
Empirical Comparisons of Fast
Methods

Dustin Lang and Mike Klaas

{dalang, klaas}@cs.ubc.ca

University of British Columbia

December 17, 2004

Fast N-Body Learning - Empirical Comparisons – p. 1

A Map of Fast Methods

Dual−Tree
KD−tree
Anchors

Fast Gauss Transform

Gaussian Kernel

Improved FGT

Fast Multipole Method

Sum−Kernel Methods

Regular Grid

Box Filter

Dual−Tree
KD−tree
Anchors Distance Transform

Regular Grid

Max−Kernel Methods

Fast N-Body Learning - Empirical Comparisons – p. 2

The Role of Fast Methods

We claim that to be useful for other researchers,
Fast Methods need:

• guaranteed, adjustable error bounds: users
can set the error bound low during
development stage, then experiment once
they know their code works.

• no parameters that need to be adjusted by
users (other than error tolerance).

• documented error behaviour: we must explain
the properties of our approximation errors.

Fast N-Body Learning - Empirical Comparisons – p. 3

Testing Framework

We tested:

Sum-Kernel: fj =
N
∑

i=1

wi exp

(

−‖xi − yj‖2

2

h2

)

Max-Kernel:

x∗
j =

N
argmax

i=1

[

wi exp

(

−‖xi − yj‖2

2

h2

)]

Gaussian kernel, fixed bandwidth h,
non-negative weights wi, j = 1 . . . N .

Fast N-Body Learning - Empirical Comparisons – p. 4

Testing Framework (2)

For the Sum-Kernel problem, we allow a given
error tolerance ε: |fj − ftrue| ≤ ε for each j.

We tested:
• Fast Gauss Transform (FGT)
• Improved Fast Gauss Transform (IFGT)
• Dual-Tree with kd-tree (KDtree)
• Dual-Tree with ball-tree constructed via

Anchors Hierarchy (Anchors)

Fast N-Body Learning - Empirical Comparisons – p. 5

Methods Tested

Fast Gauss Transform (FGT) code by Firas
Hamze of UBC.

KDtree and Anchors Dual-Tree code by Dustin.

The same Dual-Tree code was used for KDtree
and Anchors.

Fast N-Body Learning - Empirical Comparisons – p. 6

Methods Tested (2)

Ramani Duraiswami and Changjiang Yang
generously gave their code for the Improved Fast
Gauss Transform (IFGT).

To make the IFGT fit in our testing framework, we
had to devise a method for choosing parameters.
Our method seems reasonable but is probably
not optimal.

All methods: in C with Matlab bindings.

Fast N-Body Learning - Empirical Comparisons – p. 7

Results (1): A Worst-Case Scenario

Uniformly distributed points, uniformly distributed weights,
3 dimensions, large bandwidth h = 0.1, ε = 10−6: Time.

• Naive is usually
fastest.

• Only FGT is faster -
but only ∼ 3×.

• IFGT may become
faster - after 1.5

hours of compute
time.

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

N

C
P

U
 T

im
e

(s
)

Naive
FGT
IFGT
Anchors
KDtree

• Dual-Tree memory
requirements are
an issue.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N

M
em

or
y

U
sa

ge
 (

by
te

s)

FGT
IFGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 8

Results (1): A Worst-Case Scenario

Uniformly distributed points, uniformly distributed weights,
3 dimensions, large bandwidth h = 0.1, ε = 10−6: Memory.

• Dual-Tree memory
requirements are
an issue.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N

M
em

or
y

U
sa

ge
 (

by
te

s)
FGT
IFGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 8

Results (2)

Uniformly distributed points, uniformly distributed weights,
3 dimensions, smaller bandwidth h = 0.01, ε = 10−6.

• IFGT cannot be
run– more than
1010 expansion
terms required for
N = 100 points.

• Dual-Tree and FGT
are fast, but not
O(N).

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

N

C
P

U
 T

im
e

(s
)

Naive
FGT
Anchors
KDtree
Order N*sqrt(N)
Order N

• Memory require-
ments are still an
issue.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N

M
em

or
y

U
sa

ge
 (

by
te

s)

FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 9

Results (2)

Uniformly distributed points, uniformly distributed weights,
3 dimensions, smaller bandwidth h = 0.01, ε = 10−6.

