

Our single, catch-all, “fault bucket” is expressed by ap-
proximation 1. It is built upon the expectation that points that
are more likely to have been generated by noise with wide
variance than under the normal predictive model of theGP
can reasonably be assumed to be corrupted in some way, as-
suming we have a good understanding of the latent process.
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It is hoped that a very broad class of faults can be captured
in this way. To formalise this idea, we choose an observa-
tion noise distribution that models the noise as independent
but not identically distributed with separate variances for the
non-fault and fault cases:

p(y |f, x,¬ fault, σ2

n) = N (y; f, σ2

n)

p(y |f, x, fault, σ2

f ) = N (y; f, σ2

f ),
(1)

wherefault ∈ {0, 1} is a binary indicator of whether the
observationy(x) was faulty andσf > σn is the standard de-
viation around the mean of faulty measurements. The values
of bothσn andσf form hyperparameters of our model and
are hence included inθ.

Of course,a priori, we do not know whether an observa-
tion will be faulty. Unfortunately, managing our uncertainty
about the faultiness of all available observations is a chal-
lenging task. WithN observations, there are2N possible
assignments of faultiness; it is infeasible to consider them
all.

Our solution is founded upon approximation 2. For time
series, the value to be predictedf⋆ typically lies in the fu-
ture, and old observations are typically less pertinent forthis
task than new ones. We hence approximately marginalise
the faultiness of old observations, representing the mixture
of different Gaussian predictions (each given by a different
combination of faultiness) as a single Gaussian. We prefer
this approximate marginalisation over faultiness to heuris-
tics that would designate all observations as either faultyor
not—we acknowledge our uncertainty about faultiness.

More formally, imagine that we have partitioned our ob-
servationsDa,b into a set of old observationsDa = (xa,ya)
and a set of new observationsDb = (xb,yb). Defineσa to be
the (unknown) vector of all noise variances at observations
ya, and defineσb similarly. Because we have to sum over all
possible values for these vectors, we will index the possible
values ofσa by i (each given by a different combination of
faultiness overDa) and the values ofσb similarly by j. We
now define the covariancesV i

a = Ka,a + diag σi
a, V j

b =

Kb,b + diag σj
b andV

i,j
a,b = K{a,b},{a,b} + diag{σi

a, σ
j
b},

wherediag σ is the diagonal matrix with diagonalσ.
To initialise our algorithm, imagine thata identifies a

small set of data, such that we can readily compute the like-



lihood of our hyperparameters

p(ya)=
∑

i

p(ya|σ
i
a)p(σ

i
a)=

∑

i

N (ya; 0, V
i
a )p(σ

i
a) (2)

and hence the hyperparameter posterior,p(σa|ya). This dis-
tribution specifies the probability of our observationsDa be-
ing faulty; for a single observationDa, p

(

fault(Da) |ya

)

=
p(σa = σf |ya). If we were to perform predictions for some
f⋆ usingDa alone, we would need to evaluate

p(f⋆ |ya)

=
∑

i

p(σi
a |ya)p(f⋆ |ya, σ

i
a)

=
∑

i

p(σi
a |ya)N

(

f⋆;m(f⋆ |ya, σ
i
a), C(f⋆ |ya, σ

i
a)
)

,

the weighted sum of Gaussian predictions made using the
different possible values forσa. We now use approximation
2. It is our hope that our predictions forf⋆ are not so sen-
sitive to the noise in our observations that all the Gaussians
in this sum become dramatically different. In any case, the
quality of this approximation will improve over time—iff⋆
is far removed from our old dataDa, then our predictions
really will not be very sensitive toσa. So, we take

p(f⋆ |ya) ≃ N
(

f⋆;K⋆,aṼ
−1

a ya,

K⋆,⋆ −K⋆,a(Ṽ
−1

a − W̃−1

a )Ka,⋆ − (K⋆,aṼ
−1

a ya)
2
)

,

where1

Ṽ −1

a =
∑

i

p(σi
a |ya)(V

i
a )

−1,

W̃−1

a =
∑

i

p(σi
a |ya)(V

i
a )

−1
yay

T

a (V
i
a )

−1. (4)

With these calculations performed, imagine receiving further
dataDb. To progress, we make approximation 3; we assume
that faults will not persist longer than|Db|. To be precise, we
assume

p(σi,j
a,b,ya,b) ≃ p(ya) p(σ

i
a |ya) p(σ

j
b) p(yb |σ

i,j
a,b,ya) (5)

Our predictions are now

p(f⋆ |ya,b) ≃
∑

j

p(σj
b |ya,b)

∑

i

p(σi
a |ya)

N
(

f⋆;m(f⋆ |ya,b, σ
i,j
a,b), C(f⋆ |ya,b, σ

i,j
a,b)

)

. (6)

1Note that forW̃a, explicitly computing (unstable) matrix in-
verses can be avoided by solving the appropriate linear equations
using Cholesky factors. For̃Va, we can rewrite(A−1+B−1)−1 =
A(A+B)−1B. If i ∈ {0, 1} (as it would be ifa identified a single
observation which could be either faulty or not),

Ṽa = V
0

a

(

p(σ1

a |ya)V
0

a + p(σ0

a |ya)V
1

a

)−1

V
1

a . (3)

If i takes more than two values, we can simply iterate using the
same technique. We can then use the Cholesky factor ofṼa to com-
pute our required equations.

