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1. INTRODUCTION
Ising models, also known as Boltzmann machines, are ubiquitous models in physics,
machine learning and spatial statistics [Ackley et al. 1985; Besag 1974; Newman and
Barkema 1999; Kindermann and Snell 1980; Hopfield 1984]. They have recently lead
to a revolution in unsupervised learning known as deep learning, see for example [Hin-
ton and Salakhutdinov 2006; Memisevic and Hinton 2009; Ranzato et al. 2010; Lee
et al. 2009; Marlin et al. 2010]. There is also a remarkably large number of other
statistical inference problems, where one can apply Rao-Blackwellization [Hamze and
de Freitas 2004; Robert and Casella 2004; Liu 2001] to integrate out all continuous
variables and end up with a discrete distribution. Examples include topic modeling and
Dirichlet processes [Blei et al. 2003], Bayesian variable selection [Tham et al. 2002],
mixture models [Liu et al. 2003] and multiple instance learning [Kück and de Freitas
2005]. Thus, if we had effective ways of sampling from discrete distributions, we would
solve a great many statistical problems. Moreover, since inference in Ising models can
be reduced to max-SAT and counting-SAT problems [Barahona 1982; Welsh 1993; Bian
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et al. 2011], efficient Monte Carlo inference algorithms for Ising models would be appli-
cable to a vast domain of computationally challenging problems, including constraint
satisfaction and molecular simulation.

Many samplers have been introduced to make large moves in continuous state
spaces. Notable examples are the Hamiltonian and Riemann Monte Carlo algorithms
[Duane et al. 1987; Neal 2010; Girolami and Calderhead 2011]. However, there has
been little comparable effort when dealing with general discrete state spaces. One the
most popular algorithms in this domain is the Swendsen-Wang algorithm [Swendsen
and Wang 1987]. This algorithm, as shown here, works well for sparse planar lattices,
but not for densely connected graphical models. For the latter problems, acceptance
rates to make large moves can be very small. For example, as pointed out in [Munoz
et al. 2003] Ising models with Metropolis dynamics can require 1015 trials to leave a
metastable state at low temperatures, and such a simulation would take 1010 minutes.
For some discrete models, it is however possible to compute the rejection probability
of the next move [Munoz et al. 2003; Hamze and de Freitas 2007]. This leads to more
efficient algorithms that always accept the next move. The problem with this is that
at the next iteration the most favorable move is often to go back to the previous state.
That is, these samplers may often get trapped in cycles.

To overcome this problem, this paper presents a specialized algorithm for equilib-
rium Monte Carlo sampling of binary-valued systems, which allows for large moves
in the state space. This is achieved by constructing self-avoiding walks (SAWs) in the
state space. As a consequence, many bits are flipped in a single MCMC step.

We proposed a variant of this strategy for constrained binary distributions in
[Hamze and de Freitas 2010]. The method presented here applies to unconstrained
systems. It has many advancements, but more free parameters than our previous ver-
sion, thus making the sampler hard to tune. For this reason, we adopt a Bayesian
optimization strategy [Močkus 1982; Brochu et al. 2009; Mahendran et al. 2011] to
automatically tune these free parameters, thereby allowing for the construction of pa-
rameter policies that trade-off exploration and exploitation effectively.

Monte Carlo algorithms for generating SAWs for polymer simulation originated with
[Rosenbluth and Rosenbluth 1955]. More recently, biased SAW processes were adopted
as proposal distributions for Metropolis algorithms in [Siepmann and Frenkel 1992],
where the method was named configurational bias Monte Carlo. The crucial distinction
between these seminal works and ours is that those authors were concerned with sim-
ulation of physical systems that inherently possess the self-avoidance property, namely
molecules in some state space. More specifically, the physics of such systems dictated
that no component of a molecule may occupy the same spatial location as another; the
algorithms they devised took this constraint into account. In contrast, we are treat-
ing a different problem, that of sampling from a binary state-space, where a priori, no
such requirement exists. Our construction involves the idea of imposing self-avoidance
on sequences of generated states as a process to instantiate a rapidly-mixing Markov
Chain on the binary state-space. It is therefore more related to the class of optimiza-
tion algorithms known as Tabu Search [Glover 1989] than to classical polymer SAW
simulation methods. To our knowledge, though, a correct equilibrium Monte Carlo al-
gorithm using the Tabu-like idea of self-avoidance in state-space trajectories has not
yet been proposed.

We should also point out that sequential Monte Carlo (SMC) methods, such as Hot
Coupling and annealed importance sampling, have been proposed to sample from
Boltzmann machines [Hamze and de Freitas 2005; Salakhutdinov and Murray 2008].
SMC has also been discussed in the context of rare event simulation and counting SAT
problems [Cérou et al. 2012]. Since SMC samplers often use an MCMC kernel as pro-
posal distribution, the MCMC sampler proposed here could enhance those techniques.
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The same observation applies when considering other population and meta-MCMC
strategies such as parallel tempering [Geyer 1991; Earl and Deem 2005], multicanon-
ical Monte Carlo [Berg and Neuhaus 1991; Gubernatis and Hatano 2000], Wang-
Landau sampling [Wang and Landau 2001] and the generalized splitting method
[Botev and Kroese 2012].

2. PRELIMINARIES
Consider a binary-valued system defined on the state space S , {0, 1}M , i.e. consisting
of M variables each of which can be 0 or 1. The probability of a state x = [x1, . . . ,xM ] is
given by the Boltzmann distribution:

π(x) =
1

Z(β)
e−βE(x) (1)

where β is an inverse temperature. An instance of such a system is the ubiquitous Ising
model of statistical physics, also called a Boltzmann machine by the machine learning
community. Our aim in this paper is the generation of states distributed according to
a Boltzmann distribution specified by a particular energy function E(x).

A standard procedure is to apply one of the local Markov Chain Monte Carlo
(MCMC) methodologies such as the Metropolis algorithm or the Gibbs (heat bath)
sampler. As is well-known, these algorithms can suffer from issues of poor equilibra-
tion (“mixing”) and trapping in local minima at low temperatures. More sophisticated
methods such as Parallel Tempering [Geyer 1991] and the flat-histogram algorithms
(e.g. multicanonical [Berg and Neuhaus 1991] or Wang-Landau [Wang and Landau
2001] sampling) can often dramatically mitigate this problem, but they usually still
rely on local MCMC at some stage. The ideas presented in this paper relate to MCMC
sampling using larger changes of state than those of local algorithms. They can be ap-
plied on their own or in conjunction with the previously-mentioned advanced methods.
In this paper, we focus on the possible advantage of our algorithms over local methods.

Given a particular state x ∈ S, we denote by Sn(x) the set of all states at Hamming
distance n from x. For example if M = 3 and x = [1, 1, 1], then S0(x) = {[1, 1, 1]},
S1(x) = {[0, 1, 1], [1, 0, 1], [1, 1, 0]}, etc. Clearly |Sn(x)| =

(
M
n

)
.

