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Abstract

This paper introduces a novel way of adapting the Hybrid Monte Carlo (HMC)
algorithm using parametric bandits with nonlinear features. HMC is a powerful
Markov chain Monte Carlo (MCMC) method, but it requires careful tuning of its
hyper-parameters. We propose a Bayesian parametric bandit approach to carry out
the adaptation of the hyper-parameters while the Markov chain progresses. We
also introduce the use of cross-validation error measures for adaptation, which
we believe are more pragmatic than many existing adaptation objectives. The
new measures take the intended statistical use of the model, whose parameters
are estimated by HMC, into consideration. We apply these two innovations to
the adaptation of HMC for prediction and feature selection with multi-layer feed-
forward neural networks. The experiments with synthetic and real data show that
the proposed adaptive scheme is not only automatic, but also does better tuning
than human experts.

1 Introduction

Markov chain Monte Carlo (MCMC) methods [2], such as the Metropolis-Hastings [36] algo-
rithm, are widely used in statistics, physics and machine learning to sample from complex high-
dimensional distributions and to solve combinatorial inference problems. Hybrid Monte Carlo
(HMC), first introduced as a fast method for simulating molecular dynamics [12], is a particularly
powerful MCMC algorithm. It was used to produce the winning entry of the NIPS 2003 feature
selection challenge [14]. There is some evidence suggesting that HMC can perform better than
traditional MCMC algorithms in high-dimensional, continuous, correlated spaces [10, 29]. Unfortu-
nately, HMC has hyper-parameters that must be tuned every time it is deployed. It is often reported
by HMC experts that tuning HMC is more difficult than tuning many other MCMC methods [29, 18].

Over the last decade, a few adaptive strategies were proposed to automatically tune the parameters
of MCMC algorithms. Among the various adaptive MCMC algorithms, the ones based on stochastic
approximation (SA) seem to be the most popular and successful. There are reasons for this. First,
it can be shown theoretically that these algorithms are ergodic, despite the fact that that the Markov
chains defined by these algorithms are inhomogeneous [4, 3, 33]. Secondly, these algorithms have
been shown to produce impressive results in practice [15, 31]. However, these SA methods have
important limitations too. In practice, they may be slow to converge. If one increases the learning
rate to overcome this speed issue, then the algorithm is likely to get stuck in local optima and not
fully explore the parameter space. We would like to have a method that is not as greedy and which
allows one to have better control on the exploration-exploitation trade-off. In addition, often the
objective measures that SA methods optimize (e.g. matching a particular acceptance rate) are based
on restrictive asymptotic results [31].

Instead of using SA, in this paper we propose to use bandits to adapt the parameters of HMC. Bandits
are powerful optimization tools which balance the exploration-exploitation trade-off. They have
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been applied successfully in many complex stochastic domains, including web content optimization
and advertising [20] and reinforcement learning [37]. They allow us to learn reward functions for
actions. They also provide us with policies for choosing actions in an on-line manner. In our
MCMC domain, the actions will correspond to the the HMC hyper-parameters and the rewards to
the objective function of the adaptation scheme.

Bandits have two important advantages over the conventional SA approaches. First, they do not
impose restrictions on the reward, such as differentiability. Second, they conduct global optimization
as opposed to local optimization. There are two types of bandits that can be used to construct
adaptive MCMC methods: nonparametric bandits (aka Bayesian optimization [8], Gaussian process
bandits [35], EGO, etc.) and parametric bandits [6]. In our earlier work [22, 16], we adopted
nonparametric bandits with Gaussian processes. Although nonparametric techniques work well,
they do not allow for infinite adaptation because of the unbounded growth in the model. In some
cases, as pointed out in [16], finite adaptation can cause serious mixing problems. For this reason we
opt for parametric bandits in this work. Much work has been done in parametric bandits, but with
a focus on linear models in the agnostic setting. Here, we propose Bayesian nonlinear parametric
bandits with carefully specified priors. These behave similarly to the nonparametric counterparts,
but allow for infinite adaptation.

In [22, 16], the cumulative autocorrelation function is used as the objective for adaptation. Our para-
metric bandits could also use this objective function and, as a result, be applicable to any problem
to which HMC is being applied to. However, since we are mostly concerned with predictive tasks in
machine learning, we introduce a new way to think about the objective function for doing adaptive
MCMC in this paper. Specifically, we use predictive losses, such as cross-validation error, to guide
the adaptation. This approach, although never reported before to the best of our knowledge, makes
perfect intuitive sense. Ultimately the models whose parameters we are estimating by running a
Markov chain will be tested on predictive tasks. Hence, it is only natural to use the performance
on such predictive tasks to improve the exploration of the posterior distribution. We expect this
insight to have a profound impact in the development of adaptive MCMC algorithms for statistical
prediction in the future. Of course, this will only be true in settings where enough data is available
to obtain good predictive measures.

