TECHNICAL REPORT TR-2010-04

UNIVERSITY OF BRITISH COLUMBIA

Sparsity priors and boosting for learning localized
distributed feature representations

Bo Chen Kevin Swersky Ben Marlin Nando de Freitas

March 29, 2010

Department of Computer Science, University of British Columbia
2366 Main Mall, Vancouver, BC Canada V6T 1Z4

Abstract

This technical report presents a study of methods for learning
sparse codes and localized features from data. In the context of this
study, we propose a new prior for generating sparse image codes with
low-energy, localized features. The experiments show that with this
prior, it is possible to encode the model with significantly fewer bits
without affecting accuracy. The report also introduces a boosting
method for learning the structure and parameters of sparse coding
models. The new methods are compared to several existing sparse cod-
ing techniques on two tasks: reconstruction of natural image patches
and self taught learning. The experiments examine the effect of struc-
tural choices, priors and dataset size on model size and performance.
Interestingly, we discover that, for sparse coding, it is possible to ob-
tain more compact models without incurring reconstruction errors by
simply increasing the dataset size.



1 Introduction

In their seminal work, Olshausen and Field (1996, 1997) proposed a method
for learning sparse linear codes from natural images that automatically gen-
erated a set of localized, oriented, bandpass filters similar to the receptive
fields of simple cells found in the mammalian primary visual cortex. We
will refer to these learned filters as features or bases. Proponents of sparse
coding argue that sparseness is a desirable property because it leads to sim-
ple, compact descriptions of the structures in natural scenes in terms of a
small number of basis vectors (Garrigues and Olshausen, 2008; Karklin and
Lewicki, 2009). Compact features also provide a convenient way of forming
associations at later stages of processing (Olshausen, 2001). Underlying this
line of work, is the ecological-statistical hypothesis that the visual system
is adapted to the statistical structure of natural images, where locality and
hierarchical structure play a prominent role (Hyvarinen et al., 2009).

It has been argued that the design of hierarchical representations in
terms of local features is key to understanding intelligence and, in particu-
lar, to the design of parsimonious memory systems (Hawkins and George,
2006). Much progress has also been attained recently with deep-layer rep-
resentations, where the features tend to be sparse (Hinton and Salakhut-
dinov, 2006; Hinton et al., 2006; Bengio et al., 2007; Bengio and Le Cun,
2007; Larochelle et al., 2009; Salakhutdinov and Hinton, 2009). Many of
the deep-layer models consist of stacks of restricted Boltzmann machines
(RBMs). These RBMs are trained in a greedy fashion layer-by-layer. At
the end of the greedy training, the parameters of the entire network are
refined with a back-propagation step. In much earlier work on Boltzmann
machines, Kappen (1995) advocated the use of sparse representations as a
way of simplifying computation in these models.

More recently, Kavukcuoglu et al. (2008a) state that learning sparse rep-
resentations can be advantageous because the resulting features are more
likely to be linearly separable in high dimensions and, hence, more robust
to noise. Learning sparse representations from large datasets in an unsuper-
vised manner has also been shown to be very suitable for complex multi-task
learning problems (R. Raina and Ng., 2007). The enormous success of engi-
neered local feature methods in computer vision, such as SIFT (Lowe, 2004),
is also a significant motivating factor for designing algorithms that will learn
these local, invariant bases automatically.

It is therefore not surprising that the problem of learning sparse codes
and compact features automatically from data has taken a central posi-
tion in the machine learning field (Bell and Sejnowski, 1997; Hoyer, 2004;



Kavukcuoglu et al., 2008a; Lee et al., 2008). The most popular strategy is to
place an L1 prior on the code coefficients and an Ly prior on the bases; see
among many others (Kavukcuoglu et al., 2008a; R. Raina and Ng., 2007).
Garrigues and Olshausen (2008) propose a Bayesian version of this strategy,
consisting of a mixture prior with a Dirac function at zero and a normal
distribution. In the context of learning deep restricted Boltzmann machines
(RBMs) and convolutional networks, Lee et al. (2008, 2009) introduce a sim-
ple prior that modifies the coefficients of the hidden units to attain sparser
RBMs.

