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Abstract We address the problem of online path planning
for optimal sensing with a mobile robot. The objective of
the robot is to learn the most about its pose and the envi-
ronment given time constraints. We use a POMDP with a
utility function that depends on the belief state to model the
finite horizon planning problem. We replan as the robot pro-
gresses throughout the environment. The POMDP is high-
dimensional, continuous, non-differentiable, nonlinear, non-
Gaussian and must be solved in real-time. Most existing
techniques for stochastic planning and reinforcement learn-
ing are therefore inapplicable. To solve this extremely com-
plex problem, we propose a Bayesian optimization method
that dynamically trades off exploration (minimizing uncer-
tainty in unknown parts of the policy space) and exploita-
tion (capitalizing on the current best solution). We demon-
strate our approach with a visually-guide mobile robot. The
solution proposed here is also applicable to other closely-
related domains, including active vision, sequential experi-
mental design, dynamic sensing and calibration with mobile
sensors.
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1 Introduction

Online path planning is a fundamental and central prob-
lem in mobile robotics. The problem is notoriously hard
because robots have to contend with environments that ex-
hibit complex dynamics and unknown uncertainties. Fur-
thermore, robots only have access to a restricted set of par-
tial observations of the world because of their limited field
of view and inherent motor constraints.

In this paper, we focus on an optimal sensing scenario
where the robot must adaptively plan a path so as to gather
observations in an optimal way. More precisely, the objec-
tive is for the robot to maximize the information about its
location and the location of navigation landmarks in the en-
vironment. The main sensor is a simple inexpensive camera.
We adopt a model predictive strategy, in which the robot re-
plans the path as new observations are acquired. The robot
has to achieve the optimal sensing goals while being subject
to limited time and energy budgets, as well as, constraints
imposed by its kinematic and dynamic capabilities.

Note that this problem is the same as the one of dynam-
ically deploying a mobile sensor to learn about an environ-
ment. It is, therefore, of immediate relevance to the fields
of sensor networks, calibration and terrain-aided naviga-
tion [Bergman (1999); Paris and Le Cadre (2002); Meger
et al (2009); Hernandez et al (2004); Singh et al (2005)].
Moreover, since the primary sensor is a camera, this may be
also be interpreted as anactive vision application, where the
robot has to decide where to attend to in order to dynami-
cally understand a scene.

Online path planning is essential for proper simultane-
ous localization and mapping (SLAM) [Sim and Roy (2005);
Stachniss et al (2005)]. Mobile robots must maximize the
size of the explored terrain, but, at the same time, must en-
sure that localization errors are minimized. Whileexplo-
ration is needed to find new features, the robot must re-
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turn to places where known landmarks are visible to main-
tain reasonable map and pose estimates. Path planning also
plays a key role in the theoretical and practical convergence
of SLAM algorithms [Bailey et al (2006); Martinez-Cantin
et al (2006)].

Starting with a fixed horizon, we model the path plan-
ning problem with a partially observed Markov decision pro-
cess (POMDP), with continuous states and actions. The com-
plex robot dynamics and environmental coupling introduce
nonlinearity, non-Gaussianity and non-differentiability in the
POMDP. Moreover, unlike traditional POMDP models where
the reward is a function of the actions and states directly, in
our application the reward is a function of the belief state
(also known as the information state in control or the poste-
rior filtering distribution in Bayesian inference). This dis-
tinction creates additional high-dimensional integrals and
recursions, which complicate the solution enormously. Util-
ity (reward) functions that depend on the belief state are
commonplace in the field ofexperimental design [Chaloner
and Verdinelli (1995); Kueck et al (2006)]. There, the for-
midable computational challenges, which arise when max-
imising expectations with respect to these utility functions,
are well recognized.