The fact that bandits do not require the objective function to be analytical is what endows us with
so much flexibility in the choice of the objective function. The two improvements proposed in this
paper go hand-in-hand.

In our experiments, we use adaptive HMC to train Bayesian Neural Networks (BNNs) [28]. Since
the end goal of BNNs is to predict well on test data, we use the cross-validation performance as
the objective function for adapting the parameters of the HMC chain. When doing this, we can
still have the right asymptotic distribution, under vanishing adaptation, provided the base samplers
are uniformly ergodic or, at least, close to geometrically ergodic. We expand on these theoretical
considerations in the analysis section. The experiments demonstrate, with both real and synthetic
data, that the proposed adaptation scheme performs better than human experts in the task of tuning
HMC for Bayesian neural networks.

2 Hybrid Monte Carlo

HMC is based on Hamiltonian mechanics. Let x be a d-dimensional position vector and p be
a d-dimensional momentum vector. The total energy, also called the Hamiltonian, is given by:
H(x,p) = U(x) + K(p), where U(x) is the potential energy and K(p) = pTM−1p/2 is the
kinetic energy for some mass matrix M. In a closed the system, the total energy H is conserved.
Consequently, the dynamics of the system, according to Newton’s law of motion, can be described
using Hamilton’s equations:

∂H
∂x

= −ṗ, ∂H
∂p

= ẋ. (1)

Suppose we wish to draw samples from the distribution π(x) which is known up to a normalization
constant. That is π(x) ∝ f(x). To make use of Hamiltonian Mechanics for sampling we can
think of the vector x as the position vector in the Hamiltonian by defining the potential energy
as U(x) = − log f(x). We introduce a kinetic energy term K(p) = pTM−1p/2 with M being
positive definite and define the total energy to beH(x,p) = U(x) +K(p).
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Consider the distribution π̂(x,p) ∝ exp(−H(x,p)). Since π̂(x,p) ∝ f(x) × exp(−K(p)), to
sample from π, we can simply sample from π̂ and discard the samples for p. One way of sampling
from π̂ is to follow the Hamiltonian dynamics:

1. Sample p̂ ∼ N (0,M),
2. Simulate the Hamiltonian dynamics described in (2) for a certain time starting from the current

state (xt, p̂) to generate the next state (xt+1,pt+1),

To simulate the Hamiltonian dynamics in practice, however, we must discretise the differential
equation that describes the continuous motion. This can be accomplished by the Störmer-Verlet
or leapfrog scheme [19]. It is composed of three steps as described below:

pτ+ ε
2
= pτ −

ε

2

∂U

∂x

∣∣∣∣
xτ

, xτ+ε = xτ + εM−1pτ+ ε
2
, pτ+ε = pτ −

ε

2

∂U

∂x

∣∣∣∣
xτ+ε

,

where τ is the current time and ε is the stepsize. To simulate the dynamics, we repeat the above steps
L times with stepsize ε. However, if we only do this, the detailed balance condition does not hold.
HMC surmounts this equilibration problem with a Metropolis-Hastings re-weighting step [12]. The
full HMC algorithm is summarized in Algorithm 1. It can be shown that Markov chain defined by
HMC satisfies the detailed-balance condition [29, 21].

Algorithm 1 Hybrid Monte Carlo Algorithm

1: for i = 1, 2, . . . do
2: Sample pt ∼ N (0,M)
3: Given ε and L, apply the leapfrog scheme L times with stepsize ε starting from the current

state (xt,pt) to generate a proposal state (x∗,p∗)
4: Draw u ∼ U(0, 1)
5: if u < min[1, eH(xt,pt)−H(x∗,p∗)] then
6: Let (xt+1,pt+1) = (x∗,p∗)
7: else
8: Let (xt+1,pt+1) = (xt,pt)
9: end if

10: end for

3 Adaptive Hybrid Monte Carlo

Our adaptive algorithm uses Bayesian parametric bandits to update L and ε on-line, as the HMC
chain explores the parameter space of the model (e.g. a neural network). The rewards in our setting
are given by the cross-validation accuracy of the predictive model. It is clear that our approach is
more general and could in fact use any other reasonable objective function to learn L and ε on-line.
However, if the model over whose parameters we define the Markov chain is used for prediction,
then it is reasonable to use prediction loss to update the hyper-parameters of the Markov chain
sampler.