In this paper, we examine the mechanisms used to obtain compact fea-
ture representations. In doing so, we propose a simple prior for sparse
coding and obtain very compact, localized features without affecting the
reconstruction performance of the model. We observe that the prior leads
to models with comparable approximating power but with less storage re-
quirements (an important factor in embodied systems). We also propose
a boosting algorithm to learn the features and structure of sparse coding
models automatically. This algorithm guarantees that the right number of
hidden units is chosen according to an early stopping cross-validation test.
Finally, we examine the effect of other variables such as model structure
and dataset size on obtaining sparse localized features with sparse coding.
We find that by simply increasing the dataset size, we obtain more compact
feature representations.

2 Continuous Coding Schemes

We begin with a review of several linear coding schemes. Here, the data
matrix X € RP*N (of size N data cases by D dimensions) is approximated
by a product of two matrices B and C. B = [by,...,bj,...,by] € RP*M
is a matrix of M feature vectors b; € RP and C = [c1,...,Cpn,...,CN] €
RM*N s a matrix of N code vectors ¢, € RM. (We use subscripts and
superscripts to denote columns and rows of a matrix: b; denotes the element
of B at the i-th row and j-th column. Matrices are upper-case bold and
vectors are lower-case bold. Finally, By.; denotes the first j columns of B.)

Existing linear coding methods differ in terms of the constraints imposed
on B and/or C. One of the most popular approaches is principal component
analysis (PCA), which constrains the bases to be orthonormal: b]Tbl =
0,Vj # [ and ||b;||3 = 1,Vj. In certain application domains, it might be
desirable for B and C to be non-negative. This gives rise to Non-negative
Matrix Factorization (NMF) (Paatero and Tapper, 1994; Lee and Seung,



1999), where the optimal parameters B*, C* are given by:

B*,C* = argmin||X - BC||3
B,C
s.t. b, >0, ¢}, >0, Vi,jn

In limited cases, NMF induces sparse representations (Lee and Seung, 1999),
but in general sparsity has to be enforced through explicit addition of ap-
propriate regularizers (Hoyer, 2004; Li et al., 2001).

Independent Component Analysis (ICA) is a popular linear approach
for obtaining sparse representations by maximizing statistical independence.
It produces the same type of results as sparse coding, discussed in detail
below, so we do not pursue it further in this paper. We refer the reader to
(Hyvarinen et al., 2009) for a comprehensive treatment of ICA.

Classical sparse coding (Olshausen and Field, 1996, 1997) uses an over-
complete set of features and imposes a sparsity penalty on the activation
matrix C. Formally,

B',C*  =argmin||X - BC|}+A[C],
B,C
st b3 =1, vi.

This objective function is denoted Csc (B, C). Note that the basis vectors
are normalized to have unit length in order to avoid the trivial solution of
shifting all the energy from C to B. The goal of sparse coding is to learn
both the bases B shared among all data instances and the codes c,, for
each n-th data instance. Although given B the problem is convex in C and
vice versa, it is not jointly convex in both B and C. Hence optimization
typically involves alternating between minimizing over B and C; see for
example (Kavukcuoglu et al., 2008a).

To understand how the L prior on C leads to the emergence of sparse
(local) features bj, consider the example of discriminating among images of
3’s and 8’s shown in Figure 1. There are two local features that are sufficient
for discriminating the two classes (even under significant occlusion and noise
in the rest of the image). One way these features can be learned is if the
corresponding coefficients are non-zero for an 8 and precisely zero for a 3.
The sparseness prior on C helps with this process by encouraging many of
the feature coefficients to go to zero.

