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Abstract

We propose efficient particle smoothing
methods for generalized state-spaces models.
Particle smoothing is an expensive O(N 2) al-
gorithm, where N is the number of particles.
We overcome this problem by integrating
dual tree recursions and fast multipole tech-
niques with forward-backward smoothers, a
new generalized two-filter smoother and a
maximum a posteriori (MAP) smoother.
Our experiments show that these improve-
ments can substantially increase the practi-
cality of particle smoothing.

1. Introduction

Belief inference, also known as smoothing in the sig-
nal processing and control literature, is at the heart of
many learning paradigms. Given a sequence of obser-
vations y1:T = {y1, . . . , yT }, an initial distribution over
the hidden states p(x1), a transition model p(xt|xt−1)
and an observation model p(yt|xt), Bayesian theory
provides a sound framework for estimating the fil-
tering distribution p (xt| y1:t), the smoothing distri-
bution p (xt| y1:T ) and the MAP sequence xMAP

1:T ,

arg maxx1:T
p(x1:T |y1:T ) . The Bayesian solution can

be obtained in closed form when the probabilistic
graphical model, defined by the transition and ob-
servation models, is either a Gaussian tree model or
a discrete tree model. Otherwise, numerical approxi-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

mation techniques must be employed. In this paper,
we present algorithms for smoothing in tree-structured
graphical models when the model distributions are
non-Gaussian, nonlinear and non-stationary. Though
many of the ideas can be extended to junction trees,
we simplify the presentation by focusing on the widely-
used chain-structured graphs.

Historically, particle filtering (PF) has proved to be an
efficient method for approximating the filtering distri-
bution; see for example (Doucet et al., 2001) or the
many hundreds of scientific publications on the topic.
In contrast, particle smoothing has hardly received any
attention. There are two reasons for this:

1. Smoothing algorithms, such as the two-filter
smoother (TFS), the forward-backward smoother
(FBS), and the MAP smoother, incur an O(N 2)
cost, where N is a typically large number of par-
ticles. Note that in contrast PF is only O(N).

2. The existing particle TFSs (Kitagawa, 1996; Isard
& Blake, 1998) make assumptions that are hard
to verify or satisfy in practice.

Practitioners often use filtering as a proxy to smooth-
ing. For example, PF is often used when post-
processing video sequences in sports (Vermaak et al.,
2003; Okuma et al., 2004). This is terribly limiting
given that the smoothed estimates, with access to the
data in the entire video sequence, can be far more ac-
curate. In addition, there has also been a historic focus
on inference but hardly any work on learning (parame-
ter estimation) with particle methods. This is not sur-
prising. In order to obtain the MAP or maximum like-
lihood parameter estimates one needs the smoothed
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estimates of the states; as is done often with the ex-
pectation maximization algorithm for linear-Gaussian
models or discrete hidden Markov models. One could
use Markov chain Monte Carlo (MCMC) techniques,
but these can perform poorly as, by the model defini-
tion, the states are strongly correlated in time.

In order to make particle smoothing viable, this paper
proposes the following:

• A unifying treatment and comparison of particle
smoothing methods for general state spaces, in-
cluding FBS, TFS and MAP smoothing.

• Fast implementation of these methods with dual
metric-tree recursions (Gray & Moore, 2000;
Klaas et al., 2005) and fast multipole algorithms
(Greengard & Rokhlin, 1987). Anecdotally, we
will show that for models where the likelihood is
easy to evaluate, one can carry out smoothing on
a chain of length 10 with 1,000,000 particles in
about 1 minute!

• A generalized two filter particle smoother that cir-
cumvents previous unrealistic assumptions.

In our state space formulation, the models can be non-
stationary, nonlinear and multi-modal, but we make
the assumption that the transition prior p(xt|xt−1) is
defined on a metric space. This assumption is not
very restrictive as it applies in many domains of inter-
est, including image tracking, beat tracking, robotics,
econometric models and so on. If the interest is in fast
methods for discrete state spaces, we refer the reader
to (Felzenswalb et al., 2003). We should also men-
tion that for maximum a posteriori (MAP) estimation
with deterministic grids one should use the distance
transform (Felzenswalb et al., 2003), however this al-
gorithm is not applicable to the type of multivariate
Monte Carlo grids that arise in particle smoothing.