Before trying to manage these sums, we will determine
p(σb | ya,b). As before, this distribution gives us the prob-
ability of the observationsDb being faulty. For example, if
we have only a single observationDb, p

(

fault(Db) |ya,b

)

=
p(σb = σf |ya,b). We define

m̃(yb |ya) = Kb,aṼ
−1

a ya

C̃(yb |ya, σb) = Vb −Kb,a(Ṽ
−1

a − W̃−1

a )Ka,b

− m̃(yb |ya,b)
2,

where bothṼa (or its Cholesky factor) and̃W−1

a were com-
puted previously. By using approximations 2 and 3,

p(σb |ya,b) =

∑

i p(yb |ya, σ
i
a,b)p(ya, σ

i
a,b)

p(ya,b)

≃
N
(

yb; m̃(yb |ya), C̃(yb |ya, σb)
)

p(σb)

p(yb |ya)
,

(7)

where we have

p(yb |ya) =
∑

i

∑

j

p(yb |ya, σ
i
a,b)p(σ

i,j
a,b |ya)

≃
∑

j

N
(

yb; m̃(yb |ya), C̃(yb |ya, σ
j
b)
)

p(σj
b).

(8)

Note that

p(ya,b) = p(yb |ya) p(ya), (9)

the product of (8) and (2), gives the likelihood of our hyper-
parameters, useful if we want to learn such hyperparameters
from data using, for example, maximum marginal likelihood.
Now, returning to (6), we will once again use approximation
2. We aim to reuse our previously evaluated sums overi to
resolve future sums overi. As we gain more data, the faulti-
ness of old data becomes less important. We arrive at

p(f⋆ |ya,b) ≃ N
(

f⋆; K⋆,{a,b}Ṽ
−1

a,b ya,b,

K⋆,⋆ −K⋆,a(Ṽ
−1

a,b − W̃−1

a,b )Ka,⋆ − (K⋆,{a,b}Ṽ
−1

a,b ya,b)
2
)

,

(10)

where we have

Ṽ −1

a,b =
∑

j

p(σj
b |ya,b)

∑

i

p(σi
a |ya)(V

i,j
a,b )

−1

W̃−1

a,b =
∑

j

p(σj
b |ya,b)

∑

i

p(σi
a |ya)

(V i,j
a,b )

−1
ya,by

T

a,b(V
i,j
a,b )

−1.

Now, using the inversion by partitioning formula (PRESS,
et al., 1992, Section 2.7),

(V i,j
a,b )

−1 =
[

Si,j
a −Si,j

a Ka,b(V
j
b )

−1

−(V j
b )

−1Kb,aS
i,j
a (V j

b )
−1+(V j

b )
−1Kb,aS

i,j
a Ka,b(V

j
b )

−1

]



where Si,j
a = (V i

a − Ka,b(V
j
b )

−1Kb,a)
−1 . Note that

(V i,j
a,b )

−1 is affine inSi,j
a , so that whenVa ≫ Ka,bV

−1

b Kb,a,

(V i,j
a,b )

−1 is effectively affine in(V i
a )

−1. This is true if given
Db, it is impossible to accurately predictDa. This might
be the case ifDa represents a lot of information relative to
Db (if, for example,Da is our entire history of observations
whereDb is simply the most recent observation), or ifDb

andDa are simply not particularly well correlated. On this
basis, we make approximation 4. Additionally noting that
∑

i p(σ
i
a |ya) = 1, we have2

Ṽ −1

a,b ≃
∑

j

p(σj
b |ya,b)

[

Ṽa Ka,b

Kb,a V
j
b

]−1

,

Ṽa,b ≃

[

Ṽa Ka,b

Kb,a Ṽb|a +Kb,aṼ
−1

a Ka,b

]

Ṽ −1

b|a =
∑

j

p(σj
b |ya,b)(V

j
b −Kb,aṼ

−1

a Ka,b)
−1 .

Note that the lower right hand element ofṼa,b defines the
noise variance to be associated with observationsDb. In ef-
fect, we represent each observation as having a known vari-
ance lying betweenσ2

n andσ2

f . The more likely an observa-
tion’s faultiness, the closer its assigned variance will beto
the (large) fault variance and the less relevant it will become
for inference about the latent process. This approximate ob-
servation is then used for future predictions; we need never
consider the full sum over all observations.

We now turn toW̃−1

a,b . Unfortunately, even ifVa ≫

Ka,bV
−1

b Kb,a, W̃−1

a,b is quadratic in (V i
a )

−1. We will
nonetheless again make approximation 4 and assume that
W̃−1

a,b is affine in(V i
a )

−1. The quality of our approximation

for W̃−1

a,b is much less critical than for̃V −1

a,b , because the for-
mer only influences the variance of our predictions for the
current predictant; any flaws in that approximation will not
be propagated forward. Further, of course, if one probabil-
ity dominates,p(σi

a | ya) ≫ p(σi′

a | ya), ∀i′ 6= i, then the
approximation is valid. With this,

W̃−1

a,b ≃
∑

j

p(σj
b |ya,b)

[

Ṽa Ka,b

Kb,a V
j
b

]−1

ya,b y
T

a,b

[

Ṽa Ka,b

Kb,a V
j
b

]−1

.

If we now receive further dataDc, our existing data is simply
treated as old data (a← {a, b}, b← c), and another iteration
of our algorithm performed. At each iteration, we are able to
return the predictions for the latent variable using (10) and
the posterior probability of an observation’s faultiness using
(7). We can also return the marginal likelihood (9) for the
purposes of training hyperparameters.

2Ṽ −1

b|a can be computed using the same trick as in (3) ifb iden-
tifies a single observation andj ∈ {0, 1}. The Cholesky factor of
Ṽa,b required to solve the linear equations for our predictions can
be efficiently determined (OSBORNE, 2010) using the previously
evaluated Cholesky factor of̃Va.
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