We define the set of bits in two states x,y that agree with each other: let A(x,y) =
{i|xi = yi}. For instance if x = [0, 1, 0, 1] and y = [0, 0, 0, 1], then A(x,y) = {1, 3, 4}.
Clearly, A(x,y) = A(y,x) and A(x,x) = {1, 2, . . . ,M}.

Another useful definition is that of the flip operator, which simply inverts bit i in a
state, F (x, i) , (x1, . . . , x̄i, . . . , xM ), and its extension that acts on a sequence of indices,
i.e. F (x, i1, i2, . . . , ik) , F (F (. . . ,F (x, i1), i2), . . . , ik).

For illustration, we describe a simple Metropolis algorithm in this framework. Con-
sider a state x ∈ S; a new state x′ ∈ S1(x) is generated by flipping a random bit of
x, i.e. x′ = F (x, i) for i chosen uniformly from {1, . . . ,M}, and accepting the new state
with probability:

α = min(1, e−β(E(x′)−E(x))) (2)

If all the single-flip neighbors of x, i.e. the states resulting from x via a single bit
perturbation, are of higher energy than E(x), the acceptance rate will be small at low
temperatures.

3. SARDONICS
In contrast to the traditional single-flip MCMC algorithms, the elementary unit of our
algorithm is a type of move that allows for large changes of state and tends to propose
them such that they are energetically favourable. We begin by describing the move
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operator and its incorporation into the Monte Carlo algorithm we call SARDONICS,
an acronym for Self-Avoiding Random Dynamics on Integer Complex Systems. This
algorithm will then be shown to satisfy the theoretical requirements that ensure cor-
rect asymptotic sampling. The move procedure aims to force exploration away from the
current state. In that sense it has a similar spirit to the Tabu Search [Glover 1989] op-
timization heuristic, but the aim of SARDONICS is equilibrium sampling, a problem
more general than (and in many situations at least as challenging as) minimization.

Suppose that we have a state x0 on S. It is possible to envision taking a spe-
cial type of biased self-avoiding walk (SAW) of length k in the state space, in other
words a sequence of states such that no state recurs in the sequence. In this type of
SAW, states on sets {S1(x0), . . . ,Sk(x0)} are visited consecutively. To generate this se-
quence of states (u1, . . . ,uk), at step i of the procedure a bit is chosen to be flipped
from those that have not yet flipped relative to x0. Specifically, an element σi is se-
lected from A(x0,ui−1), with u0 , x0, to yield state ui = F (ui−1, σi), or equivalently,
ui = F (x0, σ1, . . . , σi). From ui−1 ∈ Si−1(x0), the set of states on Si that can result from
flipping a bit in A(x0,ui−1) are called the single-flip neighbours of ui−1 on Si(x0). The
set of bits that can flip with nonzero probability are called the allowable moves at each
step. A diagrammatic depiction of the SAW is shown in Figure 1.

The elements {σi} are sampled in an energy-biased manner as follows:

q(σi = l|σi−1, . . . , σ1,x0) =


e−γE(F (ui−1,l))∑

j∈A(x0,ui−1) e
−γE(F (ui−1,j))

l ∈ A(x0,ui−1) and
ui−1 = F (x0, σ1, . . . , σi−1)

0 otherwise
(3)

The larger the value that simulation parameter γ is assigned, the more likely the
proposal q is to sample the lower-energy neighbors of ui−1. Conversely if it is zero, a
neighbor on Si(x0) is selected completely at random. In principle, the value of γ will be
seen to be arbitrary; indeed it can even be different at each step of the SAW. We will
have more to say about the choice of γ, as well as the related issue of the SAW lengths,
in Section 4.2.

The motivation behind using such an energy-biased scheme is that when proposing
large changes of configuration, it may generate final states that are “typical” of the sys-
tem’s target distribution. To make a big state-space step, one may imagine uniformly
perturbing a large number of bits, but this is likely to yield states of high energy, and
an MCMC algorithm will be extremely unlikely to accept the move at low tempera-
tures.

At this point it can be seen why the term “self-avoiding” aptly describes the pro-
cesses. If we imagine the state-space to be a high-dimensional lattice, with the individ-
ual states lying at the vertices and edges linking states that are single-flip neighbors, a
self-avoiding walk on this graph is a sequence of states that induce a connected, acyclic
subgraph of the lattice. In the move procedure we have described, a state can never
occur twice at any stage within it and so the process is obviously self-avoiding.

Note however that the construction imposes a stronger condition on the state se-
quence; once a transition occurs from state x to state F (x, i), not only may state x not
appear again, but neither may any state y with yi = xi. It seems natural to ask why
not to use a less constrained SAW process, namely one that avoids returns to indi-
vidual states and likely more familiar to those experienced in molecular and polymer
simulations, without eliminating an entire dimension at each step. In our experience,
trying to construct such a SAW as a proposal requires excessive computational memory
and time to yield good state-space traversal. A local minimum “basin” of a combina-
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x0 = [11100]

u1

u2

u3 = [10111]

S1(x0)

S2(x0)

S3(x0

Fig. 1: A visual illustration of the move process for a SAW of length 3. The arrows
represent the allowable moves from a state at that step; the red arrow shows the actual
move taken in this example. With the system at state x0, the SAW begins. Bit 4 of x0

has been sampled for flipping according to Equation 3 to yield state u1 = [11110]; the
process is repeated until state u3 on S3(x0) is reached. The sequence of states taken by
the SAW is σ = [4, 2, 5] .

toric landscape can potentially contain a massive number of states, and a process that
moves by explicitly avoiding particular states may be doomed to wander within and
visit a substantial portion of the basin prior to escaping.

Let x1 be the final state reached by the SAW, i.e. uk for a length k walk. By multi-
plying the SAW flipping probabilities, we can straightforwardly obtain the probability
of moving from state x0 to x1 along the SAW σ, which we call q(x1,σ|x0):

q(x1,σ|x0) , δx1
[F (x0,σ)]

k∏
i=1

q(σi|ui−1) (4)

The delta function simply enforces the fact that the final state x1 must result from the
sequence of flips in σ from x0. The set of {σ} such that q(x1,σ|x0) > 0 are termed the
allowable SAWs between x0 and x1.

Ideally, to implement a Metropolis-Hastings (MH) algorithm using the SAW pro-
posal, we would like to evaluate the marginal probability of proposing x1 from x0,
which we call q(x1|x0), so that the move would be accepted with the usual MH ratio:

αm(x0,x1) , min

(
1,
π(x1)q(x0|x1)

π(x0)q(x1|x0)

)
(5)

Unfortunately, for all but small values of the walk lengths k, marginalization of the
proposal is intractable due to the potentially massive number of allowable SAWs be-
tween the two states.