3.1 Bayesian Parametric Bandits

For each action a ∈ A, where in our case an action corresponds to a choice of the hyper-parameters
L and ε, we observe features Xa ∈ RK . In our MCMC setting, we propose to use K Gaussian
radial basis functions (RBFs) as the features. That is, for each action, there is a K-dimensional
feature vector whose i-th coordinate is given by:

Xa(i) = exp{− ||a− µi||2 /β} for i ∈ {1, 2, ...,K}

where µi are the location parameters and β is the basis width. That is, given an input vector a, we
expand it using K Gaussian RBFs to form the features.

The locations for the RBFs are generated randomly using Latin hypercubes [24] to ensure we have a
good covering of the space. This is fairly easy in our case as we only have two parameters. Instead
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of choosing the width explicitly, we place a discrete uniform prior on a finite set of potential values
and carry out numerical quadrature to integrate it out.

We adopt the following linear Gaussian reward model:

p(ra|Xa,w, ξ, σ
2) = N (ra|ξ +Xaw, σ

2IN ), (2)

where ξ is an offset term. We place an improper prior on ξ of the form p(ξ) ∝ 1, and then integrate
it out to get p(ra|Xa,w, σ

2), with mean r1N +Xaw, where r = 1
N

∑N
i=1 ri is the empirical mean

of the output. For notational simplicity, we shall assume the output has been centered, and write ra
for ra − r1N . The natural conjugate prior has the following form:

p(w, σ2) = NIG(w, σ2|w0,V0, a0, b0). (3)

Using Bayes rule, we obtain the posterior distribution:

p(w, σ2|D) = NIG(w, σ2|wn,Vn, an, bn) (4)

wn = Vn(V
−1
0 w0 +XT

a ra)

Vn = (V−1
0 +XT

aXa)
−1

an = a0 + n/2

bn = b0 +
1

2

(
wT

0 V
−1
0 w0 + rTa ra −wT

nV
−1
n wn

)
.

Given a new test point X̃, the predictive distribution is the following Student-T distribution:

p(r̃a|X̃a,D) = T (ỹ|X̃awn,
bn
an

(Im + X̃aVnX̃
T
a ), 2an). (5)

Note that the term (bn/an)X̃aVnX̃
T
a varies depending on how close the test inputs are to the train-

ing data. For more details of the above model see [26]. In our experiments, we set a0 = 5, b0 = 10,
w0 = 0, and V0 = 5I.

Given the linear model that was learned through past data D and the basis functions, we would like
to choose an action a such that some acquisition function u(a|D) is maximized. There are several
popular choices of acquisition functions in the literature. Here, we adopt the expected improvement
over the best candidate [25, 34, 8]. It is defined as follows:

EI(a|D) = E(max(0, f(a)− f(a+))|D),

where f is the function we are trying to maximize and a+ is the best known action so far. This
is a standard acquisition function for which asymptotic rates of convergence have been proved [9].
However, we point out that there are a few other reasonable alternatives, such as Thompson sampling
[23] and upper confidence bounds (UCB) on regret [35]. A comparison among these options as well
as portfolio strategies to combine them appeared recently in [17]. There are several good ways of
optimizing the acquisition function, including the method of DIvided RECTangles (DIRECT) of
[13] and many versions of the projected Newton methods of [7]. We found DIRECT to provide a
very efficient solution in our domain. Note that optimizing the acquisition function is much easier
than optimizing the original objective function. This is because the acquisition functions can be
easily evaluated and differentiated.

3.2 The Algorithm

Our objective function cannot be evaluated analytically. However, noisy observations of the objec-
tive value can be obtained by running HMC with the specified parameter settings for a few steps.
These noisy observations together with the parameter settings can then be used to update the poste-
rior distributions for the reward model. Finally, we use the acquisition function to propose a new set
of parameters.

To evaluate different parameter settings, we introduce super-transitions, which were first described
by Neal in [28]. A super-transition defines the total number of leapfrog steps S taken in one run.
When running HMC with different parameters for one super-transition, we may have a different
number of HMC iterations and a different L, but all runs will take approximately the same CPU
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time. Super-transitions are needed because they enable us to evaluate the effectiveness of different
parameter settings, with the total computational time fixed.