Once the feature set B is learned, inference for new data involves finding
the optimal C given B. This amounts to solving an L; regularized linear



Figure 1: Local features to discriminate 3’s from 8’s.

regression, which can be inefficient at test time. To avoid this expensive
inference procedure, (Kavukcuoglu et al., 2008b) approximate the mapping
from the input to the code by a feed-forward neural network. During train-
ing, the optimization problem is:

argmin ||X — BC|[|3+A ICll;+ 5 |IC — Gtanh(WX)H%

»~y

st |Ibjll3 =1, Vj,

where 3 € (0,1) weights the sparse coding objective Csc(B, C) against the
sigmoidal approximation objective Capproz (C, W, G) = ||C — G tanh(WX)||3,
where the tanh neural network is parameterized by W, an M x D weight
matrix, and G, a D x D (diagonal) gain matrix. The choice of tanh non-
linearity and gain matrix allows the input to take real values greater than

1. The resulting network can reasonably approximate the optimal C while
expediting inference. At test time, approximate codes can be generated
by a simple feed-forward computation. We refer to this as the sigmoidal
(approximation) method.



2.1 Basis Interaction Priors

There has been a significant amount of work in the literature of modeling
lateral inhibition between neurons in neural architectures. See for example
(Garrigues and Olshausen, 2008) and (Rozell et al., 2008). Here we model
this inhibition between features with the goal of obtaining sparse models
with less redundant features, while not increasing the approximation error.
This has the potential to result in models requiring fewer bits to describe,
leading to memory savings.

Let the similarity between two feature vectors be computed via a kernel
K : RP xRP — R. Then we can model lateral inhibition by adding a prior
that penalizes the interaction between all pairs of distinct features. We refer
to this prior as a Basis Interaction Prior (BIP) and define it as follows:

M
PB)ocexp [ =Y > K(bj,by)

J=1 1#j

From an optimization perspective, we incorporate this prior by adding the
following term to the cost function of sparse coding:

M
Cprp(B) =) Y K(bj,by). (1)

=1 1#j

Using K(Bj, B;) = Efi 1 bijbiy would not rule out the possibility of two
feature vectors with complementary regions of opposite signs cancelling out
in the inner product computation. Instead, we propose to compute the
similarity between fully-rectified feature vectors. More formally, we define
the following cost:

D M o
Crrp(B) = > > [b|Ibjl.

i=1 j=1 I£j

This penalty penalizes features for sharing any overlapping regions. As we
will see in the experiments, combining this prior with sparse coding will
produce extremely localized features.

The overall cost function C(B,Z) we minimize, in what we refer to as
the BIP method, is

CSC(B’ C) + OZC'BIP(B) + 6Capprox(ca W, G), (2)



where a € (0, 1) balances the strength of the BIP prior with the other terms.
When « is large, overlapping features are heavily discouraged, hence the
features are extremely localized. As the effect of BIP weakens and vanishes
eventually, the basis vectors reduce to those of ordinary sparse coding. In
section 4, we analyze in more detail the smooth transition between these
two extreme cases.

BIP is closely related to a technique developed to obtain localized part-
based representations called Local NMF (Li et al., 2001). Local NMF mini-
mizes redundancy in the representation by penalizing pair-wise correlations
between feature vectors. It also encourages the activation pattern of each
feature across the entire data set to have large magnitude in order to only
retain important feature vectors. Mathematically,

M

. Ty j

min D(X||BC)+>\12bz b )\22||C P
l,j Jj=1

st.  b.>0,c,>0,Vijmn,

where \; and )y are positive constants and the divergence between the data
and reconstruction is defined as: D(P||Q) =3, ; pi; log % —Dij +qij. Since
B is required to have positive entries, the feature interaction terms of BIP
and local NMF are equivalent up to a constant. However, BIP is more
general in that it allows for negative feature elements and coeflicients.

2.2 Boosted Sparse Coding

Inspired by the work of Buhlmann and Yu (2005), who show that boosting
and variable selection with an L; penalty have striking similarities, we de-
velop an Lo-boosting algorithm for sparse coding in this section. The idea is
to grow the model incrementally and only add those features that are needed
to fit the data. Cross-validation is used to determine the final structure of
the model.

We reformulate the objective in Equation (2) in a Boosting framework:

M
C(B,C,W,G) =X - b;c/)||} + 2(B,C), (3)
j=1

where ®(B, C) = includes the sparsity and approximation components of the
objective function. In this equation, BC = Z]]Vil bjcj takes the form of an
additive model that can be solved incrementally via Lo-Boosting (Friedman,



2001; Lutz et al., 2008). In the view of boosting, each ¢/ is a weak learner
weighted by the coefficient vector b;.