To assist in illustrating our solution to this, we recall that a sufficient condition for
a Markov transition kernel K to have target π as its stationary distribution is detailed
balance:

π(x0)K(x1|x0) = π(x1)K(x0|x1) (6)
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One special case obtains if we used the marginalized proposal q(x1|x0) followed by the
MH accept rule,

Km(x1|x0) , q(x1|x0)αm(x0,x1) (7)

As we cannot compute q(x1|x0), we shall use a kernel K(x1,σ|x0) defined on the joint
space of SAWs and states, and show that with some care, detailed balance (6) can still
hold marginally. It will be clear, though that this does not mean that the resultant
marginal kernel K(x1|x0) is the same as that in (7) obtained using MH acceptance on
the marginal proposal .

Define the sequence reversal operator R(σ) to simply return a sequence consisting
of the elements of σ in reverse order; for example R([2, 3, 1, 4]) = [4, 1, 3, 2]. One can
straightforwardly observe that each allowable SAW σ from x0 to x1 can be uniquely
mapped to the allowable SAW R(σ) from x1 to x0. For example in Figure 1, the SAW
R(σ) = [5, 2, 4] can be seen to be allowable from x1 to x0. Next, we have the following
somewhat more involved concept, a variant of which we introduced in [Hamze and
de Freitas 2010]:

Definition 3.1. Consider a Markov kernel K(x1,σ|x0) whose support set coincides
with that of (4). We say that pathwise detailed balance holds if

π(x0)K(x1,σ|x0) = π(x1)K(x0, R(σ)|x1)

for all σ,x0,x1.

It turns out that pathwise detailed balance is a stronger condition than marginal
detailed balance. In other words,

PROPOSITION 3.2. If the property in Definition 3.1 holds for a transition kernel K
of the type described there, then π(x0)K(x1|x0) = π(x1)K(x0|x1)

PROOF. Suppose, for given x0,x1, we summed both sides of the equation enforcing
pathwise detailed balance over all allowable SAWs {σ′} from x0 to x1, i.e.∑

σ′

π(x0)K(x1,σ
′|x0) =

∑
σ′

π(x1)K(x0, R(σ′)|x1)

The left-hand summation marginalizes the kernel over allowable SAWs and hence
results in π(x0)K(x1|x0). The observation above that each allowable SAW from x0 to
x1 can be reversed to yield an allowable one from x1 to x0 implies that the right-hand
side is simply a re-ordered summation over all allowable SAWs from x1 to x0, and can
thus be written as π(x1)K(x0|x1).

We are now ready to state the final form of the algorithm (see Algorithm 1), which
can be seen to instantiate a Markov chain satisfying pathwise detailed balance. After
proposing (x1,σ) using the SAW process, we accept the move with the ratio:

α(x0,x1,σ) , min

(
1,
π(x1)q(x0, R(σ)|x1)

π(x0)q(x1,σ|x0)

)
(8)

The computational complexity of evaluating this accept ratio is of the same order
as that required to sample the proposed SAWs/state; the only additional operations
required are those needed to evaluate the reverse proposal appearing in the numerator,
which are completely analogous to those involved in calculating the forward proposal.

Let us take a closer look at the marginal transition kernel K(x1|x0). We can factor
the joint proposal into:

q(x1,σ|x0) = q(x1|x0)q(σ|x0,x1)
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ALGORITHM 1: SARDONICS
1: Let x0 be the initial state.
2: for i = 1, 2, . . . , n do
3: Set u0 = xi
4: for j = 1, 2, . . . , k do
5: Sample σj according to equation (3)
6: Flip bit indexed by σj : uj = F (uj−1, σj)
7: end for
8: Compute α(xi,uk,σ) , min

(
1, π(uk)q(xi,R(σ)|uk)

π(xi)q(uk,σ|xi)

)
9: Draw u ∼ U(0, 1)
10: if u ≤ α(xi,uk,σ) then
11: xi = uk
12: else
13: xi = xi−1

14: end if
15: end for

Of course, if we are assuming that q(x1|x0) is intractable to evaluate, then the condi-
tional q(σ|x0,x1) must be so as well, but it is useful to consider. If we now summed
both sides of the joint probability of moving from x0 to x1 over allowable paths, we
would observe:∑

σ′

π(x0)K(x1,σ
′|x0) = π(x0)q(x1|x0)

∑
σ′

q(σ′|x0,x1)α(x0,x1,σ
′)

The summation on the right-hand side is thus the conditional expectation of the accept
rate given that we are attempting to move from x0 to x1; we call it

α(x0,x1) ,
∑
σ′

q(σ′|x0,x1)α(x0,x1,σ
′) (9)

and it defines an effective acceptance rate between x0 and x1 under the sampling regime
described since

K(x1|x0) = q(x1|x0)α(x0,x1).

It is not difficult to show that α(x0,x1) 6= αm(x0,x1), i.e. the marginal accept rate for
the joint proposal is not the same as the one that results from using the marginalized
proposal. In fact we can make a stronger statement:

PROPOSITION 3.3. For every pair of states (x0,x1), α(x0,x1) ≤ αm(x0,x1)

PROOF. For conciseness, let C , 1
αm(x0,x1) = π(x0)q(x1|x0)

π(x1)q(x0|x1) . Define the sets A ,

{σ| q(R(σ)|x1,x0)
q(σ|x0,x1) ≥ C} and Ā , {σ| q(R(σ)|x1,x0)

q(σ|x0,x1) < C}. Then

α(x0,x1) =
∑
σ′

q(σ′|x0,x1) min

(
1,
π(x1)q(x0|x1)q(R(σ′)|x1,x0)

π(x0)q(x1|x0)q(σ′|x0,x1)

)
=
∑
σ′∈A

q(σ′|x0,x1) +
π(x1)q(x0|x1)

π(x0)q(x1|x0)

∑
σ′∈Ā

q(R(σ′)|x1,x0)

=
∑
σ′∈A

q(σ′|x0,x1) +
1

C

∑
σ′∈Ā

q(R(σ′)|x1,x0)
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But by definition, for σ ∈ A, q(σ|x0,x1) ≤ 1
C q(R(σ)|x1,x0). Therefore,

α(x0,x1) ≤ 1

C

∑
σ′∈A

q(R(σ′)|x1,x0) +
1

C

∑
σ′∈Ā

q(R(σ′)|x1,x0)

=
1

C

( ∑
σ′∈A

q(R(σ′)|x1,x0) +
∑
σ′∈Ā

q(R(σ′)|x1,x0)
)

=
1

C
= αm(x0,x1)

There is another technical consideration to address. The reader may have remarked
that while detailed balance does indeed hold for our algorithm, if the SAW length
is constant at k > 1, then the resulting Markov chain is no longer irreducible. In
other words, not every x ∈ S is reachable with nonzero probability regardless of the
initial state. For example if k = 2 and the initial state x0 = [0, 0, 0, 0, 0, 0], then the
state x = [0, 0, 0, 0, 0, 1] can never be visited. Fortunately, this is a rather easy issue to
overcome; one possible strategy is to randomly choose the SAW length prior to each
step from a set that ensures that the whole state space can eventually be visited. A
trivial example of such a set is any collection of integers that include unity, i.e. such
that single-flip moves are allowed. Another is a set that includes consecutive integers,
i.e. {k0, k0 + 1} for any k0 < M . This latter choice could allow states separated by a
single bit to occur in two steps; in the example above, if the set of lengths was {3, 4}
then we could have [0, 0, 0, 0, 0, 0] → [0, 0, 1, 1, 1, 1] → [0, 0, 0, 0, 0, 1]. While this shows
how to enforce theoretical correctness of the algorithm, in upcoming sections we will
discuss the issue of practical choice of the lengths in the set.