To ensure that the diminishing adaptation condition [30] is satisfied, we introduce p to denote the
probability of a new proposal generated by our parametric bandit model being accepted. In each
iteration, p is decreased by the following rule, p = λp where 0 < λ < 1. As p goes to 0, we change
our parameter settings less frequently. It is easy to check that the diminishing adaptation condition
is satisfied. Because of the existence of vanishing regret bounds for bandit methods similar to
ours, we conjecture that it is possible to side-step the need for introducing p as a mechanism to
ensure vanishing adaptation. In the meantime, we include this mechanism for correctness. The full
algorithm is presented in Algorithm 2.

Algorithm 2 Adaptive HMC with Bayesian Parametric Bandits

1: for i = 1, 2, . . . , I do
2: Run HMC for 1 super-transition with hyper-parameters ai = (εi, Li).
3: Use the drawn samples to obtain a noisy evaluation of the reward function ri (say, cross-

validation accuracy).
4: Augment the data D1:i = {D1:i−1, (ai, ri)}.
5: Update the linear model.
6: Find a? by optimizing the acquisition function: a? = argmaxa u(a|D1:i).
7: Draw u ∼ U(0, 1)
8: if u < p then
9: Let ai+1 = a?

10: else
11: Let ai+1 = ai
12: end if
13: let p = λp, with 0 < λ < 1.
14: end for

4 Application to Bayesian Neural Networks

We demonstrate the proposed adaptive HMC strategy on two applications of BNNs. We choose this
domain not only because it is very challenging, but also because in this case we can benchmark our
adaptive algorithms against the results obtained by human experts.

In both experiments, we use cross-validation to construct the reward signal. As in classical n-fold
cross-validation, we divide the data into n sets, train BNNs on n − 1 sets and test them in the
remaining set. During each super-transition, we draw samples for each of the BNNs and calculate
the average cross-validation error.

4.1 Robot Arm Data

The robot arm data set is a classical nonlinear regression benchmark [11]. The data is generated
from the following model:

y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + e1 (6)
y2 = 2.0 sin(x1) + 1.3 sin(x1 + x2) + e2, (7)

where e1 and e2 are independent Gaussian noise variables of mean 0 and standard deviation 0.05.
The first 200 cases of the data are used for training and the last 200 cases are used for testing. Neal
in [28] applied BNNs to this problem. For inference, he used HMC. The hyper-parameters of HMC
were hand tuned.

In the experiment that produced the best results, Neal used super-transitions of 32000 leapfrog steps
to train a network of 16 hidden units for 150 super-transitions. We follow Neal on the structure of
the network and train the network using super-transitions of 24000 leapfrog steps for 200 iterations.
In doing this we preserve the total number of leapfrog steps. We use 8-fold cross-validation to obtain
the rewards. That is, after each super-transition, the cross-validation error is calculated by averaging
the mean squared error of each network tested on the validation part of the 200 training data. We
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Table 1: Mean squared test error for the robot arm data set.

Method Mean Squared Error
Mackay’s (1992) Gaussian approximation with
highest evidence

0.00573

Neal’s (1996) HMC 0.00554
Reversible-jump MCMC with Bayesian model by
Andrieu et al.

0.00502

Adaptive HMC 0.00494

normalize the averaged mean squared error to be within 0 and 1 and use it as the reward for the
parametric bandit model.

The test set error (discarding the first 1500 samples) is summarized in Table 1. The table also
includes results from other samplers [1]. The proposed adaptive scheme not only outperforms the
human expert (Neal in this case), but also does better than state-of-the-art methods such as reversible
jump MCMC. Figure 1 shows the mean of the 3D reward surface learned by the parametric bandit
and the mean of the 2D reward function along a slice L = 3520. The figure also shows the value of
the acquisition function along this slice.
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Figure 1: [Left] Learned mean reward surface for the Robot Arm data, with the tried parameters and corre-
sponding rewards as dots. Areas of the hyper-parameter space with higher reward are explored more densely.
[Right] The upper plot shows the mean reward function for a slice at L = 3520. The blue-shaded region
indicates the one standard deviation confidence interval. The lower plot shows the corresponding acquisition
function.

4.2 Dexter Data Set

For our second demonstration, we use the Dexter data set from the Neural Information Processing
Systems (NIPS) feature selection challenge in 2003 [14]. The Dexter data set is a subset of the well-
known Reuters text categorization benchmark. The data was originally collected and labeled by
Carnegie Group Inc and Reuters Ltd in the course of developing the CONSTRUE text categorization
system. The winning entries submitted by Neal and Zhang used a number of feature selection
techniques followed by Bayesian Neural Networks and Dirichlet diffusion trees [27]. The entry that
used only BNNs was placed second and achieved highly competitive results [14]. In this experiment,
we apply our adaptation strategy to sample from this model.