Most existing reinforcement learning techniques are un-
able to cope with our high-dimensional, non-differentiable,
continuous POMDPs (see [Riedmiller et al (2009)] in this
special issue for an introduction to reinforcement learning).
Even a toy problem would require enormous computational
effort. As a result, it is not surprising that most existing ap-
proaches relax the online stochastic path planning problem.
For instance, full observability is assumed in Paris and Le
Cadre (2002) and Sim and Roy (2005), known robot loca-
tion and discrete actions are assumed in Leung et al (2005)
and Singh et al (2007), a small set of actions and myopic
planning is adopted in [Stachniss et al (2005), Vidal-Calleja
et al (2006),Bryson and Sukkarieh (2008)], and discretiza-
tion of the state and/or actions spaces is required in Hernan-
dez (2004), Kollar and Roy (2008) and Sim and Roy (2005).
The method proposed in this work does not rely on any of the
preceding assumptions. In Singh et al (2009), a sound way
of exploiting sub-modularity in these planning and sensing
domains is proposed. The approach in that publication is
however restricted to off-line path planning and makes use
of discrete state spaces. It is not clear yet how limiting or
useful the sub-modularity assumption will prove to be in the
more general problem that we attack here.

We represent the policy of the POMDP with a parame-
terized path. The robot can easily follow this planned path
using either a standard PID controller or any other classi-
cal regulator. The robot replans (recomputes the path) as
it moves through the environment. The complexity of the
model demands the use of simulation techniques to approx-
imate the cost function. However, since the dynamic model

is non-differentiable, one cannot use gradient-based stochas-
tic approximations [Konda and Tsitsiklis (2003); Singh et al
(2005)] or policy gradient methods [Baxter and Bartlett (2001);
Peters and Schaal (2008a,b)] to update the parameters of the
policy. Instead, we propose here the adoption of Bayesian
optimization techniques [Mockus et al (1978); Jones (2001);
Lizotte (2008)]. Bayesian optimization methods approximate
the expected cost function with a surrogate function that is
cheaper to evaluate: a Gaussian process in our case. The sur-
rogate function’s mean and covariance are used to choose
the policy parameter values that should be tried next. After
actively selecting a candidate parameter vector, simulations
are conducted to obtain a new estimate of the expected cost
function and the surrogate function is re-fit. The decision of
what policy parameter to try next trades off exploration (try-
ing parameters where the cost function is very uncertain)
and exploitation (trying parameters where the cost function
is known to be low). This global optimization technique has
the nice property that it aims to minimize the number of cost
function evaluations; a fundamental requirement for real-
time mobile robotics. Moreover, unlike gradient-based meth-
ods, it is likely to do well even in settings where the cost
function has many local minima.

2 Goals and Model Specification

The goal is for a robot to plan a path so as to minimize uncer-
tainty about its pose (location and heading) and the location
of environmental landmarks, which are often used for navi-
gation. The typical setup is illustrated in Figure 1. Initially,
the robot has a rough probabilistic estimate of its pose and
known landmark locations. As the robot explores, it must
reduce the uncertainty in these variables whose existence is
known. At the same time, it must recruit new landmarks into
its representation of the environment whenever it encounters
them for the first time.

The robot has a limited field of view. It can only observe
landmarks that fall within its camera sight. Even when vi-
sual features are in sight, the robot may fail to detect these
because of sensor limitations.

The path of the robot is parameterized in terms of a fi-
nite set of ordered way-pointsθ (which are used by a motion
generator to compute a sequence ofT commandsu1:T ) that
take into account the kinematic and dynamic constrains of
the robot and environment. Every few steps, the robot re-
plans the path using the information gathered in these steps.
This adaptive feedback process is necessary to avoid traps
that open loop algorithms cannot escape. While exploring,
the robot is subject to other constraints such as low energy
consumption, limited time, safety measures and obstacle avo-
idance. However, for the time being, let us first focus on the
problem of minimizing posterior errors in localization and
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Fig. 1 This simulation shows three stages of the robot exploring anenvironment. The simulation includes landmarks that the robot does not know
a priori. As soon as the robot observes these landmarks, it incorporates them into its model of the world. The robot continuously plans and replans
so as to minimize the uncertainty in its pose and in the location of the known landmarks. The figure also shows the robot’s limited field of view
and the paths that it plans to follow at the three simulation stages.

mapping as this problem already captures an enormous de-
gree of complexity.