The experimental section discusses the practical matter of efficiently sampling the
SAW for systems with sparse connectivity, such as the 2D and 3D Ising models.

3.1. Iterated SARDONICS
The SARDONICS algorithm presented in Section 3 is sufficient to work effectively
on many types of system, for example Ising models with ferromagnetic interactions.
This section, however, will detail a more advanced strategy for proposing states that
uses the state-space SAW of Section 3 as its basic move. The overall idea is to extend
the trial process so that the search for a state to propose can continue from the state
resulting from a concatenated series of SAWs from x0. The reader familiar with combi-
natorial optimization heuristics will note the philosophical resemblance to the class of
algorithms termed iterated local search [Hoos and Stutzle 2004], but will again bear in
mind that in the present work, we are interested in equilibrium sampling as opposed
to optimization.

We begin by noting that restriction to a single SAW is unnecessary. We can readily
consider in principle an arbitrary concatenation of SAWs (σ1,σ2, . . . ,σN ). A straight-
forward extension of the SAW proposal is then to select some number of iterations N
(which need not be the same from one move attempt to the next,) to generate x1 from
x0 by sampling from the concatenated proposal, defined to be

g(x1,σ1, . . . ,σN |x0) , q(y1, σ1|x0)q(y2, σ2|y1) . . .

q(yN ,σN |yN−1)δx1
(yN )

(10)

and to accept the move with probability

α(x0,x1,σ1 . . . ,σN ) = min

(
1,
π(x1)g(x0, R(σN ), . . . R(σ1)|x1)

π(x0)g(x1,σ1, . . . ,σN |x0)

)
(11)
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ALGORITHM 2: Iterated SARDONICS
1: Let x0 be the initial state.
2: for i = 1, 2, . . . , n do
3: Set u0 = xi
4: for p = 1, 2, . . . , N do
5: for j = 1, 2, . . . , k do
6: Sample σp,j according to q(σp,j = l|σp,j−1, . . . , σp,1,x0) defined by equation 3
7: Flip bit indexed by σp,j : uj = F (uj−1, σp,j)
8: end for
9: Set yp = uk and u0 = yp

10: end for
11: Compute α(xi,y

N ,σ1 . . . ,σN ) = min

(
1, π(yN )g(xi,R(σN ),...R(σ1)|yN )

π(xi)g(yN ,σ1,...,σN |xi)

)
12: Draw u ∼ U(0, 1)
13: if u ≤ α(xi,y

N ,σ) then
14: xi = yN

15: else
16: xi = xi−1

17: end if
18: end for

In (10), the superscripted {yi} refer to the “intermediate” states on S generated by the
flip sequences, and the functions q are the SAW proposals discussed in Section 3. The
proposed state x1 is identical to the final intermediate state yN ; to avoid obscuring
the notation with too many delta functions we take it as implicit that the the proposal
evaluates to zero for intermediate states that do not follow from the flip sequences
{σi}.

We refer to this as the iterated SARDONICS algorithm (See algorithm 2). Its poten-
tial merit over taking a single SAW is that it may generate more distant states from
x0 that are favorable. Unfortunately, a priori there is no guarantee that the final state
x1 will be more worthy of acceptance than the intermediate states visited in the pro-
cess; it is computationally wasteful to often propose long sequences of flips that end up
rejected, especially when potentially desirable states may have been passed over. It is
thus very important to choose the right value of N . For this reason, we will introduce
Bayesian optimization techniques to adapt N and other parameters automatically in
section 4.

3.2. Mixture of SAWs
A further addition we made to the basic algorithm was the generalization of the pro-
posal to a mixture of SAW processes. Each segment of the iterated procedure intro-
duced in Section 3.1 could in principle operate at a different level of the biasing pa-
rameter γ. A possible strategy one can envision is to occasionally take a pair of SAWs
with the first at a small value of γ and the next at a large value. The first step en-
courages exploration away from the current state, and the second a search for a new
low-energy state. More specifically, for the two SAWs (σ1,σ2), we can have a proposal
of the form:

q(x1,σ1,σ2|x0) = q(y1,σ1|x0, γL)q(x1,σ2|y1, γH)

where γH and γL are high and low inverse temperature biases respectively. Unfortu-
nately, such a method on its own will likely result in a high rejection rate; the numer-
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ator of the MH ratio enforcing detailed balance will be:

q(x0, R(σ2), R(σ1)|x1) = q(y1, R(σ2)|x1, γL)q(x0, R(σ1)|y1, γH)

The probability of taking the reverse sequences will likely be very small compared
to those of the forward sequences. In particular, the likelihood of descending at low-
temperature biasing parameter along the sequence R(σ1), where σ1 was generated
with the high-temperature parameter, will be low.

Our simple approach to dealing with this is to define the proposal to be a mix-
ture of three types of SAW processes. The mixture weights, PLL, PHL, PLH , with
PLL + PLH + PHL = 1, define, respectively, the frequencies of choosing a proposal unit
consisting of a pair of SAWs sampled with (γL, γL), (γH , γL), and (γL, γH). The first
proposal type encourages local exploration; both SAWs are biased towards low-energy
states. The second one, as discussed, is desirable as it may help the sampler escape
from local minima. The last one may seem somewhat strange; since it ends with sam-
pling at γH , it will tend to generate states with high energy which will consequently
be rejected. The purpose of this proposal, however, is to assist in the acceptance of
the HL exploratory moves due to its presence in the mixture proposal. Thus, PLH is
a parameter that must be carefully tuned. If it is too large, it will generate too many
moves that will end up rejected due to their high energy; if too small, its potential to
help the HL moves be accepted will be diminished. The mixture parameters are thus
ideal candidates to explore the effectiveness of adaptive strategies to tune MCMC.