Formally, assume that 7 — 1 weak learners Cli=1 and coefficients Bij1
have been included in the model, we can solve for the increment that maxi-
mally reduces the objective:

{b;,¢/} = arg min |[|[X —By;_;C*¥ ! —be)|3
c,b[[bl[2=1

+ (I)(Bl:j_l,Clzj_l,b,c)
arg  min I 15j-1 c|lz
+ )\chl + OéCBIP(BI:j—h b) + ﬁcapprox(q ij Gj)a

where the parameters {G;, W;} are learned at the same time as c. This
formulation is valid because the L1 norm, Lo norm and the sigmoidal ap-
proximation are all separable. However, in our particular choice of the in-
teraction kernel, the jth feature depends on all the other features, including
those not yet added to the model. In the Lo-Boosting view, the coefficients
of all the weak learners, except of those included in the model, are zero.
Therefore we consider only the interaction between b and By.;_;.
Lo-Boosting allows us to construct an incremental solution to the fea-
ture set, of which the optimal size is determined via cross-validation. In
addition, Lo-Boosting itself has a variable selection effect: Lin et al. (July
2008) demonstrate that Lo-Boosting is an approximation to Lo penalty on
the weak learners and, as mentioned earlier, Buhlmann and Yu (2005) show
that boosting and variable selection with an Lq penalty have striking sim-
ilarities. Therefore, the benefit of Lo-Boosting lies not only in automatic
model selection, but also in minimizing the number of feature vectors that
are needed to represent the data. A closely-related paper is (Bradley and
Bagnell, 2009), where Boosting is also employed to learn sparse coding bases.
The distinction is that that work relies on an additional, structural sparsity
prior on the activations, and it does not seem to yield sparse basis vectors.

3 Discrete Coding Schemes

Coding with discrete variables is an alternative to the previous regularized
continuous coding schemes. Binary Restricted Boltzmann machines are a
popular example of this approach (Hinton and Salakhutdinov, 2006; Hinton
et al., 2006). An RBM is an undirected probabilistic graphical model with
symmetric weights b} between visible units z?, i € 1,...,D and discrete



hidden units ¢/ € {0,1}, j € 1,..., M. (Note that most papers on RBMs use
v for the visible units, kA for the hidden units and W for the weights. We
adopt a different notation with the intention of drawing a closer connection
between these models and the continuous sparse coding methods presented
in the previous section.). Henceforth, we use Gaussian RBM and RBM
interchangeably.

The negative log-probability for an RBM with Gaussian-distributed vis-
ible units and binary hidden units is given below where r are the visible unit
bias parameters and s are the hidden unit bias parameters:

1 — log Z(B LS~ (@ = ni)?
—log P(xp,cy) = log Z( ,r,s)+§zi

o2
=1
D M i 1.4 M j
D) PR K it
L L o? —~ g2’
=1 j=1 7j=1

where Z(B,r, s) is the partition function, which depends on the weights and
bias parameters. In an RBM, the visible units are conditionally independent
given the hidden units and the hidden units are conditionally independent
given the visible units. We can easily sample from the conditional distribu-

tions:

P(x|c) ~ HN n+2b1cfo (4)

P(c|x) ~ H logistic (J (s] + Z b Z>> (5)

and apply stochastic approximation algorithms to estimate the parameters.
Lee et al. (2008) propose a method for encouraging further sparsity in the
hidden unit activations by adding a regularization term to the log-likelihood
of the form:

M o/ N . 2
'3 (e o) ©
7=1 n=1

where x,, is the n'? data case, \ is the strength of the regularization term,
and p is a small constant indicating the proportion over which the hidden
units should be active. A closely related prior was proposed earlier in (Kap-
pen, 1995).