2. Bayesian filtering

General Bayesian filtering is a two-step procedure.
Given an estimate of p(xt−1|y1:t−1), we can obtain
p(xt|y1:t) as follows:

• Forward prediction:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

• Forward update:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

.

The integrals in this procedure are often intractable,
but can be approximated with standard PF methods
(Doucet et al., 2001). In particular, through PF, one

obtains the following Monte Carlo approximation of
the filtering distribution:

p̂(dxt|y1:t) =

N∑

i=1

w
(i)
t δ

x
(i)
t

(dxt).

where w
(i)
t denotes the normalized importance weight

of the i-th particle and δ
x
(i)
t

(dxt) is the Dirac distri-

bution; see for example the introductory chapter in
(Doucet et al., 2001) for a detailed derivation. This
filtering step is carried out in all smoothers.

3. Bayesian Smoothing

In this section, we present the forward-backward
smoother, the MAP smoother as well as a new gen-
eralized two-filter smoother.

3.1. Forward-Backward smoother

The smoothed density p(xt|y1:T ) can be factored as
follows:

p(xt|y1:T ) =

∫
p(xt, xt+1|y1:T )dxt+1

=

∫
p(xt+1|y1:T )p(xt|xt+1, y1:t)dxt+1

= p(xt|y1:t)︸ ︷︷ ︸
filtered

∫
smoothed︷ ︸︸ ︷

p(xt+1|y1:T )

dynamics︷ ︸︸ ︷
p(xt+1|xt)∫

p(xt+1|xt)p(xt|y1:t)dxt

︸ ︷︷ ︸
state prediction

dxt+1.

Hence, we obtain a recursive formula for the smoothed
density p(xt|y1:T ) in terms of the filtering density
p(xt|y1:t), the state prediction density p(xt+1|y1:t), and
the smoothed density at time t + 1 p(xt+1|y1:T ). The
algorithm proceeds by making first a forward filtering
pass to compute the filtered distribution at each time
step, and then a backward smoothing pass to deter-
mine the smoothing distribution (see Figure 1).

We can approximate this distribution by defining:

p̂(dxt|y1:T ) =
N∑

i=1

w
(i)
t|T δ

x
(i)
t

(dxt),

where the importance weights w
(i)
t|T are obtained

through the following backward recursion:

w
(i)
t|T = w

(i)
t




N∑

j=1

w
(j)
t+1|T

p
(
x

(j)
t+1

∣∣∣x(i)
t

)

∑N
k=1 w

(k)
t p

(
x

(j)
t+1

∣∣∣x(k)
t

)


 (1)
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with w
(i)
T |T = w

(i)
T . Note that FBS maintains the origi-

nal particle locations and reweights the particles to ob-
tain an approximation to the smoothed density. Thus,
its success depends on the filtered distribution having
support where the smoothed density is significant.

Equation (1) costs O(N3) operations to evaluate di-
rectly, but can easily be performed in O(N 2) by ob-
serving that the denominator of the fraction in equa-
tion (1) is independent of i, hence can be performed
independently from i for each j. O(N 2) is still too
expensive, however, but we reduce this cost later.

0. Filtering . For t = 1, . . . , T , perform particle fil-

tering to obtain the weighted measure {x
(i)
t , w

(i)
t }N

i=1.

1. Initialization. For i = 1, . . . , N , set w
(i)
T |T = w

(i)
T .

2. Backward recursion . For t = T − 1, . . . , 1 and

i = 1, . . . , N

w
(i)
t|T = w

(i)
t

2
4

NX

j=1

w
(j)
t+1|T

p
“
x

(j)
t+1

˛̨
˛x(i)

t

”

PN

k=1 w
(k)
t p

“
x

(j)
t+1

˛̨
˛x(k)

t

”

3
5

Figure 1: The forward/backward particle smoother.

3.2. Two-Filter smoother

A smoothed marginal distribution can also be obtained
by combining the result of two independent filter-like
procedures; one running forward in time and another
backward. We use the following factorization:

p(xt|y1:T ) = p(xt|y1:t−1, yt:T )

=
p(xt|y1:t−1)p(yt:T |y1:t−1, xt)

p(yt:T |y1:t−1)

∝ p(xt|y1:t)︸ ︷︷ ︸
filter one

p(yt+1:T |xt)︸ ︷︷ ︸
filter two

.