4. ADAPTING SARDORNICS WITH BAYESIAN OPTIMIZATION
SARDONICS has several free parameters: upper and lower bounds on the SAW length
(ku and kl respectively), γH , γL, PLL, PHL, PLH as explained in the previous section, and
finally the number of concatenated SAWsN . We group these free parameters under the
symbol θ = {ku, kl, γH , γL, PLL, PHL, PLH , N}. Each θ defines a stochastic policy, where
the SAW length k is chosen at random in the set [kl, ku] and where the SAW processes
are chosen according to the mixture probabilities PLL, PHL, PLH . Tuning all these pa-
rameters by hand is an onerous task. Fortunately, this challenge can be surmounted
using adaptation. Stochastic approximation methods, at first sight, might appear to
be good candidates for carrying out this adaptation. They have become increasingly
popular in the subfield of adaptive MCMC [Haario et al. 2001; Andrieu and Robert
2001; Roberts and Rosenthal 2009; Vihola 2010]. There are a few reasons, however,
that force us to consider alternatives to stochastic approximation.

In our discrete domain, there are no obvious optimal acceptance rates that could be
used to construct the objective function for adaptation. Instead, we choose to optimize
θ so as to minimize the area under the auto-correlation function (of the energies in
this paper) up to a specific lag. This objective was previously adopted in [Andrieu and
Robert 2001; Mahendran et al. 2011]. One might argue that this is a reasonable objec-
tive given that researchers and practitioners often use it to diagnose the convergence
of MCMC algorithms. However, the computation of gradient estimates for this objec-
tive is very involved and far from trivial [Andrieu and Robert 2001]. This motivates
the introduction of a gradient-free optimization scheme known as Bayesian optimiza-
tion [Močkus 1982; Brochu et al. 2009]. Bayesian optimization also has the advantage
that it trades-off exploration and exploitation of the objective function. In contrast,
gradient methods are designed to exploit locally and may, as a result, get trapped in
unsatisfactory local optima.

The proposed adaptive strategy consists of two phases: adaptation and sampling.
In the adaptation phase Bayesian optimization is used to construct a randomized
policy. In the sampling phase, a mixture of MCMC kernels selected according to the
learned randomized policy is used to explore the target distribution. Experts in adap-
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ALGORITHM 3: Adaptation phase of SARDONICS
1: for i = 1, 2, . . . , I do
2: Run SARDONICS for L steps with parameters θi.
3: Use the drawn samples to obtain a noisy evaluation of the objective function:

zi = h(θi) + ε.
4: Augment the observation set D1:i = {D1:i−1, (θi, zi)}.
5: Update the GP’s sufficient statistics.
6: Find θi+1 by optimizing an acquisition function: θi+1 = arg maxθ u(θ|D1:i).
7: end for

tive MCMC would have realized that there is no theoretical need for this two-phase
procedure. Indeed, if the samplers are uniformly ergodic, which is the case in our
discrete setting, and adaptation vanishes asymptotically, then ergodicity can still be
established [Roberts and Rosenthal 2009; Andrieu and Robert 2001]. However, in
our setting the complexity of the adaptation scheme increases with time. Specifically,
Bayesian optimization, as we shall soon outline in detail, requires fitting a Gaussian
process to I points, where I is the number of iterations of the adaptation procedure.
In the worst case, this computation is O(I3). There are techniques based on conjugate
gradients, fast multipole methods and low rank approximations to speed up this com-
putation [Freitas et al. 2005; Halko et al. 2011]. However, none of these overcome the
issue of increasing storage and computational needs. So, for pragmatic reasons, we re-
strict the number of adaptation steps. We will discuss the consequence of this choice
in the experiments and come back to this issue in the concluding remarks.

The two phases of our adaptive strategy are discussed in more detail subsequently.

4.1. Adaptation Phase
Our objective function for adaptive MCMC is the area under the auto-correlation func-
tion up to a specific lag. This objective is intractable, but noisy observations of its value
can be obtained by running the Markov chain for a few steps with a specific choice of
parameters θi. Bayesian optimization can be used to propose a new candidate θi+1

by approximating the unknown function using the entire history of noisy observations
and a prior over this function. The prior used in this paper is a Gaussian process.

The noisy observations are used to obtain the predictive distribution of the Gaussian
process. An expected utility function derived in terms of the sufficient statistics of the
predictive distribution is optimized to select the next parameter value θi+1. The overall
procedure is shown in Algorithm 3. We refer readers to [Brochu et al. 2009] and [Lizotte
2008] for in-depth reviews of Bayesian optimization.

The unknown objective function h(·) is assumed to be distributed according to a
Gaussian process with mean function m(·) and covariance function k(·, ·):

h(·) ∼ GP (m(·), k(·, ·)).

We adopt a zero mean functionm(·) = 0 and an anisotropic Gaussian covariance that is
essentially the popular automatic relevance determination (ARD) kernel [Rasmussen
and Williams 2006]:

k(θj ,θk) = exp

(
−1

2
(θj − θk)Tdiag(ψ)−2(θj − θk)

)
where ψ ∈ Rd is a vector of hyper-parameters. The Gaussian process is a surrogate
model for the true objective, which involves intractable expectations with respect to
the invariant distribution and the MCMC transition kernels.
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We assume that the noise in the measurements is Gaussian: zi = h(θi) + ε,
ε ∼ N (0, σ2

η). It is possible to adopt other noise models [Diggle et al. 1998]. Our Gaus-
sian process emulator has hyper-parameters ψ and ση. These hyper-parameters are
typically computed by maximizing the likelihood [Rasmussen and Williams 2006]. In
Bayesian optimization, we can use Latin hypercube designs to select an initial set
of parameters and then proceed to maximize the likelihood of the hyper-parameters
iteratively [Ye 1998; Santner et al. 2003]. This is the approach followed in our exper-
iments. However, a good alternative is to use either classical or Bayesian quadrature
to integrate out the hyper-parameters [Osborne et al. 2010; Rue et al. 2009].

Let z1:i ∼ N (0,K) be the i noisy observations of the objective function obtained from
previous iterations. (Note that the Markov chain is run for L steps for each discrete
iteration i. The extra index to indicate this fact has been made implicit to improve
readability.) z1:i and hi+1 are jointly multivariate Gaussian:[

z1:i

hi+1

]
= N

(
0,

[
K + σ2

ηI kT

k k(θ,θ)

])
,

where

K =

k(θ1,θ1) . . . k(θ1,θi)
...

. . .
...

k(θi,θ1) . . . k(θi,θi)


and k = [k(θ,θ1) . . . k(θ,θi)]

T . All the above assumptions about the form of the prior
distribution and observation model are standard and less restrictive than they might
appear at first sight. The central assumption is that the objective function is smooth.
For objective functions with discontinuities, we need more sophisticated surrogate
functions for the cost. We refer readers to [Gramacy et al. 2004] and [Brochu et al.
2009] for examples.