4 Experiments

Our experiments will show that (i) BIP leads to very sparse features and
gains in computational efficiency, (ii) that for the same measure of recon-
struction error, it requires less bits to represent the feature matrix (it is
more compact/sparse), (iii) that the proposed La-boosting procedure results
in compact features at multiple frequencies, (iv) that the approximating sig-
moidal term of Kavukcuoglu et al. (2008a), adopted to expedited inference,
does not affect reconstruction performance and (v) that it is possible to ob-
tain sparser features by simply increasing the dataset size. The experiments
will also assess the generalization performance of the models with BIP and
trained with L2 Boosting on a self-taught learning task.

4.1 Reconstruction Against Model Size

We investigate the relationship among reconstruction error, feature sparsity
and code sparsity. For this experiment, we use the dataset of 10,000 14 x 14
natural image patches from Lee et al. (2007). To learn the sparse coding
models, we adopt the projected gradient method of Schmidt et al. (2007). As
in Kavukcuoglu et al. (2008a), we divide the training set into mini-batches
of size 10. Learning consists of first computing the optimal code C for a
given batch, followed by updating the basis vectors B with a single step of
stochastic gradient descent and then a normalization step to make sure each
b; has unit Ly-norm. We use an adaptive learning rate of 7%0 where 7
denotes the epoch number (number of passes over the entire data set). We
terminate training when either the reconstruction errors between adjacent
epochs differs by less than 1% or a maximum of 20 epochs has been reached.

To learn the Sparse Gaussian RBM (SRBM) models, we use code pro-
vided by Lee et al. (2008). We vary the number of hidden units, training set
size, and sparsity penalty, including a sparsity penalty of 0 corresponding
to an ordinary Gaussian RBM. Each model is trained using Contrastive Di-
vergence (Hinton et al., 2006) by running 500 steps of Stochastic Gradient
Descent on mini-batches of 100 examples, which means 150,000 parameter
updates on the 30,000 data. However, we replace the sampling of ¢ with
the mean field values E[z¢|c].

The estimated receptive fields Figure 2 indicates that BIP is able to
learn extremely local features. As in sparse coding, these features seem to
correspond to edges, although each filter is responsible for modeling only
a small region of the input image. By varying the balancing parameter «,
we can create a smooth transition from extremely localized filters to regular



Figure 2: Learned features with (a) sparse coding, (b) Lo boosting with
BIP, (c) Gaussian RBM, (d) sparse coding with BIP, (e) PCA, and (f)
Sparse Gaussian RBM. BIP features are extremely localized and selective
to orientation. The features learned with PCA and boosting incrementally
model higher spatial frequencies. Yet, unlike PCA, the boosting features
and codes are sparse.

sparse coding filters.

We can also use BIP to warm-start ordinary sparse coding. Since BIP
imposes additional constraints in the solution space, it converges faster to
a local optimum. From there the constraints can be dropped or annealed
to recover the normal sparse coding setting. In the experiment, we first run
the optimization algorithm with o = 0.01 for two epochs and then run it
with o = 0 for another two epochs. This produces identical features, both
in terms of appearance and reconstruction error, to the ones obtained by
standard sparse coding after 20 epochs.

For the boosting procedure we had to consider some modifications. First,
the modeling power of one basis as a weak learner is often insufficient so we
use a batch of several, say 10, feature vectors at each boosting iteration. This

10



corresponds to performing block coordinate descent in function space (Rudin
et al., 2004). Second, when optimizing within a new batch of features, we
ignore the interaction penalty imposed by the existing features to encourage
spatial exploration of the new features. This relaxation maintains a good
approximation to the original BIP penalty when the number of features is
small, and is less affected by the excessively greedy nature of boosting as the
number of features increases. These modifications turn out to be important
to prevent trivial solutions. Finally, cross-validation errors are monitored
to determine the optimal stopping point of the boosting procedure. In the
experiments, the optimal number of features was found to be 120.

Reconstruction error
Reconstruction error

. 125 3 1385 14 s 15 185 © Ties
Log number of active codes

Osc
-k SC+BIP(0.01)
11 SC+BIP(0.1)
—+-PCA

Boost+SC
¥ Boost+BIP(0.01)
1> Boost+BIP(0.1)
<-RBM

E O SRBM

15 16 17 18 19 _ZD 21
Total log number of bits

Reconstruction error

Figure 3: Number of bits needed to encode the models vs their reconstruc-
tion error on natural image patches.