• Memory require-
ments are still an
issue.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N

M
em

or
y

U
sa

ge
 (

by
te

s)
FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 9

Results (3)

Uniform data and weights, N = 10,000, ε = 10−3, h = 0.01,
varying dimension: CPU time.

Memory usage.

• IFGT very fast for
1D, infeasible
beyond 2D.

• KDtree, Anchors
show (unex-
pected?) optimal
behaviour around 3
or 4 dimensions.

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

Dimension

C
P

U
 T

im
e

(s
)

Naive
FGT
IFGT
Anchors
KDtree

10
0

10
1

10
2

10
6

10
7

10
8

10
9

Dimension

M
em

or
y

U
sa

ge
 (

by
te

s)

Naive
FGT
IFGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 10

Results (3)

Uniform data and weights, N = 10,000, ε = 10−3, h = 0.01,
varying dimension: Memory usage.

10
0

10
1

10
2

10
6

10
7

10
8

10
9

Dimension

M
em

or
y

U
sa

ge
 (

by
te

s)
Naive
FGT
IFGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 10

Results (4)

Uniform sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6: CPU time.

Memory.

• Cost of Dual-Tree
methods increases
slowly with
accuracy.

• FGT cost rises
more quickly.

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
0

10
1

Epsilon

C
P

U
 T

im
e

Naive
FGT
Anchors
KDtree

• Error of Dual-Tree
methods almost
exactly as large as
allowed (ε).

• FGT (and presum-
ably IFGT) overes-
timate the error–
thus do more work
than required. 10

−10
10

−5

10
−10

10
−5

Epsilon

R
ea

l E
rr

or

FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 11

Results (4)

Uniform sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6: CPU time relative to Uniform.

Memory.

• Error of Dual-Tree
methods almost
exactly as large as
allowed (ε).

• FGT (and presum-
ably IFGT) overes-
timate the error–
thus do more work
than required. 10

−10
10

−5

10
−10

10
−5

Epsilon

R
ea

l E
rr

or

FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 11

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.0

Fast N-Body Learning - Empirical Comparisons – p. 12

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.1

Fast N-Body Learning - Empirical Comparisons – p. 12

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.2

Fast N-Body Learning - Empirical Comparisons – p. 12

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.3

Fast N-Body Learning - Empirical Comparisons – p. 12

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.5

Fast N-Body Learning - Empirical Comparisons – p. 12

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 2.0

Fast N-Body Learning - Empirical Comparisons – p. 12

Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 3.0

Fast N-Body Learning - Empirical Comparisons – p. 12

Results (5): clumpy sources

Clumpy sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time.

CPU time
relative to Uniform.

As clumpiness
increases, Dual-Tree
methods get faster.

1 1.5 2 2.5 3

10
0

10
1

Data Clumpiness

C
P

U
 T

im
e Naive

FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 13

Results (5): clumpy sources

Clumpy sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time relative to
Uniform.

Especially Anchors.

1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

Data Clumpiness

C
P

U
 U

sa
ge

 R
el

at
iv

e
to

 U
ni

fo
rm

 D
at

a
Naive
FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 13

Results (6): clumpy sources and targets

Clumpy sources, clumpy targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time.

CPU time
relative to Uniform.

Even bigger improve-
ments!

1 1.5 2 2.5 3

10
0

10
1

Data Clumpiness

C
P

U
 T

im
e Naive

FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 14

Results (6): clumpy sources and targets

Clumpy sources, clumpy targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time relative to
Uniform.

Large variance- details
of particular clumpy
data sets?

1 1.5 2 2.5 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Clumpiness

C
P

U
 U

sa
ge

 R
el

at
iv

e
to

 U
ni

fo
rm

 D
at

a
Naive
FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 14

Results (7): clumpy, dimensionality

Clumpy sources and targets (C = 2), N = 10,000,
h = 0.01, ε = 10−3, varying dimension: CPU time.