Filter one is our familiar Bayesian filter. Filter two

can be computed sequentially using the Backward In-

formation Filter (Mayne, 1966), noting that:

p(yt:T |xt) =

∫
p(yt+1:T |xt+1)p(xt+1|xt)p(yt|xt)dxt+1.

The problem with this recursion is that p(yt:T |xt) is
not a probability density function in argument xt and
thus its integral over xt might not be finite (the re-
cursion blows up). Hence, existing Monte Carlo parti-
cle methods cannot be used to approximate p(yt:T |xt),
unless one makes unrealistic assumptions. References
(Isard & Blake, 1998; Kitagawa, 1996) implicitly as-
sume that

∫
p(yt:T |xt)dxt < ∞ and develop sequential

Monte Carlo methods in this context. However, if this
assumption is violated, these methods do not apply.

We present a solution to this problem that relies on the
introduction of an artificial distribution γt(xt). This
distribution enables us to define a recursion in terms of
finite quantities and thus allow Monte Carlo methods
to be used. We will first present the new recursion
assuming that γt(xt) is known. Subsequently, we will
present several choices of γt(xt) and their impact upon
the approximation at hand; see (Briers et al., 2004).

The key idea of the new algorithm is to express the
backward filter in terms of two finite quantities:

p(y1:T |xt) ∝
p̃(xt|yt:T )

γt(xt)
, where

p̃(xt:T |yt:T ) ∝ γt(xt)

T∏

i=t+1

p(xi|xi−1)

T∏

i=t

p(yi|xi).

The derivation of the above ratio is as follows:

p(yt:T |xt) =

∫
· · ·

∫
p(yt:T , xt+1:T |xt)dxt+1:T

=

∫
· · ·

∫
γt(xt)

γt(xt)

T∏

i=t+1

p(xi|xi−1)

T∏

i=t

p(yi|xi)dxt+1:T

∝

∫
· · ·

∫
p̃(xt:T |yt:T )

γt(xt)
dxt+1:T =

p̃(xt|yt:T )

γt(xt)
.

It is clear from the way in which γt(xt) is introduced in
this derivation that it is an arbitrary distribution (as
long as it does not cause obvious divisions by zero).
To derive a recursive algorithm for p̃(xt|yt:T ), we use
the following expansion:1

p(yt:T |xt) =

∫
p(yt+1:T |xt+1)p(xt+1|xt)p(yt|xt)dxt+1

∝

∫
p̃(xt+1|yt+1:T )

γt+1(xt+1)
p(xt+1|xt)p(yt|xt)dxt+1

=
p(yt|xt)

γt(xt)

∫
p̃(xt+1|yt+1:T )

p(xt+1|xt)γt(xt)

γt+1(xt+1)
dxt+1.

This expansion implies the following two-step back-
ward filtering procedure:

• Backward prediction:

p̃(xt|yt+1:T ) =

∫
p̃(xt+1|yt+1:T )

p(xt+1|xt)γt(xt)

γt+1(xt+1)
dxt+1

• Backward update:

p̃(xt|yt:T ) =
p(yt|xt)p̃(xt|yt+1:T )∫
p(yt|x′

t)p̃(x′
t|yt+1:T )dx′

t

.

This backward recursion is initialized with

p̃(xT |yT ) =
p(yT |xT )γT (xT )

p(yT )
.

1Note: ep(xt|yt+1:T ) may not be a proper probability dis-
tribution, but its finiteness is sufficient to guarantee con-
vergence in a Monte Carlo setting.
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Now that we have a recursion for p̃(xt:T |yt:T ), it only
remains to specify {γt (xt)}. It is clear from the deriva-
tion that any γt would work (as long as it is positive
when p(y1:T |xt) is positive). It is not possible to define
optimal {γt (xt)} with respect to minimizing the vari-
ance of the resulting incremental importance weights,
as is normally performed within standard particle fil-
tering, since the choice of {γt (xt)} is dependent upon
the specific choice of proposal distribution.

However some choices are intuitively better than oth-
ers. If the prior is analytic, that is if one can compute:

p(xt) =

∫
· · ·

∫
p(x1)

t−1∏

t′=1

p(xt′+1|xt′)dx1:t−1

then a sensible choice is γt(xt) = p(xt), since:

p(x1, . . . , xT ) = p(x1)

T∏

k=2

p(xk|xk−1)

= p(xT )
T−1∏

k=1

b(xk |xk+1)

where b(xk|xk+1) = p(xk)p(xk+1|xk)
p(xk+1)

.

