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Nonparametric BP
• Perform inference on graphical models 

with variables which are 
• Continuous

• High-dimensional

• Non-Gaussian

• Sampling-based extension to BP
• Applicable to general graphs

• Nonparametric representation of 
uncertainty

• Efficient implementation requires fast 
methods

Introduction



Background

• Graphical Models & Belief Propagation

• Nonparametric Density Estimation 

Nonparametric BP Algorithm

• Propagation of nonparametric messages 

• Efficient multiscale sampling from products of mixtures

Some Applications

• Sensor network self-calibration

• Tracking multiple indistinguishable targets

• Visual tracking of a 3D kinematic hand model

Outline



set of nodes 

set of edges connecting nodes

Nodes             are associated with random variables

An undirected graph     is defined by

Graph Separation

Conditional 
Independence

Graphical Models



hidden random variable at node s
noisy local observation of  

• Estimates:  Bayes’ least squares, max marginals, …

• Degree of confidence in those estimates

GOAL: Determine the conditional marginal distributions

Special Case:
Temporal Markov 

Chain Model (HMM)

Pairwise Markov Random Fields



• Combine the observations from all nodes in the graph 
through a series of local message-passing operations

neighborhood of node s (adjacent nodes)

message sent from node t to node s

(“sufficient statistic” of t’s knowledge about s)

Beliefs: Approximate posterior distributions summarizing 
information provided by all given observations

Belief Propagation



I.  Message Product: Multiply incoming messages (from all nodes 
but s) with the local observation to form a distribution over

II. Message Propagation: Transform distribution from node t to 
node s using the pairwise interaction potential

Integrate over       to form distribution summarizing 
node t’s knowledge about 

BP Message Updates



Message ProductMessage Propagation

Belief Computation

Forward Messages

BP for HMMs



• Produces exact conditional marginals for 
tree-structured graphs (no cycles)

Statistical Physics & Free Energies   (Yedidia, Freeman, and Weiss)

Variational interpretation, improved region-based approximations

Many others…

BP as Reparameterization   (Wainwright, Jaakkola, and Willsky)

Characterization of fixed points, error bounds

• For general graphs, exhibits excellent 
empirical performance in many 
applications (especially coding) 

BP Justification



Message representations:
Discrete: Finite vectors

Gaussian: Mean and covariance (Kalman filter)

Continuous Non-Gaussian: No parametric form

• May be applied to arbitrarily structured graphs, but

• Updates intractable for most continuous potentials

BP Properties:

Discretization intractable in as few as 2-3 dimensions

Representational Issues



Nonparametric Markov chain inference:

Particle Filters
Condensation, Sequential Monte Carlo, Survival of the Fittest,…

• May approximate complex continuous distributions, but

• Update rules dependent on Markov chain structure

Particle Filter Properties:

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics



Belief Propagation
• General graphs

• Discrete or Gaussian

Particle Filters
• Markov chains

• General potentials

Problem: What is the product 
of two collections of particles?

Nonparametric BP
• General graphs

• General potentials

Nonparametric Inference For General Graphs



Kernel (Parzen Window) 
Density Estimator

Approximate PDF by a set of 
smoothed data samples

M independent samples from p(x)
Gaussian kernel function (self-reproducing)
Bandwidth (chosen automatically)

Nonparametric Density Estimates



Outline

Background
• Graphical Models & Belief Propagation

• Nonparametric Density Estimation 

Nonparametric BP Algorithm
• Propagation of nonparametric messages 

• Efficient multiscale sampling from products of mixtures

Results
• Sensor network self-calibration

• Tracking multiple indistinguishable targets

• Visual tracking of a 3D kinematic hand model



I.  Message Product: Draw samples of from the product of all 
incoming messages and the local observation potential

II. Message Propagation: Draw samples of       from the 
compatibility                   , fixing       to the values sampled in step I

Samples form new kernel density estimate of outgoing 
message (determine new kernel bandwidths)

Stochastic update of kernel based messages:

Nonparametric BP



How do we sample from the product 
distribution without explicitly constructing it?

d messages

M kernels each
Product contains 
Md kernels

For now, assume all potentials & 
messages are Gaussian mixtures

I. Message Product



• Exact sampling
• Importance sampling

– Proposal distribution?
• Gibbs sampling 

– “parallel” & “sequential” versions
• Multiscale Gibbs sampling
• Epsilon-exact multiscale sampling

d mixtures of M Gaussians mixture of Md Gaussians

Sampling from Product Densities



Product Mixture Labelings

Kernel in product density

Labeling of a single mixture 
component in each message

Products of Gaussians are also 
Gaussian, with easily computed 
mean, variance, and mixture weight:



mixture component label for ith input density
label of component in product density 

