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A Map of Fast Methods
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The Role of Fast Methods

We claim that to be useful for other researchers,
Fast Methods need:

• guaranteed, adjustable error bounds: users
can set the error bound low during
development stage, then experiment once
they know their code works.

• no parameters that need to be adjusted by
users (other than error tolerance).

• documented error behaviour: we must explain
the properties of our approximation errors.
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Testing Framework

We tested:

Sum-Kernel: fj =
N
∑

i=1

wi exp

(

−‖xi − yj‖2

2

h2

)

Max-Kernel:

x∗
j =

N
argmax

i=1

[

wi exp

(

−‖xi − yj‖2

2

h2

)]

Gaussian kernel, fixed bandwidth h,
non-negative weights wi, j = 1 . . . N .
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Testing Framework (2)

For the Sum-Kernel problem, we allow a given
error tolerance ε: |fj − ftrue| ≤ ε for each j.

We tested:
• Fast Gauss Transform (FGT)
• Improved Fast Gauss Transform (IFGT)
• Dual-Tree with kd-tree (KDtree)
• Dual-Tree with ball-tree constructed via

Anchors Hierarchy (Anchors)
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Methods Tested

Fast Gauss Transform (FGT) code by Firas
Hamze of UBC.

KDtree and Anchors Dual-Tree code by Dustin.

The same Dual-Tree code was used for KDtree
and Anchors.
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Methods Tested (2)

Ramani Duraiswami and Changjiang Yang
generously gave their code for the Improved Fast
Gauss Transform (IFGT).

To make the IFGT fit in our testing framework, we
had to devise a method for choosing parameters.
Our method seems reasonable but is probably
not optimal.

All methods: in C with Matlab bindings.
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Results (1): A Worst-Case Scenario

Uniformly distributed points, uniformly distributed weights,
3 dimensions, large bandwidth h = 0.1, ε = 10−6: Time.

• Naive is usually
fastest.

• Only FGT is faster -
but only ∼ 3×.

• IFGT may become
faster - after 1.5

hours of compute
time.
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Results (2)

Uniformly distributed points, uniformly distributed weights,
3 dimensions, smaller bandwidth h = 0.01, ε = 10−6.

• IFGT cannot be
run– more than
1010 expansion
terms required for
N = 100 points.

• Dual-Tree and FGT
are fast, but not
O(N).
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• Memory require-
ments are still an
issue.
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Results (2)

Uniformly distributed points, uniformly distributed weights,
3 dimensions, smaller bandwidth h = 0.01, ε = 10−6.

• Memory require-
ments are still an
issue.
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Results (3)

Uniform data and weights, N = 10,000, ε = 10−3, h = 0.01,
varying dimension: CPU time.

Memory usage.

• IFGT very fast for
1D, infeasible
beyond 2D.

• KDtree, Anchors
show (unex-
pected?) optimal
behaviour around 3
or 4 dimensions.
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Results (3)

Uniform data and weights, N = 10,000, ε = 10−3, h = 0.01,
varying dimension: Memory usage.
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Results (4)

Uniform sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6: CPU time.

Memory.

• Cost of Dual-Tree
methods increases
slowly with
accuracy.

• FGT cost rises
more quickly.
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Results (4)

Uniform sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6: CPU time relative to Uniform.
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Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.0
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Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.1
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Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.2
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Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.3
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Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 1.5

Fast N-Body Learning - Empirical Comparisons – p. 12



Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 2.0
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Clumpy Data

Uniform data is a worst-case scenario for these methods.
Next: clumpy data! Clumpiness = 3.0
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Results (5): clumpy sources

Clumpy sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time.

CPU time
relative to Uniform.

As clumpiness
increases, Dual-Tree
methods get faster.

1 1.5 2 2.5 3

10
0

10
1

Data Clumpiness

C
P

U
 T

im
e Naive

FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 13



Results (5): clumpy sources

Clumpy sources, uniform targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time relative to
Uniform.

Especially Anchors.
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Results (6): clumpy sources and targets

Clumpy sources, clumpy targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time.

CPU time
relative to Uniform.

Even bigger improve-
ments!
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Results (6): clumpy sources and targets

Clumpy sources, clumpy targets, N = 10,000, h = 0.01,
D = 3, ε = 10−6, varying clumpiness: CPU time relative to
Uniform.

Large variance- details
of particular clumpy
data sets?

1 1.5 2 2.5 3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Clumpiness

C
P

U
 U

sa
ge

 R
el

at
iv

e 
to

 U
ni

fo
rm

 D
at

a
Naive
FGT
Anchors
KDtree

Fast N-Body Learning - Empirical Comparisons – p. 14



Results (7): clumpy, dimensionality

Clumpy sources and targets (C = 2), N = 10,000,
h = 0.01, ε = 10−3, varying dimension: CPU time.

Not qualitatively differ-
ent from uniform data!
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Results (7): clumpy, dimensionality

Clumpy sources and targets (C = 2), N = 10,000,
h = 0.01, ε = 10−3, varying dimension: CPU time.