References (Bresler, 1986; Fraser & Potter, 1969) con-
sider this case. However, the algorithm presented
here is more general and does not require that the
prior be analytic. Therefore, any approximation of
the prior will suffice. For example, in systems where
one can produce realizations of the Markov chain
prior p(xt|xt−1), one can obtain many samples from
p(xt) and γt(xt) can be obtained by fitting these sam-
ples with an analytical distribution. Moreover, if the
Markov chain is ergodic then we can run a single
Markov chain to obtain (approximate) samples of the
invariant distribution. Then we can use for all γt the
analytical approximation of the invariant distribution.

For readers more familiar with the notion of message
passing in discrete probabilistic graphical models, we
note that the introduction of the artificial distribu-
tion allows one to avoid numerical underflow issues
associated with calculating the messages in the belief
propagation algorithm. This is exactly what Pearl is
suggesting when he suggests normalizing messages to
avoid numerical problems (Pearl, 1988). He is implic-
itly choosing γ(xt) = p(xt) so that the message is a
probability measure. Our approach is more general
than this, and with thought, clever choices of γt can
lead to messages with good numerical properties.

In terms of Monte Carlo implementation, let

{x
(i)
t , w

(i)
t }N

i=1 be the weighted measure approxima-
tion produced by filter one (conventional forward

Forward filtering . For t = 1, . . . , T , perform particle

filtering to obtain the weighted measure {x
(i)
t , w

(i)
t }N

i=1.

Backward filtering .

1. Initialization:

(a) For i = 1, . . . , N , sample a candidate from a

proposal distribution ex(i)
T ∼ q(·|yT ).

(b) Compute the importance weights

ew(i)
T ∝

p(yT |ex(i)
T

)γT (ex(i)
T

)

q(ex(i)
T

|yT )
.

2. For t = T, . . . , 2 and i = 1, . . . , N

(a) Sample a candidate particle from a proposal

distribution: ex(i)
t−1 ∼ q( · |ex(i)

t , yt−1).
(b) Calculate the backward importance weights:

ew(i)
t−1 ∝

ew(i)
t p(yt−1|ex(i)

t−1)γt−1(ex(i)
t−1)p(ex(i)

t−1|ex
(i)
t )

γt(ex(i)
t )q(ex(i)

t−1|ex
(i)
t , yt)

.

(c) Resample if necessary.

Figure 2: The two-filter smoother. Note: The order of
running the two filters may be interchanged.

filter). Filter two is given by the backward re-
cursion of p̃ (xt|yt:T ). The algorithm is shown
in Figure 2. The particles are resampled if the
discrepancy of the weights is too high. Finally,
we combine the forward and backward approxima-

tions, p̂(xt−1|y1:t−1) and ̂̃p (xt|yt:T ), to obtain through

p(xt|yt:T ) ∝ p(xt|y1:t−1)ep(xt|yt:T )
γt(xt)

the following approxi-
mation:

p̂(dxt|y1:T ) ∝
N∑

j=1

w̃
(j)
t

N∑

i=1

w
(i)
t−1

p
(
x̃

(j)
t |x

(i)
t−1

)

γt

(
x̃

(j)
t

) δex(j)
t

(dxt).

Note the same O(N2) computational bottleneck aris-
ing again in the above expression.

3.2.1. An Important Warning

A common mistake in the smoothing literature is to
use the the inverse of the dynamics to obtain the back-
ward transition p(xt|xt+1). To see why this is erro-
neous, consider the following auto-regressive process:

xt+1 = axt + σνt+1, x1 ∼ N
(
0, σ2/(1 − a2)

)

which admits through the proper application of Bayes

rule p(xt|xt+1) = p(xt+1|xt)p(xt)
p(xt+1)

and marginalization

the following backward kernel:

p(xt|xt+1) = N
(
axt+1, σ

2
)
.

On the other hand, inversion of the dynamics
xt = a−1(xt+1 − σνt+1) incorrectly leads to:

p(xt|xt+1) = N (a−1xt+1, a
−2σ2).
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3.3. Maximum a posteriori (MAP) smoother

In many applications, one is interested in the maxi-
mum a posteriori sequence

xMAP
1:T , arg max

x1:T

p(x1:T |y1:T ) . (2)

For continuous state spaces, equation (2) almost never
admits an analytic form. In (Godsill et al., 2001), a
sequential Monte Carlo approximation to (2) is devel-
oped. First, standard particle filtering is performed.