Not qualitatively differ-
ent from uniform data!

10
0

10
1

10
0

10
1

10
2

Dimension

C
P

U
 T

im
e

(s
)

Naive
IFGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 15

Results (7): clumpy, dimensionality

Clumpy sources and targets (C = 2), N = 10,000,
h = 0.01, ε = 10−3, varying dimension: CPU time.

For reference: the non-
clumpy results.

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

Dimension

C
P

U
 T

im
e

(s
)

Naive
FGT
IFGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 15

Summary (1)

• Synthetic-data tests; each algorithm is required to
guarantee results within a given error tolerance.

• IFGT:

• We devised a method of choosing parameters– a
different method might work better.

• The error bounds seem to be very loose, so it does
much more work than necessary.

Fast N-Body Learning - Empirical Comparisons – p. 16

Summary (2)

Dual-Tree:

• Work well when either the kernel is highly local (small
bandwidth) or when the data has strong structure.

• Work well across a wide range of error tolerances–
give errors that are close to the estimate.

• Memory requirements are an issue (some heuristics
could be used).

• In these tests, Anchors Hierarchy doesn’t outperform
KDtree, though it improves significantly with
clumpiness.

Fast N-Body Learning - Empirical Comparisons – p. 17

And Now For Something
Slightly Different:

Max-Kernel

Fast N-Body Learning - Empirical Comparisons – p. 18

The Problem

• Given:
• N target points (yj)
• M source points (xi) with weights wi

• Compute, for each yj:

fMAX
j = max

i
wiK(xi, yj)

• Cost: O(MN)

• Applications:
• maximum a-posteriori belief propagation
• Viterbi algorithm for chains
• (MAP) particle smoothing

Fast N-Body Learning - Empirical Comparisons – p. 19

The Problem

• Given:
• N target points (yj)
• M source points (xi) with weights wi

• Compute, for each yj:

fMAX
j = max

i
wiK(xi, yj)

• Cost: O(MN)

• Applications:
• maximum a-posteriori belief propagation
• Viterbi algorithm for chains
• (MAP) particle smoothing

Fast N-Body Learning - Empirical Comparisons – p. 19

The Methods

1. Distance Transform

• as previously presented
• can be extended to handle Monte Carlo grids in 1D

• increases cost to O(M log M + N log N)

2. Dual-tree algorithm

• “bound and prune”
recursion

• details: Klaas, Lang, de

Freitas. “Fast maximum

a-posteriori inference in

Monte Carlo state spaces”.

AISTATS 2005 (to appear).

Fast N-Body Learning - Empirical Comparisons – p. 20

The Methods

1. Distance Transform
• as previously presented
• can be extended to handle Monte Carlo grids in 1D

• increases cost to O(M log M + N log N)

2. Dual-tree algorithm

• “bound and prune”
recursion

• details: Klaas, Lang, de

Freitas. “Fast maximum

a-posteriori inference in

Monte Carlo state spaces”.

AISTATS 2005 (to appear).

Fast N-Body Learning - Empirical Comparisons – p. 20

The Methods

1. Distance Transform
• as previously presented
• can be extended to handle Monte Carlo grids in 1D

• increases cost to O(M log M + N log N)

2. Dual-tree algorithm

• “bound and prune”
recursion

• details: Klaas, Lang, de

Freitas. “Fast maximum

a-posteriori inference in

Monte Carlo state spaces”.

AISTATS 2005 (to appear).

Fast N-Body Learning - Empirical Comparisons – p. 20

The Methods

1. Distance Transform
• as previously presented
• can be extended to handle Monte Carlo grids in 1D

• increases cost to O(M log M + N log N)

2. Dual-tree algorithm

• “bound and prune”
recursion

• details: Klaas, Lang, de

Freitas. “Fast maximum

a-posteriori inference in

Monte Carlo state spaces”.

AISTATS 2005 (to appear).