• Calculate the weight partition function in 
O(Md) operations:

• Draw and sort M uniform [0,1] variables
• Compute the cumulative distribution of

Exact Sampling



true distribution (difficult to sample from)
assume may be evaluated up to normalization Z
proposal distribution (easy to sample from)

• Draw N ¸ M samples from proposal distribution:

• Sample M times (with replacement) from

Mixture IS: Randomly select a different mixture pi(x) for
each sample (other mixtures provide weight)

Importance Sampling

Fast Methods:  
Need to repeatedly evaluate pairs of densities (FGT, etc.)



• Exact sampling
• Importance sampling

– Proposal distribution?
• Gibbs sampling 

– “parallel” & “sequential” versions
• Multiscale Gibbs sampling
• Epsilon-exact multiscale sampling

d mixtures of M Gaussians mixture of Md Gaussians

Sampling from Product Densities



Sequential Gibbs Sampler
Product of 3 messages, each containing 4 Gaussian kernels

Labeled Kernels 
Highlighted Red

Sampling Weights   
Blue Arrows

• Fix labels for all but one density; compute 
weights induced by fixed labels

• Sample from weights, fix the newly sampled 
label, and repeat for another density

• Iterate until convergence



Parallel Gibbs Sampler
Product of 3 messages, each containing 4 Gaussian kernels

Labeled Kernels 
Highlighted Red

Sampling 
Weights   Blue 

Arrows

X

X

X



• “K-dimensional Trees”
• Multiscale representation of data set
• Cache statistics of points at each level:

– Bounding boxes
– Mean & Covariance

• Original use: efficient search algorithms

Multiscale – KD-trees



Multiscale Gibbs Sampling
• Build KD-tree for each input density
• Perform Gibbs over progressively finer scales:

Annealed Gibbs sampling
(analogies in MRFs)

X

X

X
…

Sample to change scales

Continue Gibbs sampling at the next scale:

…



• Exact sampling
• Importance sampling

– Proposal distribution?
• Gibbs sampling 

– “parallel” & “sequential” versions
• Multiscale Gibbs sampling
• Epsilon-exact multiscale sampling

d mixtures of M Gaussians mixture of Md Gaussians

Sampling from Product Densities



• Bounding box statistics
– Bounds on pairwise distances

– Approximate kernel density evaluation
KDE:   8 j , evaluate  p(yj ) = ∑i wi K(xi – yj )

• FGT – low-rank approximations
• Gray ’03 – rank-one approximations
• Find sets S, T such that

8 j 2 T , p(yj ) = ∑i 2 SK(xi – yj ) ¼ (∑i wi )CST (constant)

• Evaluations within fractional error ε:
If not < ε, refine KD-tree regions
(= better bounds)

ε-Exact Sampling (I)



• Use this relationship to bound the weights

– Rank-one approximation:
• Error bounded by product of pairwise bounds 
• Can consider sets of weights simultaneously

– Fractional error tolerance
• Est’d weights are within a percentage of true value
• Normalization constant within a percent tolerance

.

(pairwise relationships only)

ε-Exact Sampling (II)



• Each weight has fractional error
• Normalization constant has fractional error
• Normalized weights have absolute error:

• Drawing a sample – two-pass
– Compute approximate sum of weights Z
– Draw N samples in [0,1) uniformly, sort.
– Re-compute Z, find set of weights for each sample
– Find label within each set

• All weights ¼ equal ) independent selection

ε-Exact Sampling (III)



• Epsilon-exact sampling provides the highest accuracy

• Multiscale Gibbs sampling outperforms standard Gibbs

• Sequential Gibbs sampling mixes faster than parallel

Taking Products – 3 mixtures



• Multiscale Gibbs samplers now outperform epsilon-exact

• Epsilon-exact still beats exact (1 minute vs. 7.6 hours)