At time t, the set of particles
{

x
(i)
t

}N

i=1
can be viewed

as a discretization of the state space. Since particles
are more likely to survive in regions of high-probability,
this discretization will be sensible. We can approxi-
mate (2) by finding the sequence of maximum proba-
bility on this grid, namely:

x̃MAP
1:T , arg max

x1:T ∈
N

T
k=1

{
x
(i)
k

}N

i=1

p(x1:T |y1:T ) . (3)

This approximation requires consideration of a num-
ber of paths that grows exponentially with time. How-
ever, the maximization can be solved efficiently using
dynamic programming.

Due to the Markov decomposition of the model, equa-
tion (2) is additive in log space, thus the Viterbi al-
gorithm can be used to compute eq. (3) efficiently as
shown in Figure 3.

4. Fast N-body Monte Carlo

The key N2 computational bottleneck in FBS and TFS
is the following evaluation:

f (j) =

N∑

i=1

g(i)p(x
(j)
t+1|x

(i)
t )

given the appropriate substitutions for f and g in each
case. In MAP smoothing, the bottleneck is given by:

f (j) =
N

max
i=1

g(i)p(x
(j)
t+1|x

(i)
t ).

We shall refer to these two bottlenecks as the sum-
kernel and max-kernel problems, respectively.

Assuming that the transition model is a similar-
ity kernel defined on a metric space p(xt+1|xt) =
K(d(xt+1, xt)), where d(·) denotes distance, the sum-
kernel problem can be approximated in O(N log N)
steps using algorithms from N-body simulation. These
algorithms guarantee an approximate solution within
a pre-specified error tolerance, and so one can control
the approximation error a priori. The most general

0. Filtering . For t = 1, . . . , T , perform particle filter-

ing to obtain the weighted measure {x
(i)
t , w

(i)
t }N

i=1.
1. Initialization. For i = 1, . . . , N

δ1(i) = log p(x
(i)
1 ) + log p(y1|x

(i)
1 )

2. Recursion . For t = 2, . . . , T and j = 1, . . . , N

δt(j) = log p(yt|x
(j)
t ) + max

i

h
δt−1(i) + log p(x

(j)
t |x

(i)
t−1)

i

ψt(j) = arg max
i

h
δt−1(i) + log p(x

(j)
t |x

(i)
t−1)

i

3. Termination . iT = arg maxi δT (i)

exMAP
T = x

(iT )
T

4. Backtracking . For t = T − 1, . . . , 1

it = ψt+1(it+1)

exMAP
t = x

(it)
t

5. Aggregation . exMAP
1:T ,

˘
exMAP

1 , exMAP
2 , . . . , exMAP

T

¯

Figure 3: The MAP smoothing algorithm produces an ap-
proximation to xMAP

1:T by employing the Viterbi algorithm
on the discretized state space induced by the particle fil-

ter approximation at time t: {x
(i)
t , w

(i)
t }N

i=1. The compu-
tational expense of the algorithm is O(N 2T ) due to the
recursion step (2).

and popular examples of these N-body algorithms for
the sum-kernel problem include fast multipole expan-
sions (Greengard & Rokhlin, 1987), box-sum approx-
imations (Felzenswalb et al., 2003) and spatial-index
methods (Moore, 2000).

Fast multipole methods tend to work only in low di-
mensions (up to 6D) and need to be re-engineered ev-
ery time a new kernel (transition model) is adopted.
The most popular multipole method is the fast Gauss
transform (FGT) algorithm (Greengard & Sun, 1998),
which as the name implies applies to Gaussian kernels.
In the particular case of Gaussianity, it is possible to
attack larger dimensions (say up to 10D) by adopt-
ing clustering-based partitions as in the improved fast
Gauss transform (Yang et al., 2003). Both the com-
putational and storage cost of fast multipole methods
is claimed to be O(N), though empirically the algo-
rithms behave as O(N log N) with O(N) storage.