Having restricted the problem to one of improving the
information in the joint posterior distribution of the robot’s
pose and landmarks, a natural cost function for thisT -step
ahead stochastic planning problem is the average mean square
error (AMSE) of the state:

Cπ
AMSE = Ep(x0:T ,y1:T |π)

[
T

∑
t=1

λ T−t(x̂t −xt)(x̂t −xt)
′

]
, (1)

whereλ ∈ [0,1] is a discount factor,π(θ ) denotes the policy
(path) parameterized by the way-pointsθ ∈ R

nθ , xt ∈ R
nx is

the hidden state (robot pose and location of map features)
at timet, y1:T = {y1,y2, . . . ,yT} ∈ R

nyT is the sequence of
observations along the planned trajectory forT steps,u1:T ∈

R
naT is the sequence of actions, andx̂t = Ep(xt |y1:t ,π)[xt ] is

the estimate of the state. The expectation is taken with re-
spect to the full path distribution:

p(x0:T ,y1:T |π) = p(x0)
T

∏
t=1

p(xt |ut ,xt−1)p(yt |xt ,ut).

We may, alternatively, focus on the uncertainty of the poste-
rior estimates at the end of a planning horizon:

Cπ
AMSE = Ep(xT ,y1:T |π)

[
(x̂T −xT )(x̂T −xT )′

]
. (2)

Note that the true states and observations are unknown in
advance and so one has to marginalize over them. Note also
that the cost function is a matrix and must be mapped to a
scalar. This can be done by either taking the trace or determi-
nant of this matrix. This choice of cost function is a sensible
one when the objective is to minimize the uncertainty in the
model parameters [Chaloner and Verdinelli (1995); Sim and
Roy (2005)].

The cost function, transition and observation models, and
policy define our POMDP model. This POMDP variant is
simpler than classical POMDPs in that the policy is not pa-
rameterized explicitely in terms of the belief state. On the
other hand, the utility is now a function of the belief state
p(xt |y1:t ,π). The expensive and difficult problem of estimat-
ing the belief state is known as SLAM in robotics [Durrant-
Whyte and Bailey (2006)].

3 Solving the POMDP with Direct Policy Search

Since the models are not linear-Gaussian, one cannot use
standard Linear Quadratic Gaussian (LQG) controllers to
solve the problem. Moreover, since the action and state spaces
are high-dimensional and continuous, discretization as in
Tremois and LeCadre (1999) and many other works would
fail. The discretized POMDP is too large for stochastic dy-
namic programming techniques derived from the seminal
work of Smallwood and Sondik (1973). The fact that the
utility depends on the belief state further complicates the
problem.

To overcome these difficulties, we adopt the direct policy
search method for solving POMDPs [Williams (1992); Bax-
ter and Bartlett (2001); Ng and Jordan (2000)]; see also the
papers of [Howard et al (2009); Stolle and Atkeson (2009);
N. Vlassis and Piperidis (2009)] in this special issue. In this
approach, the cost function is approximated with simula-
tions. This is appealing in our setting because we have rea-
sonable sensor and actuator models, which enable us to sim-
ulate trajectories with relatively low variance. Specifically,
givenM simulated trajectories, as described in Figure 3, the
cost function (2) may be approximated with a Monte Carlo
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Fig. 2 Simulating future observations using the prior information is
not trivial because of discontinuities in the observation model due to
the limited field of view and occlusion. The observations aregenerated
by drawing samples from the posterior distributions of the robot pose
and landmark locations. If the landmark samples fall withinthe simu-
lated field of view, they are detected with a predefined probability. That
is, we incorporate the detection rates of the sensors.

average:

Cπ
AMSE ≈

1
M

M

∑
i=1

(x̂(i)
T −x(i)

T )(x̂(i)
T −x(i)

T )′. (3)

In the simulator, the actions are generated by following
the current path (policy) with a simple controller and the
states are sampled according to the transition model. The
observationsy are hallucinated using the procedure outlined

in Figure 2. After the trajectories{x(i)
1:T ,y(i)

1:T}
M
i=1 have been

obtained, a SLAM filter (EKF, UKF or particle filter) is used

to compute the posterior mean of the belief statex̂(i)
1:T .