The boosted features are similar to PCA features in that each batch of
features explains a higher frequency band of the data. This is due to the
greedy stepwise nature of boosting: each batch is given the myopic task of
reconstructing the entirety of the residual as if there were no more batches
coming up in the future. As a consequence, the initial features account

11



for low frequency components of the data and leave the higher frequency
components for the subsequent batches.

While it is interesting that some of the methods can produce local fea-
tures, it is not immediately clear whether these features capture meaningful
aspects of the data. To assess this, we compare the methods on the task of
reconstructing natural image patches. We use the sigmoidal approximation
to determine whether the features learned by BIP can be approximated by
a feed-forward mapping. Before learning the bases, we randomly split the
data set into a training set of 9,000 images, and a test set of 1,000 images
for evaluation. For each method, we vary M between 80,100, 150 and 200.
The exception is the boosting methods, for which M = 120 is optimal. For
these methods, we also tried M = 80 and 100 to show the trend. We repeat
each experiment for 10 random training/test set splits and report the error
bars showing the mean + and standard deviation.

All the methods reconstruct the image patches very well with 150 feature
vectors (images not shown for lack of space). To provide quantitative results,
we consider the reconstruction error of each method as a function of the
number of bits needed to represent the features, the number of non-zero
(active) codes and the total number of bits to encode the model (number
of bits taken by the active codes and their respective features). The results
appear in Figure 3.

The performance of PCA is optimal, but the bases are extremely dense.
The boosting methods gradually become both sparse and accurate as BIP is
strengthened by increasing .. Sparse coding with BIP delivers more compact
feature representations without sacrificing reconstruction performance.

Finally, in our system, the inference time of standard sparse coding is
50 seconds for NV = 1000 and M = 200, while the one for the methods with
the sigmoidal approximation is approximately 0.1 seconds.

Although the SRBM and RBM are similar, the RBM seems capable of
providing a lower reconstruction error. Neither are as accurate as Sparse
Coding when enough hidden units are used. This is reasonable, since they
are not directly optimizing a reconstruction objective, only indirectly through
Contrastive Divergence. The SRBMs provide sparser models than the Gaus-
sian RBM, but they are both far less sparse than the Sparse Coding models.
This is due to the fact that the hidden units in an RBM are computed via a
feedforward operation, rather than an exact optimization. A similar effect
was observed in the model used in Kavukcuoglu et al. (2008a).

12



4.2 The Effect of Dataset Size on Feature Sparsity

We investigate how the number of training samples affects feature spar-
sity with both sparse coding and Gaussian RBMs. We train sparse cod-
ing with M = 100,150,200 and 300 hidden units, and in each case use
N = 5,000,10,000 and 30,000 training samples. We repeat each experi-
ment five times and report the mean and standard deviation of the number
of bits required to encode the features, the number of active codes (non-zero
coefficients) and the reconstruction error. The number of bits to represent
bases is computed as 64 (the number of bits in a double precision float-
ing point number) times the number of bases elements whose magnitude is
greater then 0.1. The SC, BIP, Boosting and PCA bases are normalized
during training, and lowering the threshold will not change the trend in the
plots. In the case of RBMs, the bases are not normalized during training,
and we normalize them for diagnostics. We use a threshold of 0.01 for the
RBM models. The number of active codes is the number of non-zero code
units. We count the number of code units whose magnitude is greater than
machine epsilon for SC, BIP, Boosting and PCA. We use a threshold of
0.01 for SRBM models. Prior to conducting all experiments, a significant
effort was devoted to obtaining good configurations for the learning rates,
momentum terms, iterate averaging and mini-batches for online learning.

Figure 4 shows that the features become sparser as the number of train-
ing samples increases. As the dataset increases, the size of the parts (pat-
terns) that are common to all data instances decreases. As a result, the
features become sparser.