The predictive distribution for any value θ follows from the Sherman-Morrison-
Woodbury formula, where D1:i = (θ1:i, z1:i):

p(hi+1|D1:i,θ) = N (µi(θ), σ2
i (θ))

µi(θ) = kT (K + σ2
ηI)−1z1:i

σ2
i (θ) = k(θ,θ)− kT (K + σ2

ηI)−1k

The next query point θi+1 is chosen to maximize an acquisition function, u(θ|D1:i),
that trades-off exploration (where σ2

i (θ) is large) and exploitation (where µi(θ) is high).
We adopt the expected improvement over the best candidate as this acquisition func-
tion [Močkus 1982; Schonlau et al. 1998; Brochu et al. 2009]:

EI(θ|D1:i) = E
(
max

[
0, h(θ)− h(θ+

i )
]
|D1:i

)
,

where θ+
i is the best known action so far. This is a standard acquisition function for

which asymptotic rates of convergence have been proved [Bull 2011]. However, we
point out that there are a few other reasonable alternatives, such as Thompson sam-
pling [May et al. 2011] and upper confidence bounds (UCB) on regret [Srinivas et al.
2010]. A comparison among these options as well as portfolio strategies to combine
them appeared recently in [Hoffman et al. 2011]. There are several good ways of op-
timizing the acquisition function, including the method of DIvided RECTangles (DI-
RECT) of [Finkel 2003] and many versions of the projected Newton methods of [Bert-
sekas 1982]. We found DIRECT to provide a very efficient solution in our domain.
Note that optimizing the acquisition function is much easier than optimizing the origi-
nal objective function. This is because the acquisition functions can be easily evaluated

ACM Transactions on Modeling and Computer Simulation, Vol. A, No. A, Article A, Publication date: December 2011.



Self-Avoiding Random Dynamics on Integer Complex Systems A:13

kl ku γL γH PLL PHL PLH N

{1, . . . , 70} {2, . . . , 120} [0.89, 1.05] [0.9, 1.15] [0, 1] [0, 1] [0, 1] {1, . . . , 5}

Table I: The ranges from which Bayesian Optimization chooses parameters for SAR-
DONICS. The selection mechanism ensures that ku ≥ kl and γH ≥ γL.

and differentiated. Finally, we can apply appropriate normalization to ensure that the
parameters remain within their permissible ranges, as discussed in the second para-
graph of Section 5.

4.2. Sampling Phase
The Bayesian optimization phase results in a Gaussian process on the I noisy ob-
servations of the performance criterion z1:I , taken at the corresponding locations in
parameter space θ1:I . This Gaussian process is used to construct a discrete stochastic
policy p(θ|z1:I) over the parameter space Θ. The Markov chain is run with parameter
settings randomly drawn from this policy at each step.

One can synthesize the policy p(θ|z1:I) in several ways. The simplest is to use the
mean of the GP to construct a distribution proportional to exp(µ(θ)). This is the so-
called Boltzmann policy. We can sample M parameter candidates θi according to this
distribution. Our final sampler then consists of a mixture of M transition kernels,
where each kernel is parameterized by one of the θi, i = 1, . . . ,M . The distribution of
the samples generated in the sampling phase will approach the target distribution π(·)
as the number of iterations tends to∞ provided the kernels in this finite mixture are
ergodic.

In high dimensions, one reasonable approach would be to use a multi-start opti-
mizer to find maxima of the unnormalized Boltzmann policy and then perform local
exploration of the modes with a simple Metropolis algorithm. This is a slight more
sophisticated version of what is often referred to as the epsilon greedy policy.

The strategies discussed thus far do not take into account the uncertainty of the GP.
A solution is to draw M functions according to the GP and then find he optimizer θi of
each of these functions. This is the strategy followed in [May et al. 2011] for the case
of contextual bandits. Although this strategy works well for low dimensions, it is not
clear how it can be easily scaled.

5. EXPERIMENTS
Our experiments compare different versions of SARDONICS to the popular Gibbs,
block-Gibbs and Swendsen-Wang samplers. Several types of binary-valued systems,
all belonging to the general class of undirected graphical model called the Ising model,
are used. The energy of a binary state s, where si ∈ {−1, 1} is given by:

E(s) = −
∑
(i,j)

Jijsisj −
∑
i

hisi

(One can trivially map xi ∈ {0, 1} to si ∈ {−1, 1} and vice-versa.) The interaction
weights Jij between variables i and j are zero if they are topologically disconnected;
positive (also called “ferromagnetic”) if they tend to have the same value; and negative
(“anti-ferromagnetic”) if they tend to have opposite values. The presence of interac-
tions of mixed sign can significantly complicate Monte Carlo simulation due to the
proliferation of local minima in the energy landscape. Interaction weights of different
sign produce unsatisfiable constraints and cause the system to become “frustrated”.
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Models kl ku γL γH PLL PHL PLH N

2D Ferromagnetic model 55.8 91.2 1.002 1.029 0.385 0.371 0.243 1.6
Frustrated 2D grid Ising 63.3 91.1 1.040 1.082 0.208 0.674 0.119 3.4
Frustrated 3D cube Ising 4.4 30.1 1.039 1.134 0.616 0.231 0.153 2.9
Chimera lattice 3.8 19.8 1.043 1.139 0.397 0.324 0.279 3.9
RBM (Pure SARDONICS) 17.9 49.7 1.029 1.029 - - - 1.0

Table II: Typical parameters that the adaptation procedure discovers. These values are
computed by taking an average over the mixture of M transition kernels generated by
the adaptation process.

We apply SARDONICS with the same parameter ranges to a varied set of models,
including 2D ferromagnets, 2D and 3D frustrated Ising models, restricted Boltzmann
machines and chimera lattices. These parameter ranges are shown in Table I. We nor-
malized the values of PLL, PHL, and PLH to ensure they sum up to one. We enforce
the constraint ku ≥ kl by choosing kl and an additive value ak such that ku = kl + ak.
The same procedure is applied to γH and γL. Table II shows some of the parameters
computed by the Bayesian optimization scheme.

The experimental protocol for all models was the same: For 10 independent trials,
run the competing samplers for a certain number of iterations, storing the sequence
of energies visited. Using each trial’s energy sequence, compute the auto-correlation
function (ACF). Comparison of the algorithms consisted of analyzing the energy ACF
averaged over the trials. Without going into detail, a more rapidly decreasing ACF is
indicative of a faster-mixing Markov chain; see for example [Robert and Casella 2004].
For all the models, each sampler is run for 105 steps. For SARDONICS, we use the first
2×104 iterations to adapt its hyper-parameters. For fairness of comparison, we discard
the first 2 × 104 samples from each sampler and compute the ACF on the remaining
8× 104 samples.

5.1. Ferromagnetic 2D Ising Model
The first set of experiments considers the behavior of Gibbs, SARDONICS and
Swendsen-Wang on a ferromagnetic Ising model on a planar, regular grid of size 60×60.
The model has connections between the nodes on one boundary to the nodes on the
other boundary for each dimension. As a result of these periodic boundaries, the model
is a square toroidal grid. Hence, each node has exactly four neighbors. In the first ex-
periment, the interaction weights, Jij , are all 1 and the biases, hi, are all 0. We test the
three algorithms on this model at three different temperatures: 1, 2.27 and 5. The value
β = 1/2.27 corresponds to the so-called critical temperature, where many interesting
phenomena arise [Newman and Barkema 1999] but where simulation also becomes
quite difficult.