In policy search, the approximated cost function is used
to update the policy parametersθ . Typically, this is done by
following stochastic gradients [Baxter and Bartlett (2001);
Peters and Schaal (2006)]. However, in our domain, the cost
function is not differentiable. Hence, we must come up with
a different approach that does not require differentiability.
The new approach must also take computation into account.
Note that approximating the cost function with samples re-
quires that we compute the belief state (i.e. solve the SLAM
problem) for each sample. This is extremely expensive. The
new approach must therefore minimize the number of queries.
For these reasons, we chose to carry out Bayesian optimiza-
tion to update the parameters. This optimization procedure
will be discussed in detail in the following section. The over-
all algorithm forT -steps ahead open-loop planning is shown
in Figure 3.

As the robot moves along the planned path, it is pos-
sible to use the newly gathered observations to update the
posterior distribution of the state. This distribution canthen

1. Choose an initial policyπ0(θ).
2. For j = 1 : MaxNumberO f PolicySearchIterations

(a) Fori = 1 : M
i. Sample the prior statesx(i)

0 ∼ p(x0).
ii. For t = 1 : T

A. Use a motion controller regulated about the

pathπ(θ) to determine the current actionu(i)
t .

B. Sample the statex(i)
t ∼ p(xt |u

(i)
t ,x(i)

t−1).

C. Generate observationsy(i)
t ∼ p(yt |u

(i)
t ,x(i)

t ) as
described in Figure 2.

D. Compute the belief statep(xt |y
(i)
1:t ,u

(i)
1:t) using

a SLAM filter.
(b) Evaluate the approximate AMSE cost function of equa-

tion (3) using the simulated trajectories.
(c) Choose a new promising set of policy parametersθ using

Bayesian optimization.

Fig. 3 Direct policy search strategy forT -steps ahead planning. Sam-
ples that fail to satisfy time and energy budgets are rejected.

be used as the prior for subsequent simulations. This pro-
cess of replanning is known as open-loop feedback control
(OLFC), see Bertsekas (1995). We can also allow for the
planning horizon to recede. That is, as the robot moves, it
keeps planningT steps ahead of its current position. This
control framework is also known as receding-horizon model
predictive control, see Maciejowski (2002) for a review. We
will use the termsopen-loop feedback control and model
predictive control interchangeably.

4 Bayesian Optimization of the Policy Parameters

The objective of Bayesian optimization is to find the min-
imum of the cost function with as few cost evaluations as
possible [Kushner (1964); Jones et al (1998); Locatelli (1997);
Mockus et al (1978)]. In direct policy search, the evaluation
of the expected cost using Monte Carlo simulations is very
costly. One therefore needs to find a minimum of this func-
tion with as few policy iterations as possible.

Bayesian optimization provides an exploration-exploita-
tion mechanism for finding multiple minima. Unlike tradi-
tional active learning, where the focus is often only in explo-
ration (e.g. query the points with the maximum variance, en-
tropy or other information-theoretic measures), here the goal
is to balance exploitation and exploration. That is, to save
computation, we only want to approximate the cost function
accurately in regions where it is profitable to do so. We do
not need to approximate it well over the entire state space.

One could apply the Bayesian optimization approach to
learn value functions in areas of interest, say areas of high
value, but we shall not pursue this approach here. Instead,
we will apply the approach to find the minima of the ex-
pected cost as a function of the policy parametersθ .
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Bayesian optimization involves three stages. First, a prior
distribution is defined over the object being analyzed. In our
case, the object is the cost functionCπ(·). More precisely,
it is the trace of the AMSE matrix, but we drop the trace
symbol for ease of notation.