Fast N-Body Learning - Empirical Comparisons – p. 20

1D time series

• MAP particle smoothing
• Non-linear, multi-modal time series
• Note log-log scale

• Both beat naïve by
orders of magnitude

• Dist. trans. 2-3× faster
than dual-tree

• Similar asymptotic
growth

• Clearly, dist. trans.
should be used when
possible! 10

2
10

3
10

4

10
−1

10
0

10
1

10
2

10
3

Particles

T
im

e
(s

)

naive
dual−tree
dist. transform

Fast N-Body Learning - Empirical Comparisons – p. 21

Applied example: beat-tracking

• Particle-filter based beat tracker
• MAP smoothing on a 3D Monte-Carlo state space

• distance transform cannot be used

• Dual-tree is faster after
10ms compute time

• Dual-tree exhibits
asymptotic O(N log N)
growth

• Takes seconds rather
than days to process a
song.

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Particles

T
im

e
(s

)

naive
dual−tree

Fast N-Body Learning - Empirical Comparisons – p. 22

Other factors: dimensionality

• The behaviour of dual-tree algorithms as N grows is
well-understood

• What about other factors?

• Synthetic test:
• 20,000 data points (fixed)
• Gaussian kernel with fixed bandwidth
• distribution: uniform, clustered
• clustered data formed by drawing from k Gaussians
• k = 4 (dash), 20 (dash-dot), 100 (dotted) uniform

(solid)
• kd-trees (red) vs. metric trees (green)

Fast N-Body Learning - Empirical Comparisons – p. 23

Other factors: dimensionality

• The behaviour of dual-tree algorithms as N grows is
well-understood

• What about other factors?
• Synthetic test:

• 20,000 data points (fixed)
• Gaussian kernel with fixed bandwidth
• distribution: uniform, clustered
• clustered data formed by drawing from k Gaussians
• k = 4 (dash), 20 (dash-dot), 100 (dotted) uniform

(solid)
• kd-trees (red) vs. metric trees (green)

Fast N-Body Learning - Empirical Comparisons – p. 23

Dimensionality (cont.)

• Two examples: distance computations (L); time (R)
• Dual-tree methods can be slower than naïve, and this

is due to inherent complexity, not just high constants.
• ie., it uses O(N 2) distance computations.

1 10 40

10
6

10
7

10
8

Dimensions (k = 20)

naive
anchors
kd−tree

1 10 40
10

−1

10
0

10
1

10
2

Dimensions (k = 100)

naive
anchors
kd−tree

Fast N-Body Learning - Empirical Comparisons – p. 24

Dimensionality (relative)

1 10 40

1

kd
−

tr
ee

 =
 1

uniform

anchors
kd−tree

1 10 40

1

k=4

anchors
kd−tree

1 10 40

1

R
el

at
iv

e
tim

e
(s

)

k=20

anchors
kd−tree

1 10 40

1

k=100

anchors
kd−tree

• Clustering is necessary for metric trees to be effective.

Fast N-Body Learning - Empirical Comparisons – p. 25

Summary

• Distance transform and dual-tree methods are fast

• ...but dual-tree has more overhead.
• Use the distance transform when:

• kernel is e−‖x−y‖2

or e−‖x−y‖ (or others?)
• data is one dimensional, or lies on a regular grid.

• Although we focus on performance as N grows, it is
the “constants” that really matter
• these are determined by the data distribution, the

kernel, and the spatial index.
• huge potential for future investigation.

Fast N-Body Learning - Empirical Comparisons – p. 26

Summary

• Distance transform and dual-tree methods are fast
• ...but dual-tree has more overhead.

• Use the distance transform when:
• kernel is e−‖x−y‖2

or e−‖x−y‖ (or others?)
• data is one dimensional, or lies on a regular grid.

• Although we focus on performance as N grows, it is
the “constants” that really matter
• these are determined by the data distribution, the

kernel, and the spatial index.
• huge potential for future investigation.

Fast N-Body Learning - Empirical Comparisons – p. 26

Summary

• Distance transform and dual-tree methods are fast
• ...but dual-tree has more overhead.
• Use the distance transform when:

• kernel is e−‖x−y‖2

or e−‖x−y‖ (or others?)
• data is one dimensional, or lies on a regular grid.