Spatial-index methods, such as KD-trees and ball
trees, are very general, easy to implement and can be
applied in high-dimensional spaces (Gray & Moore,
2000; Gray & Moore, 2003). In particular, they ap-
ply to any monotonic kernels defined on a metric
space (most continuous distributions and some dis-
crete ones). Building the trees costs O(N log N) and
in practice the run-time cost behaves as O(N log N).
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Tree methods can also be applied to exactly solve the
max-kernel problem (Klaas et al., 2005).

To provide some intuition on how these fast algorithms
work, we will present a brief explanation of tree meth-
ods for the sum-kernel problem. The first step in these
methods involves partitioning the particles recursively
as shown in Figure 4.

Figure 4: KD-tree partition of the state space.

d dlower upper

X XX

tX     in node B(i)

(j)
t+1

(j) (j)
t+1 t+1

Figure 5: To bound the influence of the node particles x
(i)
t

on the query particle x
(j)
t+1, we move all the node particles

to the closest and farthest positions in the node. To com-
pute each bound, we only need to carry out a single kernel
evaluation.

The nodes of the tree will maintain statistics, such
as the sum of the weights in the node. We want to

evaluate the effect of particles x
(i)
t in a node B on the

query particle x
(j)
t+1, that is:

f (j) =
∑

i∈B

g(i)K
(
d(x

(i)
t , x

(j)
t+1)

)
.

where d(·, ·) is the metric component of the transition
kernel K(·). As shown in Figure 5, this sum can be ap-
proximated using upper and lower bounds as follows:

f (j) ≈
1

2

(
f (j)upper + f (j)lower

)

=
1

2

∑

i∈B

g(i)
[
K(dlower) + K(dupper)

]
,

where dlower and dupper are the closest and farthest
distances from the query particle to node B. The er-
ror in this approximation is: 1

2

(
f (j)upper − f (j)lower

)
.

One only needs to recurse down the tree to the level at
which the pre-specified error tolerance is guaranteed.

Since there are many query particles, it is possible to
improve the efficiency of these tree methods by build-
ing trees for the source and query points. Then, in-
stead of comparing nodes to individual query particles,
one compares nodes to query nodes. Detailed explana-
tions of these dual-tree techniques appear in (Gray &
Moore, 2000; Gray & Moore, 2003; Klaas et al., 2005).

5. Experiments

5.1. Linear-Gaussian Model

In this simple experiment, we show that it is now
possible to conduct particle smoothing for 10 observa-
tions in about one minute with as many as 1,000,000
particles. In particular, FBS was tested on a three-
dimensional linear-Gaussian state space model popu-
lated with synthetic data. We keep the model suffi-
ciently simple to compare the particle smoother to an
analytic solution (in this case, a Kalman smoother).
Since this is a sum-kernel problem, the acceleration
method necessarily introduces error. Thus, we report
both the cpu time for the näıve and fast method (in
this case, the FGT) and the error of both algorithms
after a given amount of cpu time. The results in
Figure 6 verify that using more particles—smoothed
approximately using the FGT—is better in terms of
RMSE than using fewer particles smoothed exactly.
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Figure 6: Particle-smoothing results on synthetic data,
shown on a log-log scale for clarity. The data in both plots
stem from the same experiment. For the same computa-
tion cost, FGT achieves an RMSE two orders of magnitude
lower. We are able to smooth with as many as 4,000,000
particles with this method!

5.2. Non-Linear and Non-Gaussian Model

We consider the following synthetic model:

xt =
xt−1

2
+

10xt−1

1 + xt−1
+ 8 cos(1.2t) + N (0, σx)

yt = x2
t /20 + N (0, σy) .

The posterior is multi-modal, non-Gaussian, and non-
stationary. It is as such an ideal setting to compare
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Figure 7: Non-linear, non-Gaussian model. Exact and dual-tree accelerated algorithms (ε = .005). Left/Middle: Dual-
tree algorithms provide up to two orders of magnitude speedup. The TFS is more amenable to acceleration than the
FBS, up to a factor of ten. Right : FBS out-performs filtering, but TFS significantly out-performs both. The RMSE of
the approximate algorithms is comparable to the exact versions.

the particle smoothers. There is no closed-form ex-
pression for the natural choice of γt(xt), so we instead
simply use a flat Gaussian distribution. We tested for-
ward filtering, backward (information) filtering, for-
ward/backward smoothing, and two-filter smoothing
over 15 Monte Carlo runs for each of 30 realizations of
the model. Figure 7 contains the results. The TFS is
significantly more accurate than filtering or FBS, and
(surprisingly) faster as well. We conjecture that this is
due to the resulting kernel matrix being sparser, hence
providing more opportunities for node pruning.