Thanks to the public release of the code for the competition, we were able to use the same neural
network model as Neal: “New-Bayes-nn-sel”. For a detailed description of this model please refer
to [27]. In his entry, Neal used in total 3200000 leapfrog steps. In our experiments we used 160
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Table 2: Classification error on the validation set of the Dexter data set.

Method Classification Error

New-Bayes-nn-sel 0.080
Adaptive HMC 0.074

super-transitions each with 20000 leapfrog steps. That is to say we used the same number of leapfrog
steps that Neal used. We divided the 300 training cases into 10 equal parts and carried out 10-fold
cross-validation to generate the reward.
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Figure 2: [Left] Mean reward function learned for the Dexter data set from the NIPS 2003 feature selection
challenge. [Right] Average classification error on the validation set of the Dexter data set as a function of the
number of MCMC iterations.

In addition to the training set, the competition also provides a validation set. The average classifica-
tion error rate of all 10 networks on the validation set as well as Neal’s result is provided in Table
2. Figure 2 depicts the 3D reward surface learned by the Bayesian parametric bandits approach, as
well as, the classification errors on the validation set over time.

To assess whether we could combine the 10 neural networks to achieve better results, we used the
10 networks (from the 10-fold cross-validation procedure) to classify the test data set via majority
voting. By using only training data alone, our method attained a 0.0385 classification error rate.
Neal and Zhang’s method with HMC had a 0.0510 error rate, while their best entry for this data set,
using Dirichlet diffusion trees, achieved an error rate of 0.0390. The gains of the adaptive HMC
strategy in this example from the NIPS competition are very clear and significant, demonstrating
that good adaptation can sometimes be preferable to the introduction of more sophisticated models.

5 Analysis

In the proposed approach, the Markov chain is adapted so as to minimize prediction loss. In doing
this, the question of ergodicity arises immediately. Fortunately, there exist general theoretical results
that establish the ergodicity of adaptive MCMC schemes [30, 5]. In general, two sets of conditions
are required for an adaptive MCMC algorithm to be ergodic. First, the adaptation has to vanish
eventually. This condition is usually ensured by the design of the adaptation scheme. The second set
of conditions is usually placed on the underlying MCMC samplers. In [30], the samplers are required
to be either uniformly ergodic or geometrically ergodic. Since the state space of HMC is unbounded,
it is unlikely that HMC is uniformly ergodic. To the best of our knowledge, no theoretical results
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exist on the geometric ergodicity of HMC. However, Roberts et al. showed in [32] that Langevin
diffusion, which is closely related to HMC, is geometrically ergodic. Thus one potential challenge
would be to prove or disprove the geometric ergodicity of HMC. In [5], Atchadé et al. weakened the
conditions required for a general adaptive MCMC algorithm to be ergodic. In their work, although
the authors still require vanishing adaptation, the requirements on the underlying MCMC samplers
were reduced to sub-geometric ergodicity. Although these conditions are weaker, it remains hard to
check whether HMC indeed satisfies them. As an alternative, if the HMC dynamics were defined on
a compact space, then the proposed adaptive scheme would be ergodic.

6 Conclusion

In this paper we were able to show that parametric bandits, under a Bayesian treatment, can be
effectively used to adapt the parameters of hybrid Monte Carlo. This was shown not only for a
simple, but high-dimensional dataset but also for a complex classification task, where Bayesian
neural networks have proven their worth. The experiments showed that it is indeed possible to not
only eliminate the tedious exercise of choosing the parameters, but that this can in fact lead to better
results (as measured by NIPS competition standards).

This paper also introduced a new data-driven objective function for adaptive MCMC. We believe
this strategy increases the level of practicality of adaptive MCMC in statistical prediction tasks.

In proving ergodicity of the proposed approach, the lack of geometric ergodicity results for HMC
poses a serious difficulty. However, the bandit strategy outlined here can be applied to other geomet-
rically ergodic samplers. In such settings, the adaptive MCMC method would be provably ergodic.
Moreover, since there are finite regret bounds for bandit methods as well as finite bounds for MCMC
in discrete state spaces, we conjecture that these results together with our adaptive method should al-
low for the establishment of the first finite bounds on the convergence of adaptive MCMC schemes.
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