• Mixture importance sampling is also very effective

Taking Products – 5 mixtures



• Importance sampling is sensitive to message alignment

• Multiscale methods show greater consistency & robustness

Taking Products – 2 mixtures



We can now sample from this message product very efficiently

d messages

M kernels each
Product contains 
Md kernels

For now, assume all potentials & 
messages are Gaussian mixtures

I. Message Product



View                               
as a joint distribution

Add marginal                  
to the product mix

Label selected by 
sampler locates   
kernel center in

Draw sample 

II. Message Propagation (G.M.)



• Assume pointwise evaluation is possible
• Use importance sampling

– Adjust sampling weights by kernel center value
– Weight final sample by adjustment

Constant for (common) case

• Must account for marginal influence induced by 
pairwise potential:

Extension – Analytic Potentials



Related Work

• Regularized particle filters
• Gaussian sum filters
• Monte Carlo HMMs (Thrun & Langford 99)

Markov Chains

• Postulate approximate message representations 
and updates within junction tree

Approximate Propagation Framework  (Koller UAI 99)

• Avoids bandwidth selection
• Requires pairwise potentials to be small Gaussian mixtures

Particle Message Passing   (Isard CVPR 03)
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• Graphical Models & Belief Propagation

• Nonparametric Density Estimation 

Nonparametric BP Algorithm
• Propagation of nonparametric messages 

• Efficient multiscale sampling from products of mixtures

Results
• Sensor network self-calibration

• Tracking multiple indistinguishable targets

• Visual tracking of a 3D kinematic hand model



Sensor Localization
• Limited-range sensors
• Scatter at random
• Each sensor can communicate with other 

“nearby” sensors
• At most a few sensors have observations of 

their location

• Measure inter-sensor spacing
• Time-delay (acoustic)
• Received signal strength (RF)

• Use relative info to find locations of all other 
sensors

• Note: MAP estimate vs. max-marginal estimate



Uncertainty in Localization
• Model

Location of sensor t is xt and has prior pt(xt)
Observe distance between t and u , otu = 1, with probability

Po(xt,xu) = exp(- ||xt-xu||ρ / Rρ)          (e.g. ρ = 2)
Observe  dtu = ||xt-xu|| + ν where ν = N(0,σ2)

• Nonlinear optimization problem
• Also desirable to have an estimate of posterior uncertainty
• Some sensor locations may be under-determined:

Example Network True marginal uncertainties NBP-estimated marginals

Prior info



Example Networks : Small

10-Node graph NBPJoint MAP



Example Networks : Large

“1-step” Graph “2-step” Graph

Nonlin Least-Sq NBP, “2-step”NBP, “1-step”



35o 70o

Hand model



0 1

2 4

Single-frame Inference



Applications
• Sensor networks & distributed systems

• Computer vision applications

Webpage: http://ssg.mit.edu/nbp/

Nonparametric Belief Propagation
• Applicable to general graphs

• Allows highly non-Gaussian interactions

• Multiscale samplers lead to computational efficiency

Code
• Kernel density estimation code (KDE Toolbox)

• More NBP code upcoming…

Summary & Ongoing Work



Multi-Target Tracking
Assumptions
• Receive noisy estimates of position of multiple targets

• Also receive spurious observations (outliers)

• Targets indistinguishable based on observations
Must use temporal correlations to resolve ambiguities

Standard Approach:  Particle Filter / Smoother

• State: joint configuration of all targets

• Advantages: allows complex data association rules

• Problems: grows exponentially with number of targets 



Graphical Models for Tracking
Multiple Independent Smoothers

• State: independent Markov chain for each target

• Advantages: grows linearly with number of targets

• Problems: solutions degenerate to follow best target 



Graphical Models for Tracking
Multiple Dependent Smoothers

• State: Markov chain for each target, where states of 
different chains are coupled by a repulsive constraint:

• Advantages: storage & computation (NBP) grow linearly

• Problems (??): replaces strict data association rule by a 
prior model on the state space (objects do not overlap)

Analogous to sensor network potentials 
for missing distance measurements



Independent Trackers



Dependent (NBP) Trackers



• Use bounding box statistics
– Bounds on pairwise distances
– Approximate kernel density evaluation  [Gray03]:

• Intuition: find sets of points which have nearly equal contributions
• Provides evaluations within fractional error ε:
 If not within ε, move down the KD-tree (smaller regions = better bounds)

• Apply to exact sampling algorithm:
– Can write weight equation in terms of density pairs

• Estimate normalization (sum of all weights) Z
• Draw & sort uniform random variables
• Find their corresponding labels

– Tunable accuracy level:

ε-Exact Sampling