As shown in Figure 2, at the critical temperature, Swendsen-Wang does considerably
better than its competitors. It is precisely for these types of lattice that Swendsen-
Wang was designed to mix efficiently, through effective clustering. This part of the
result is therefore not surprising. However, we must consider the performance of SAR-
DONICS carefully. Although it does much better than Gibbs, as expected, it under-
performs in comparison to Swendsen-Wang at the critical temperature.

To examine SARDONICS with a finer lens, we consider the role of each of its com-
ponents in Figure 3. The plot illustrates the performance of the vanilla SARDONICS
algorithm (Pure SARDONICS), SARDONICS enhanced with the iterative scheme of
Section 3.1, SARDONICS with the mixture of kernels, and SARDONICS with both the
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Fig. 2: The 2D Ferromagnetic model with periodic (toroidal) boundaries [top left], the
auto-correlations of the samplers for T = 2.27 (critical temperature) [top right], traces
of every 5 out of the 105 samples of the energy [bottom left] and rewards obtained by
the Bayesian optimization algorithm during the adaptation phase [bottom right].
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Fig. 3: Different versions of SARDONICS on the Ferromagnetic 2D grid Ising model .

iterative scheme and the mixture approach (Full SARDONICS). It is clear that the
enhancements improve Pure SARDONICS, but that none of the approaches outper-
form Swendsen-Wang. We therefore focus our investigation on the role played by the
temperature of the target distribution.
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Fig. 4: Auto-correlations of the SARDONICS sampler, on the Ferromagnetic 2D Ising
model, for T = 2.17 [top left] and T = 2.37 [top right]. Traces of the 105 samples of the
energy at T = 2.17 [bottom left] and T = 2.37 [bottom right].
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Fig. 5: Auto-correlations of the samplers, on the Ferromagnetic 2D Ising model, for
T = 1 [top left] and T = 5 [top right]. Traces of every 5 out of the 105 samples of the
energy at T = 1 [bottom left] and T = 5 [bottom right].
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Fig. 6: Frustrated 2D Ising model with periodic boundaries [top left], auto-correlations
of the three samplers [top right], traces of the last 20000 of 100000 samples of the
energy [bottom left] and rewards obtained by the Bayesian optimization algorithm
during the adaptation phase [bottom right].

Figure 4 examines the performance of SARDONICS around the critical temperature.
The auto-correlation plots seem to indicate that at temperatures T = 2.17 and T = 2.37,
SARDONICS mixes more rapidly than at the critical temperature T = 2.27. This is
true for the higher temperature, but for the lower temperature the sampler explores a
narrower range of energies.

To expand on this argument, we consider the performance of the sampler at tem-
peratures T = 1 and T = 5. At temperature 5, when the distribution is flattened, the
performance of SARDONICS is comparable to that of Swendsen-Wang as depicted in
Figure 5. The same figure also shows the results for T = 1, where the target distri-
bution has many narrow peaks with low probability valleys in between. Here, we see
that the autocorrelations vanish quickly, but upon examining the traces of energies, we
realize that what is actually happening is that the samplers, both SARDONICS and
Swendsen-Wang, are trapped at a few of the peaks of the target distribution. At this
near-deterministic setting, Swendsen-Wang and SARDONICS are better strategies for
finding low-energy solutions. As such, they should be preferred to Gibbs within popula-
tion Monte Carlo strategies aimed at exploring several of the peaks of the distribution.

In conclusion, for the ferromagnetic 2D Ising model, the adaptive SARDONICS
method is competitive with Swendsen-Wang, except at the critical temperature.

5.2. Frustrated 2D and 3D Ising Models
In addition to studying the effect of temperature changes on the performance of the
algorithms, we also investigate their sensitivity with respect to the addition of unsatis-
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Fig. 7: Different versions of SARDONICS on the Frustrated 3D cube Ising model.
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Fig. 8: [Left] Bits flipped by SARDONICS in one step on the Frustrated 2D Ising model.
Green represents unchanged bits, red represents bits changed from −1 to 1, and finally
blue represents bits changed from 1 to −1. [Right] Bits flipped by the Swendsen-Wang
algorithm in one step.

fiable constraints. To accomplish this, we set the interaction weights Jij and the biases
hi uniformly at random on the set {−1, 1}. We set the temperature to T = 1.0. We refer
to this model as the frustrated 2D grid Ising model. As shown by the auto-correlations
and energy traces plotted in Figure 6, SARDONICS does considerably better than its
rivals. It is interesting to note that Swendsen-Wang does much worse on this model
as the unsatisfiable constraints hinder effective clustering. The figure also shows the
reward obtained by the Bayesian optimization scheme as a function of the number of
adaptations. The adaptation algorithm traded-off exploration and exploitation effec-
tively in this case.

We analyze the contribution of each of the components of SARDONICS in Figure 7.
Once again it is clear that each of the individual components leads to an increase in
performance. Finally, Figure 8 shows the bits flipped in a typical step of SARDON-
ICS and Swendsen-Wang for this frustrated model. This figure illustrates clearly that
SARDONICS is able to make large moves in state space, with many variables being
flipped simultaneously.

The next batch of experiments compares the algorithms on an Ising model where
the variables are topologically structured as a 9× 9× 9 three-dimensional cube, Jij are
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Fig. 9: Frustrated 3D cube Ising model with periodic boundaries (for visualization sim-
plicity, the boundary edges are not shown) [top left], auto-correlations of the three sam-
plers [top right], traces of the last 20000 of 100000 samples of the energy [bottom left]
and rewards obtained by the Bayesian optimization algorithm during the adaptation
phase [bottom right].

uniformly sampled from the set {−1, 1}, and the hi are zero. β was set to 1.0, corre-
sponding to a lower temperature than the value of 0.9, at which it is known [Marinari
et al. 1997] that, roughly speaking, regions of the state space become very difficult to
visit from one another via traditional Monte Carlo simulation. Figure 9 shows that for
this more densely connected model, the performance of Swendsen-Wang deteriorates
substantially. However, SARDONICS still mixes reasonably well.