Second, a set ofN previously gathered measurements
D1:N = {θi,Cπ(θi)}

N
i=1 is combined with the prior, through

Bayes rule, to obtain the posterior distribution over the ob-
ject. Note thatN corresponds to the the number of policy
search iterations thus far. At iterationj of policy search, we
choose a parameter valueθ j and evaluate the corresponding
costCπ(θ j).

Finally, the posterior risk is minimized so as to deter-
mine which new parametersθ should be tried next. Mathe-
matically, the point of maximum expected improvement, as
formulated by Mockus et al (1978), is given by:

θN+1 = argmax
θ

E [max{0,Cπ
min−Cπ(θ )}|D1:N ] , (4)

whereI(θ ) = max{0,Cπ
min−Cπ(θ )} denotes the improve-

ment over a defined standard. Here, our standard is the best
(lowest) value of the cost function thus far,Cπ

min. The ex-
pectation is taken with respect to the posterior distribution
P(Cπ(·)|D1:N). In contrast with the popular worst-case (min-
imax) approach, this average-case analysis can provide faster
solutions in many practical domains where one does not be-
lieve that the worst case scenario is very probable.

To implement the first stage of Bayesian optimization,
we place a Gaussian process (GP) prior over the expected
cost function:Cπ(·)∼ GP(m(·),K(·, ·)), see e.g. Rasmussen
and Williams (2006) for details on Gaussian process regres-
sion. The inherent assumption here is one of smoothness.
Although we actually learn the mean function in the manner
proposed in Martinez-Cantin et al (2007a), for presentation
clarity let us assume that it is the zero function as it is of-
ten the case in the machine learning literature. For detailson
the actual implementation, see Martinez-Cantin (2008). We
adopt the standard Gaussian and Matern kernel functions to
describe the components of the kernel matrixK . The param-
eters of these functions (say kernel width in the Gaussian
case) can be learned by maximum a posteriori inference, but
since in our active learning setting we don’t have many data
points, the priors need to be fairly informative. That is, one
has to look at the data and get a rough estimate of the ex-
pected distance between data points in order to choose the
smoothing kernel width.

It is then easy to obtain an exact expression for the mean,
µ , and variance,σ2, of the posterior distribution:

µ(θ ) = kT K−1Cπ
1:N (5)

σ2(θ ) = k(θ ,θ )−kT K−1k.

whereCπ
1:N = (Cπ

1 , . . . ,Cπ
N), K denotes the full kernel matrix

andk denotes the vector of kernelsk(θ ,θi) for i = 1, . . . ,N.

– At policy search iterationN:
– Update the expressions for the mean and variance func-

tions of the GPN (Cπ (θ); µ(θ),σ 2(θ)) using the data
D1:N .

– ChooseθN+1 = argmaxθ EI(θ).
– EvaluateCπ

N+1 = Cπ (θN+1) by running simulations as
described in Figure 3.

– Augment the dataD1:N+1 = {D1:N , (θN+1,Cπ
N+1)}.

– N = N +1.

Fig. 4 Bayesian optimization algorithm.

Since the number of query points is small, the GP predic-
tions are very easy to compute.

The expectation of the functionI(θ ) = max{0,Cπ
min −

Cπ(θ )}, with respect to the Gaussian process posterior dis-
tribution N (Cπ(θ );µ(θ ),σ2(θ )), can be computed by in-
tegrating by parts:

E(I(θ )) =

∫ I=∞

I=0
I

[
1√

2πσ2(θ )
e
−

(Cπ
min−I−µ(θ ))2

2σ2(θ )

]
dI.