Note also that the reconstruction error does not appear to increase.
Moreover, there is an inverse relationship between the reconstruction er-
ror and the original number of code bits M. This implies that it is possible
to obtain models that require less memory storage and have better recon-
struction properties by starting with a larger number of hidden units and
increasing the dataset size. We ran this experiment on the RBM as well
and the trend is identical to 4, larger amounts of data correspond to sparser
models. In fact, as the dataset size becomes very large the need for priors
such as BIP disappears.

With M = 300 and N = 30,000, the training times for sparse coding and
Gaussian RBM models are typically one day and 30 minutes respectively.
This is a crucial computational comparison between these two approaches.
It might seem counterintuitive because sparse coding algorithms are deemed
to be efficient in continuous optimization. Yet, it seems like in this realm, the
naive stochastic approximation algorithms with binary codes are much more

13



800 -

@
wn

750 1

(4]
I

0.254

= =M=100

N
wn

350 -

700 A ’5
-
4.5 —_
) 6507 » S ) — —M=150
Q c 021
N S oo Q_o_o S == M=200
o ks _
O 550 : L8 = = M=300
354 S 1!:0 0.151 e
"5 500 7)
g 500 11— S
l O——
3 450 8 0.1
i Dﬂ\n 400 o

Number of bits to represent features

0.05 1 : : :
—_— 300 -

85 9 95 10 105 85 9 95 10 105 85 9 95 10 105

Log number of training data

Figure 4: Number of bits to encode features, code size and reconstruction
error as a function of dataset size (in log-scale) for sparse coding

efficient. From this computational standpoint, RBMs with binary codes are
to be preferred.

4.3 Self Taught Learning Experiment

R. Raina and Ng. (2007) applied sparse coding in their “self-taught learn-
ing” framework. This framework consists of an unsupervised learning stage,
where features are extracted from large volumes of unlabeled data, and a
supervised learning stage, where the self-taught features are used to form
parsimonious data representations for different supervised tasks. The main
novelty of this framework is that no assumption is made about the distri-

14



Methods Baseline | Boosted BIP SC BIP
Accuracy (%) 16 36.33 43.39 | 43.33

Variance(+%) — 0.2 0.6 0.8
Feature size — 2339 4607 | 3712

Table 1: Classification accuracy and feature size (in bytes). The Baseline
method is Fei-Fei et al. (2004).

bution of the unlabeled data. Despite having less dependence on expensive
labeled data, self-taught learning replies on the feature extraction technique
to produce transferable, discriminative representations. To understand the
effect of BIP on the generalization properties of the features, we compare it
against ordinary sparse coding in a classification task. More specifically, we
directly apply the features learned in the previous experiments to classify
images in Caltech101 (Fei-Fei et al., 2004).

The experiment protocol is as follows: Each image is resized and subdi-
vided into a 4 x 4 grid of 14 x 14 non-overlapping patches. Each patch is
standardized and encoded using one of the sparse coding methods to obtain
a sparse code vector. Finally, all vectors within a grid are concatenated to
form the representation of the image. This representation is normalized and
fed into a SVM classifier with a Gaussian kernel. We randomly choose 15
images from each category as the training set and use the remaining as the
test set. The 102-way classification is repeated 10 times for each method.
Table 1 shows the classification accuracy.

The classification performance of BIP is almost identical to that of sparse
coding, but BIP uses fewer feature elements. This result demonstrates that
we can afford to enhance feature sparsity (hence energy efficiency /less stor-
age) without compromising generalization performance.

5 Conclusions

An important direction for future work is the issue of invariant features.
One could incorporate the ideas of topographic maps, convolution and pool-
ing into our proposed methods to address this issue. Another important
direction for future work is the application of these methods to the problem
of learn deep representations. It is clear that the proposed methods, using a
sigmoidal approximation, can be naturally extended to deep architectures.
Following the strategy outlined in this paper, boosting methods could be
devised to learn the structure of deep networks of composite features.