5.3. Parameter Learning in SV Models

Stochastic volatility (SV) models are used extensively
in the analysis of financial time series data (Kim et al.,
1998). A common inference problem is to estimate
the parameters in such complex models; coordinate
ascent algorithms such as EM are used to perform such
inference.

The SV model can be written as follows:

xt+1 = θ1xt + θ2νt+1, x1 ∼ N
(
0, θ2

2/(1 − θ2
1)
)

yt = θ3 exp (xt/2)ωt,

where νt+1 and ωt are two independent standard Gaus-
sian noise processes. The initial state, x1, which is
independent of the states at all other times, is dis-
tributed according to the invariant distribution of the
process evolution.

We use a standard EM algorithm: given a current es-
timate θ(i−1) of θ then

θ(i) = argmax
θ∈Θ

Q
(
θ(i−1), θ

)
,

where

Q
(
θ(i−1), θ

)
= Eθ(i−1) [ log (pθ (x1:T , y1:T ))| y1:T ]

=

∫
log (pθ (x1:T , y1:T )) pθ(i−1) (x1:T | y1:T ) dx1:T .

In our application, we use the natural invariant distri-
bution as artificial prior γt. Hence, we cannot max-
imize Q analytically, but it is possible to maximize
a modified Q function where the initial state is dis-
carded, by setting2

θ
(i)
1 =

∑T
t=2 Eθ(i−1) [xt−1xt| y1:T ]
∑T−1

t=1 Eθ(i−1) [x2
t | y1:T ]

,

θ
(i)
2 =

[
(T − 1)−1

(
T∑

t=2

Eθ(i−1) [x2
t |y1:T ]

+ θ
(i)2
1

T∑

t=2

Eθ(i−1) [x2
t−1|y1:T ]

− 2θ
(i)
1

T∑

t=2

Eθ(i−1) [xt−1xt|y1:T ]

)]1/2

,

θ
(i)
3 =

(
T−1

T∑

t=2

y2
t Eθ(i−1) [ exp (−xt)| y1:T ]

)1/2

. (4)

The algorithm proceeds by iteratively computing the
smoothed marginals p(xt|y1:T ) (E step) and updating
the parameters using eq. (4) (M step). Figure 8 con-
tains results applying the TFS to the stochastic volatil-
ity model.

2Note that the expectations in eq. (4) involve smoothed
distributions—this is an application where smoothing is
not merely a higher-quality version of filtering but integral
to the problem.
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Figure 8: Parameter estimation example; log likelihood v.
smoothing (E step) time. We use N = 1000 particles over
6 runs, and set the FGT tolerance to ε = 10−6. In the time
the exact algorithm takes for one iteration, the FGT has
already converged.

5.4. Beat Tracking

Beat-tracking is the process of determining the time
slices in a raw song file that correspond to musical
beats. This is a challenging multi-modal MAP prob-
lem (Cemgil & Kappen, 2003). We applied the model
in (Lang & de Freitas, 2004) to “I Will Survive” by
Cake, using the MAP particle smoothing algorithm
described in section 3.3, and the exact dual-tree ac-
celeration method. The dual-tree version is faster for
N > 100 particles, and then dominates: it takes 2.53s
to smooth N = 50000 particles, while näıve compu-
tation requires 1m46s (see Figure 9). This problem
benefits from a high particle count: Using 1000 parti-
cles results in a MAP sequence of probability p = 0.53,
while 50000 particles results in p = 0.87.

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Particles

T
im

e 
(s

)

naive
dual−tree

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Particles

D
is

ta
nc

e 
co

m
pu

ta
tio

ns

naive
dual−tree

Figure 9: Beat-tracking results; log-log scale. The dual-
tree method becomes more efficient at t = 10ms, and there-
after dominates the näıve method.

6. Conclusion

Our experiments demonstrate that practical particle
smoothing can now become part of the standard sta-
tistical machine learning toolbox. To assist in this, the
software has been made available on the author’s web-
site. One nice feature of all the smoothing algorithms
is that if one already has a working PF, then adding
the smoothing step is trivial. This should be noted

by people working in image tracking, where the MAP
smoother is likely to improve results.
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