This results in the following expression:

EI(θ )=

{
(Cπ

min− µ(θ ))Φ(d)+ σ2(θ )φ(d) if σ2 > 0
0 if σ2 = 0

(6)

whereφ andΦ denote the PDF and CDF of the standard

Normal distribution andd =
Cπ

min−µ(θ)

σ2(θ)
. Finding the maxi-

mum of the expected improvement function is a much eas-
ier problem than the original one because the expected im-
provement function (also known as the infill function) can
be cheaply evaluated. Several refinements of this infill func-
tion have been proposed in Schonlau et al (1998) and Sasena
(2002). To optimize the expected improvement function, we
used the DIRect algorithm [Jones et al (1993); Finkel (2003);
Gablonsky (2001)], though other methods such as sequential
quadratic programming could also be adopted.

The overall procedure is shown in Figure 4 and illus-
trated in Figure 5. Many termination criteria are possible,
including time and other computational constraints. When
carrying out direct policy search, the Bayesian optimization
approach has several advantages over the policy gradients
method: it is derivative free, it is less prone to be caught in
the first local minimum, and it isexplicitly designed to min-
imize the number of expensive cost function evaluations.

Bayesian optimization has a long history, starting with
the seminal work of Kushner (1964) with one-dimensional
Wiener processes. It has been successfully applied to deriva-
tive-free optimization and experimental design Jones et al
(1998) and has recently begun to appear in the machine learn-
ing literature [Lizotte et al (2007); Brochu et al (2007)].
There are several consistency proofs for this algorithm in the
one-dimensional setting [Locatelli (1997)]. There are also
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Fig. 5 An example of Bayesian optimization. The figure on top shows
a GP approximation of the cost function using 11 simulated values.
In reality, the true expected cost function is unknown. The figure also
shows the expected improvement (infill) of each potential next sam-
pling location in the lower shaded plot. The infill is high where the GP
predicts a low expected cost (exploitation) and where the prediction
uncertainty is high (exploration). Selecting and labelling the point sug-
gested by the highest infill in the top plot produces the GP fit in the plot
shown below.

convergence proofs for a simplification of the algorithm us-
ing simplicial partitioning in higher dimensions [Zilinskas
and Zilinskas (2002)] and, more recently, for GPs with Matern
kernels in Vazquez and Bect (2008). The question of ob-
taining rates of convergence for these algorithms in high-
dimensions is still open.

5 Simulations

In our simulation setup, the environment is a free space area
with several point features distributed at random (see Figure
7). The a priory map is known with very high uncertainty,
ranging from 1 to 5 m of standard deviation. The simulated
robot is a hovering aerial vehicle equipped with inertial sen-
sors, a camera and an altimeter. The field of view is limited
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Fig. 6 Evolution of the trace of the state covariance matrix for 15 ran-
dom maps using OLC1, OLC3 and OLFC3, with 99% confidence in-
tervals.

to 7 meters. We adopted a detection system that provides
observations every 0.5 seconds. The sensor noise is Gaus-
sian for both range and bearing, with standard deviations
σrange = 0.2· range andσbearing = 2o. The policy is given by
a set of ordered way-points. The motion commands are up-
dated by a controller every 0.1 seconds. The controller guar-
antees that the robot is heading toward the goal, or hovering
over it, for a fixed amount of time.

We compared the behavior of the robot using different
planning and acting horizons:

OLC1 : This is an greedy algorithm that select the most in-
formative way-point ahead in open-loop,i.e., the plan-
ning horizon is 1.

OLC3 : This is an open loop algorithm that plans with 3
way-points ahead. The planning process is still myopic.

OLFC3 : This is an open loop feedback controller with re-
ceding horizon,i.e., a model predictive controller. The
planning horizon is again 3 way-points, but this time,
the robot only executes 1 step before replanning.

It is obvious that the OLC algorithms have a lower compu-
tational cost. On the other hand, they can get easily trapped
in local minima. As shown in Figure 6, the open loop ap-
proaches have much higher variance. That is, in some of
the runs they get trapped exploiting small regions of the
map and fails to explore the environment properly. This lack
of robustness is unacceptable, so we favor the OLFC ap-
proaches.