For reference: the non-
clumpy results.
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Summary (1)

• Synthetic-data tests; each algorithm is required to
guarantee results within a given error tolerance.

• IFGT:

• We devised a method of choosing parameters– a
different method might work better.

• The error bounds seem to be very loose, so it does
much more work than necessary.
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Summary (2)

Dual-Tree:

• Work well when either the kernel is highly local (small
bandwidth) or when the data has strong structure.

• Work well across a wide range of error tolerances–
give errors that are close to the estimate.

• Memory requirements are an issue (some heuristics
could be used).

• In these tests, Anchors Hierarchy doesn’t outperform
KDtree, though it improves significantly with
clumpiness.
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And Now For Something
Slightly Different:

Max-Kernel
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The Problem

• Given:
• N target points (yj)
• M source points (xi) with weights wi

• Compute, for each yj:

fMAX
j = max

i
wiK(xi, yj)

• Cost: O(MN)

• Applications:
• maximum a-posteriori belief propagation
• Viterbi algorithm for chains
• (MAP) particle smoothing
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The Methods

1. Distance Transform

• as previously presented
• can be extended to handle Monte Carlo grids in 1D

• increases cost to O(M log M + N log N)

2. Dual-tree algorithm

• “bound and prune”
recursion

• details: Klaas, Lang, de

Freitas. “Fast maximum

a-posteriori inference in

Monte Carlo state spaces”.

AISTATS 2005 (to appear).
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1D time series

• MAP particle smoothing
• Non-linear, multi-modal time series
• Note log-log scale

• Both beat naïve by
orders of magnitude

• Dist. trans. 2-3× faster
than dual-tree

• Similar asymptotic
growth

• Clearly, dist. trans.
should be used when
possible! 10
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Applied example: beat-tracking

• Particle-filter based beat tracker
• MAP smoothing on a 3D Monte-Carlo state space

• distance transform cannot be used

• Dual-tree is faster after
10ms compute time

• Dual-tree exhibits
asymptotic O(N log N)
growth

• Takes seconds rather
than days to process a
song.
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Other factors: dimensionality

• The behaviour of dual-tree algorithms as N grows is
well-understood

• What about other factors?

• Synthetic test:
• 20,000 data points (fixed)
• Gaussian kernel with fixed bandwidth
• distribution: uniform, clustered
• clustered data formed by drawing from k Gaussians
• k = 4 (dash), 20 (dash-dot), 100 (dotted) uniform

(solid)
• kd-trees (red) vs. metric trees (green)
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Dimensionality (cont.)

• Two examples: distance computations (L); time (R)
• Dual-tree methods can be slower than naïve, and this

is due to inherent complexity, not just high constants.
• ie., it uses O(N 2) distance computations.

1 10 40

10
6

10
7

10
8

Dimensions (k = 20)

naive
anchors
kd−tree

1 10 40
10

−1

10
0

10
1

10
2

Dimensions (k = 100)

naive
anchors
kd−tree

Fast N-Body Learning - Empirical Comparisons – p. 24



Dimensionality (relative)
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• Clustering is necessary for metric trees to be effective.
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Summary

• Distance transform and dual-tree methods are fast

• ...but dual-tree has more overhead.
• Use the distance transform when:

• kernel is e−‖x−y‖2

or e−‖x−y‖ (or others?)
• data is one dimensional, or lies on a regular grid.

• Although we focus on performance as N grows, it is
the “constants” that really matter
• these are determined by the data distribution, the

kernel, and the spatial index.
• huge potential for future investigation.
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Thanks!

Time for Questions!
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Q&A

• Clumpy Data generation
• Choosing IFGT params
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Clumpy Data (back)

We generate clumpy data with clumpiness C by
recursively distributing points into sub-boxes
such that the occupancies satisfy:

n
∑

i=1

Ni = N

var ({Ni}) = (C − 1) mean (Ni)
2

This describes the width of the distribution of
‘mass’ among boxes.
Recurse until N ≤ 10.
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Choosing IFGT Parameters (back)

K : number of source clusters

ry : influence radius of clusters

p : number of expansion terms

We choose a maximum number of clusters K∗. The
complexity is NK, so to be O(N), K∗ must be a constant.

In these tests, we instead set K∗ =
√

N , since we tested
across orders of magnitude.
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Choosing IFGT Parameters (2)

Four constraints:

C1 : outside-of-influence-radius error EC ≤ ε

C2 : truncation error ET ≤ ε

C3 : K ≤ K∗

C4 :
(rxry

h2

)

≤ 1

the first three are hard, the fourth is soft (helps
convergence).
(Each source point contributes to error through either EC

or ET )
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Choosing IFGT Parameters (3)

for k = 1 to K∗:
run k-centers algorithm.
find largest cluster radius rx.
using ry = ry(ideal), compute C1, C4.
if C1 AND C4 satisfied:

break
if k < K∗: // C4 can be satisfied.

set ry = min(ry) such that C1 AND C4.
else: // C4 cannot be satisfied.

set ry = min(ry) such that C1.
set p = min(p) such that C2.
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