• Although we focus on performance as N grows, it is
the “constants” that really matter
• these are determined by the data distribution, the

kernel, and the spatial index.
• huge potential for future investigation.

Fast N-Body Learning - Empirical Comparisons – p. 26

Summary

• Distance transform and dual-tree methods are fast
• ...but dual-tree has more overhead.
• Use the distance transform when:

• kernel is e−‖x−y‖2

or e−‖x−y‖ (or others?)
• data is one dimensional, or lies on a regular grid.

• Although we focus on performance as N grows, it is
the “constants” that really matter
• these are determined by the data distribution, the

kernel, and the spatial index.
• huge potential for future investigation.

Fast N-Body Learning - Empirical Comparisons – p. 26

Thanks!

Time for Questions!

Fast N-Body Learning - Empirical Comparisons – p. 27

Q&A

• Clumpy Data generation
• Choosing IFGT params

Fast N-Body Learning - Empirical Comparisons – p. 28

Clumpy Data (back)

We generate clumpy data with clumpiness C by
recursively distributing points into sub-boxes
such that the occupancies satisfy:

n
∑

i=1

Ni = N

var ({Ni}) = (C − 1) mean (Ni)
2

This describes the width of the distribution of
‘mass’ among boxes.
Recurse until N ≤ 10.

Fast N-Body Learning - Empirical Comparisons – p. 29

Choosing IFGT Parameters (back)

K : number of source clusters

ry : influence radius of clusters

p : number of expansion terms

We choose a maximum number of clusters K∗. The
complexity is NK, so to be O(N), K∗ must be a constant.

In these tests, we instead set K∗ =
√

N , since we tested
across orders of magnitude.

Fast N-Body Learning - Empirical Comparisons – p. 30

Choosing IFGT Parameters (2)

Four constraints:

C1 : outside-of-influence-radius error EC ≤ ε

C2 : truncation error ET ≤ ε

C3 : K ≤ K∗

C4 :
(rxry

h2

)

≤ 1

the first three are hard, the fourth is soft (helps
convergence).
(Each source point contributes to error through either EC

or ET)

Fast N-Body Learning - Empirical Comparisons – p. 31

Choosing IFGT Parameters (3)

for k = 1 to K∗:
run k-centers algorithm.
find largest cluster radius rx.
using ry = ry(ideal), compute C1, C4.
if C1 AND C4 satisfied:

break
if k < K∗: // C4 can be satisfied.

set ry = min(ry) such that C1 AND C4.
else: // C4 cannot be satisfied.

set ry = min(ry) such that C1.
set p = min(p) such that C2.

Fast N-Body Learning - Empirical Comparisons – p. 32

	A Map of Fast Methods
	The Role of Fast Methods
	Testing Framework
	Testing Framework (2)
	Methods Tested
	Methods Tested (2)
	Results (1): A Worst-Case Scenario
	Results (1):
A Worst-Case Scenario

	Results (2)
	Results (2)

	Results (3)
	Results (3)

	Results (4)
	Results (4)

	Clumpy Data
	Clumpy Data
	Clumpy Data
	Clumpy Data
	Clumpy Data
	Clumpy Data
	Clumpy Data

	Results (5): clumpy sources
	Results (5):
clumpy sources

	Results (6): clumpy sources and targets
	Results (6):
clumpy sources and targets

	Results (7): clumpy, dimensionality
	Results (7):
clumpy, dimensionality

	Summary (1)
	Summary (2)
	And Now For Something \ vspace {5pt} Slightly Different: \ vspace {20pt}cemph {Max-Kernel}
	The Problem
	The Problem

	The Methods
	The Methods
	The Methods
	The Methods

	1D time series
	Applied example: beat-tracking
	Other factors: dimensionality
	Other factors: dimensionality

	Dimensionality (cont.)
	Dimensionality (relative)
	Summary
	Summary
	Summary
	Summary

	cemph {Thanks!} \ vspace {20pt} Time for Questions!
	Q&A
	Clumpy Data �acklink
	Choosing IFGT Parameters �acklink
	Choosing IFGT Parameters (2)
	Choosing IFGT Parameters (3)