We tested our algorithms by simulating several maps as
shown in Figure 7. We considered two alternative methods
for comparison purposes. The first is a standard heuristic for
exploration in robotics, which we will refer to as theLargest
Marginal Heuristic approach. Here, the robot follows the
shortest path to the landmark of highest uncertainty. We also



7

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
AMSE

[m]

[m
]

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
MAPSE

[m]

[m
]

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
Largest Marginal Heuristic

[m]

[m
]

−20 0 20 40 60 80
−20

−10

0

10

20

30

40

50

60

70

80

[m]

[m
]

AMSE

−20 0 20 40 60 80
−20

−10

0

10

20

30

40

50

60

70

80

[m]

[m
]

MAPSE

−20 0 20 40 60 80
−20

−10

0

10

20

30

40

50

60

70

80

[m]

[m
]

Largest Marginal Heuristic

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
AMSE

[m]

[m
]

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
MAPSE

[m]

[m
]

−20 −10 0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70
Largest Marginal Heuristic

[m]

[m
]

Fig. 7 Exploration trajectories for different environments and different cost functions. Each row is a different scenario while each column is a
different cost, from left to right: AMSE, MAPSE, Largest Marginal Heuristic. The landmarks are plotted in blue; the robot, in red. The ellipses
represent the uncertainty threshold at 95%.

designed an alternative, which we callMaximum a Posteri-
ori Square Error (MAPSE), that usesonly one sample of
the cost function at each policy update. In particular, one
uses the maximum a posteriori values of the map and robot
location at the current optimization step and feeds these into
the simulator to obtain a fast estimate of the cost function.
This estimate is used to update the policy parameters in the
Bayesian optimization step. As shown in Figure 7 this proce-
dure seems to do as well as the AMSE approach. However, it
is far more efficient computationally because it only requires

one simulation to approximate the cost function. Figure 8
shows the results of several simulations, where we have also
included the posterior Cramer-Rao Bounds of the AMSE
cost function [Martinez-Cantin et al (2007b)]. Clearly the
MAPSE approach is not only efficient (a requirement for
real-time implementation), but also results in the lowest er-
ror. The success of this method is a result of the fact that our
models are fairly accurate and consequently the simulations
have low variance.
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Fig. 9 Mobile robot and experimental environment.

Finally, we also tested the MAPSE approach in environ-
ments where not all features are known a priori. By enabling
the robot to augment its map with new features, we were
able to get similar results. Figure 1 shows the results of one
typical simulation run.

6 Experiments with a Pioneer Robot

The method presented in this paper has been tested on a Pi-
oneer robot with a low-cost web-camera. The map is built
using fiducial landmarks with the ARToolkit Tracker of Kato
and Billinghurst (1999). The robot and the experimental setup
are shown in Figure 9. The laptop on top on the robot is in
charge of all computation: image processing, motion con-
trol, planning, SLAM and so on. The navigation is carried
out in real-time.

We chose fiducial landmarks for comparison purposes
since, in this case, the algorithms share the same map. Fea-
ture detectors using natural images are not very robust and
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Fig. 10 Total uncertainty (trace of the full covariance matrix) forthe
Pioneer robot.
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Fig. 11 Robot location uncertainty.

consequently are not suitable for accurate comparison and
benchmarking.However, the system was built using the YARP
middleware by Metta et al (2006) and therefore it allows us
to use local feature detectors, such as SIFT or SURF.

Figure 10 shows a comparison of the MAPSE approach
against a random sampling of the way-points. The random
exploration finishes earlier than the active version because,
at that point, the robot is lost and cannot navigate prop-
erly. When this happens, it tries to navigate outside the map
and hits the walls. Figure 11 compares the robot uncertainty
again for the active and random exploration. In the random
exploration, the robot uncertainty is considerably larger.

7 Conclusions

We presented a computationally efficient method for online
path planning. The method was shown to allow a robot to
plan a path so as to explore its environment in an optimal
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way. Comparisons against many existing alternatives show
that the method has significant promise. There are many av-
enues for further work: deciding what landmarks are con-
venient for navigation, testing other strategies for recruiting
new landmarks, and allowing for more sophisticated poli-
cies.
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