15



Finally, the discovery that larger datasets can result in more parsimo-
nious feature representations deserves further investigation. If we are indeed
able to learn more compact representations by increasing dataset sizes while
not affecting performance, it strongly suggests the need to place more em-
phasis on the problem of learning to extract patterns efficiently from massive
datasets.

6 Acknowledgements

This work was supported by CIFAR’s Neural Computation and Adaptive
Perception Program and NSERC.

References

A. Bell and T. J. Sejnowski. The “independent components” of natural scenes are
edge filters. Vision Research, 37:3327-3338, 1997.

Y. Bengio and Y. Le Cun. Scaling learning algorithms towards Al. Large-Scale
Kernel Machines, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. In Advances in Neural Information Processing Systems, 2007.

D. Bradley and J. A. Bagnell. Convex coding. Technical Report CMU-RI-TR-09-22,
Robotics Institute, Pittsburgh, PA, May 2009.

P. Buhlmann and B. Yu. Boosting, model selection, lasso and nonnegative garrote.
Technical report, UC Berkeley, 2005.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object cat-
egories. 2004.

J. H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189-1232, 2001.

P. Garrigues and B. A. Olshausen. Learning horizontal connections in a sparse
coding model of natural images. Advances in Neural Information Processing
Systems, 2008.

J. Hawkins and D. George. Hierarchical temporal memory: Concepts, theory and
terminology. Technical report, Numenta, 2006.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504-507, 2006.

16



G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527-1554, 2006.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. J.
Mach. Learn. Res., 5:1457-1469, 2004.

A. Hyvarinen, J. Hurri, and P.O. Hoyer. Natural Image Statistics. Springer, 2009.

H. J. Kappen. Deterministic learning rules for Boltzmann machines. Neural Net-
works, 8(4):537-548, 1995.

Y. Karklin and M. S. Lewicki. Emergence of complex cell properties by learning to
generalize in natural scenes. Nature, pages 83-86, 2009.

K. Kavukcuoglu, M.A. Ranzato, and Y. LeCun. Fast inference in sparse coding
algorithms with applications to object recognition. Technical Report CBLL-
TR~2008-12-01, Computational and Biological Learning Lab, Courant Institute,
NYU, 2008a.

Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. Fast inference in
sparse coding algorithms with applications to object recognition. Technical
report, Computational and Biological Learning Lab, Courant Institute, NYU,
2008b. Tech Report CBLL-TR-2008-12-01.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring Strategies for
Training Deep Neural Networks. Journal of Machine Learning Research, 1:1-40,
2009.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788-791, 1999.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19:801, 2007.

H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area
V2. Advances in Neural Information Processing Systems, 2008.

H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In Interna-
tional Conference on Machine Learning, 2009.

S. Z. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatially localized, parts-based
representation. pages 207-212, 2001.

D. Lin, E. Pitler, D. P. Foster, and L. H. Ungar. In defense of L0. Sparse Opti-
mization and Variable Selection, Workshop, ICML/COLT/UAI, July 2008.

David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, pages 91-110, 2004.

17



R. W. Lutz, M. Kalisch, and P. Buhlmann. Robustified L2 boosting. Computational
Statistics & Data Analysis, 52(7):3331-3341, March 2008.

B. A. Olshausen. Sparse codes and spikes. In Probabilistic Models of the Brain:
Perception and Neural Function, pages 257-272, 2001.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1?7 Vision Res, 37(23):3311-3325, 1997.

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics,
5(2):111-126, 1994.

H. Lee B. Packer R. Raina, A. Battle and A. Y. Ng. Self-taught learning: Transfer
learning from unlabeled data. International Conference on Machine Learning,

2007.

C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen. Sparse coding
via thresholding and local competition in neural circuits. Neural computation,
20(10):2526-2563, 2008.

C. Rudin, I. Daubechies, and R. E. Schapire. On the dynamics of boosting. In
Advances in Neural Information Processing Systems, 2004.

R. Salakhutdinov and G. E. Hinton. Deep Boltzmann Machines. In Artificial
Intelligence and Statistics, 2009.

M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regular-
ization: A comparative study and two new approaches. In Furopean Conference
on Machine Learning, pages 286297, 2007.

18