5.3. Restricted Boltzmann Machine
While the three-dimensional-cube spin-glass is a much harder problem than the 2D
ferromagnet, it represents a worst case scenario. One would hope that problems aris-
ing in practice will have structure in the potentials that would ease the problem of
inference. For this reason, the third experimental set consisted of runs on a binary re-
stricted Boltzmann machine [Smolensky 1986] with parameters trained from binary,
natural image patches via stochastic maximum likelihood [Swersky et al. 2010; Marlin
et al. 2010]. RBMs are bipartite undirected probabilistic graphical models. The vari-
ables on one side are often referred to as “visible units”, while the others are called
“hidden units”. Each visible unit is connected to all hidden units. However there are
no connections among the hidden units and among the visible units. Therefore, given
the visible units, the hidden units are conditionally independent and vice-versa. Our
model consisted of 784 visible and 500 hidden units. The model is illustrated in Fig-
ure 10.
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Fig. 10: RBM [top left], auto-correlations of the three samplers [top right], traces of the
last 20000 of 100000 samples of the energy [bottom left] and rewards obtained by the
Bayesian optimization algorithm during the adaptation phase [bottom right].
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Fig. 11: [Left] Trace of the last 20000 of 100000 samples of the energy for the
Swendsen-Wang sampler. As we can see, the sampler performs poorly on the RBM
model. [Right] RBM parameters. Each image corresponds to the parameters connect-
ing a specific hidden unit to the entire set of visible units.

The pre-learned interaction parameters capture local regularities of natural images
[Hyvarinen et al. 2009]. Some of these parameters are depicted as images in Figure 11.
The parameter β was set to one. The total number of variables and edges in the graph
were thus 1284 and 392000 respectively.

Figures 10 and 11 show the results. Again SARDONICS mixes significantly better
than Swendsen-Wang and the naive Gibbs sampler. Swendsen-Wang performs poorly
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Fig. 12: Chimera lattice [top left], auto-correlations of the three samplers [top right],
traces of the last 20000 of 100000 samples of the energy [bottom left] and rewards
obtained by the Bayesian optimization algorithm during the adaptation phase [bottom
right].

on this model. As shown in Figure 11, it mixes slowly and fails to converge after 105

iterations.
For this bipartite model, it is possible to carry out block-Gibbs sampling (the stan-

dard method of choice). Encouragingly, SARDONICS compares well against this popu-
lar block strategy. This is important, because computational neuro-scientists would
like to add lateral connections among the hidden units, in which case block-Gibbs
would no longer apply unless the connections form a tree structure. SARDONICS thus
promises to empower computational neuro-scientists to address more sophisticated
models of perception. The catch is that at present SARDONICS takes considerably
more time than block-Gibbs sampling for these models. We discuss this issue in greater
length in the following section.

5.4. Chimera Lattice
Finally, we consider a frustrated 128-bit chimera lattice that arises in the construction
of quantum computers [Bian et al. 2011]. As depicted in Figure 12, SARDONICS once
again outperforms its competitors.

5.5. Computational Considerations
The bulk of the computational time of the SARDONICS algorithm is spent in gener-
ating states with the SAW proposal. At each step of the process, a component from
a discrete probability vector, corresponding to the variable to flip, must be sampled.
Naively, the time needed to do so scales linearly with the length l of the vector. In
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Samplers

Pure Full
Models SARDONICS SARDONICS Swendsen-Wang Gibbs Block Gibbs

Ferromagnetic
Ising Model

8 minutes 20 minutes 50 minutes tens of seconds N/A

Frustrated 2D
Ising Model

7 minutes 20 minutes 50 minutes tens of seconds N/A

Frustrated 3D
Ising Model

3 minutes 10 minutes few minutes tens of seconds N/A

RBM 3 hours 10 hours few hours 20 minutes few minutes
Chimera 2 minutes 10 minutes tens of seconds tens of seconds N/A

Table III: Rough computation time for each sampler on different models. All samplers
are run on the same computer with 8 CPUs. The Swendsen-Wang sampler is coded
in Matlab with the computationally intensive part written in C. The SARDONICS
sampler is coded in Python also with its computationally intensive part coded in C. The
Gibbs and block Gibbs samplers are coded in Python. The Swendsen-Wang and block
Gibbs samplers take advantage of parallelism via parallel numerical linear algebra
operations. The SARDONICS sampler and the Gibbs sampler, however, run on a single
CPU. The adaptation time of SARDONICS is also included.

graphical models of sparse connectivity, however, it is possible achieve a dramatic com-
putational speedup by storing the vector in a binary heap. Sampling from a heap is of
O(log l), but for sparsely connected models, updating the heap in response to a flip,
which entails replacing the energy changes that would result if the flipped variable’s
neighboring variables were themselves to flip, is also of logarithmic complexity. In con-
trast, for a densely connected model, the heap update would be of O(M log l) where M
is the maximum degree of the graph, while recomputing the probability vector in the
naive method is O(M). The simple method is thus cheaper for dense models. In our
experiments, we implemented SARDONICS with the binary heap despite the fact that
the RBM is a densely connected model.

For densely connected models, one could easily parallelize the computation of gener-
ating states with the SAW proposal. Suppose we have n parallel processes. Each pro-
cess P holds one section Up of the unnormalized probability vector U . To sample from
the discrete vector in parallel, each parallel process can sample one variable vp to flip
according to Up. Each process also calculates the sum of its section of the unnormalized
probability vector sp. Then the variable to flip is sampled from the set {vp : 1 ≤ p ≤ n}
proportional to the discrete probability vector [s1, s2, ..., sn]. To update U in response
to a flip, we could use the naive method mentioned above. If we divide the U evenly
among processes and assume equal processor speed, sampling from and updating the
unnormalized probability vector would take O(M+l

n + n) operations. When n is small
compared to M + l, we could achieve near linear speed up.

We compare, in table III, the amount of time it takes to draw 105 samples using
different samplers. In principle, it is unwise to compare the computational time of
samplers when this comparison depends on specific implementation details and ar-
chitecture. The table simply provides rough estimates. The astute reader might be
thinking that we could run Gibbs for the same time as SARDONICS and expect sim-
ilar performance. This is however not what happens. We tested this hypothesis and
found Gibbs to still underperform. Moreover, in some cases, Gibbs can get trapped as
a result of being a small move sampler.

The computational complexity of SARDONICS is affected by the degree of the graph,
whereas the complexity of Swendsen-Wang increases with the number of edges in the
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graph. So for large sparsely-connected graphs, we expect SARDONICS to have a com-
peting edge over Swendsen-Wang, as already demonstrated to some extent in the ex-
periments.

6. DISCUSSION
The results have shown that the proposed sampler mixes very well in a broad range of
complex stochastic models. Although we are forced to choose the ranges of permissible
parameters a priori, the experiments illustrate that using identical parameter ranges
one can a attack a large an varied set of models in a fully automatic way.

However, we believe that we need to consider alternatives to nonparametric methods
in Bayesian optimization. Parametric methods would enable us to carry out infinite
adaptation.

Although the proposed technique applies to arbitrary binary systems, we only
tested it on models with pair-wise interactions. It would interesting to investigate
its performance in models with arbitrary potentials, such as the ones that arise in
Bayesian variable selection and counting SAT problems. Another important avenue
for future work is to develop a multi-core implementation of SARDONICS as out-
lined in the previous section. Presently, the SARDONICS software is available at
https://github.com/ziyuw/AdaptSAW.

Finally, it should be possible to extend SARDONICS from binary systems to multi-
nomial valued systems in an efficient way.
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