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Introduction

| Nonparametric BP

* Perform inference on graphical models
with variables which are

- Continuous
* High-dimensional
* Non-Gaussian
« Sampling-based extension to BP
* Applicable to general graphs

» Nonparametric representation of
uncertainty

« Efficient implementation requires fast
methods




‘ Outline
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Background

» Graphical Models & Belief Propagation

* Nonparametric Density Estimation

Nonparametric BP Algorithm

« Propagation of nonparametric messages

 Efficient multiscale sampling from products of mixtures
Some Applications

« Sensor network self-calibration
» Tracking multiple indistinguishable targets

 Visual tracking of a 3D kinematic hand model



‘ Graphical Models

An undirected graph G is defined by
) — setof Nnodes {1,2,..., N}

E — setof edges (s,t) connecting nodes s,t € V

Nodes s € V are associated with random variables s

Graph Separation

|

B Conditional
Independence

A C

p(za,zclep) = p(zalzp)p(ec|zp)



Pairwise Markov Random Fields

1

7 H Pst(xs, T1) H Ps(xs, Ys)
(s,t)EE sEV

X s — hidden random variable at node s

p(z,y) =

Ys —— noisy local observation of T s

T
Special Case:  p(z,y) = p(zo) || p(@|zi—1)p(ye|=:)
Temporal Markov t=1

Chain Model (HMM) OO0 00000000

GOAL: Determine the conditional marginal distributions

p(zsly) = a/ p(@, y) dzy
LY\ s

« Estimates: Bayes’ least squares, max marginals, ...

» Degree of confidence in those estimates



Belief Propagation

|
Beliefs:

Approximate posterior distributions summarizing
information provided by all given observations

« Combine the observations from all nodes in the graph
through a series of local message-passing operations

Ys
L
O— O

ﬁ(«ﬂs‘?/) — aws(fﬁsyys) H mts(flfs)

tel (s)
[(s) —— neighborhood of node s (adjacent nodes)

mts(zcs) — message sent from node f to node s

(“sufficient statistic” of t’s knowledge about s)



BP Message Updates
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mis(zs) = a | Psi(es, e)e(z,ue) [ mue(ae) day
Tt u€el (t)\s
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|. Message Product: Multiply incoming messages (from all nodes
but s) with the local observation to form a distribution over x;

Il. Message Propagation: Transform distribution from node ¢ to
node s using the pairwise interaction potential ¥s (s, 1)

— Integrate over x+ to form distribution summarizing
node ¢'s knowledge about T's



BP for HMMs
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| Forward Messages ytI

My 41 (Tpg1) = Oé[ p(wiq1|z)p(yele)my—q (@) day

Lt
\ J

Message Propagation Message Product

Belief Computation Yt I

O=—0O—
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p(xe|y) o< pQye|we)mp—1 1 (xe)myeqq 1 (¢)




BP Justification

* Produces exact conditional marginals for
tree-structured graphs (no cycles)

* For general graphs, exhibits excellent
empirical performance in many
applications (especially coding)

Statistical Physics & Free Energies (Yedidia, Freeman, and Weiss)

Variational interpretation, improved region-based approximations

BP as Reparameterization (Wainwright, Jaakkola, and Willsky)

Characterization of fixed points, error bounds

Many others...



Representational Issues

ms(zs) = a | Ysi(es, ) P(eny) I mw(e) day
T u€l (t)\s

Message representations:
Discrete: Finite vectors

Gaussian: Mean and covariance (Kalman filter)

Continuous Non-Gaussian: No parametric form

Discretization intractable in as few as 2-3 dimensions

BP Propetrties:
* May be applied to arbitrarily structured graphs, but

« Updates intractable for most continuous potentials



Particle Filters
‘ Condensation, Sequential Monte Carlo, Survival of the Fittest, ...

I . - .
Nonparametric Markov chain inference:

-~

Samp/e-baseii density estimate H m I m m I W

Weight by observation likelihood M
%ample propagate by dynamics [ m ‘im Tm % T

Particle Filter Properties:
* May approximate complex continuous distributions, but

« Update rules dependent on Markov chain structure



Nonparametric Inference For General Graphs

Particle Filters
 Markov chains

Belief Propagation
« General graphs

* Discrete or Gaussian » General potentials

O—O o OPOO-O-OO0-O-OR0-0
N C

/ "‘\ S /\/\

O—0O 7 {4

Nonparametric BP
« General graphs

» General potentials

Problem: What is the product
of two collections of particles?



| Nonparametric Density Estimates

' Kernel (Parzen Window) Approximate PDF by a set of
Density Estimator smoothed data samples
1 M1 e — X,
() = L 5~ L (22X
b M =10
{X;} — Mindependent samples from p(x)
K () — Gaussian kernel function (self-reproducing)

1V — Bandwidth (chosen automatically)

g




‘ Outline

' Background
» Graphical Models & Belief Propagation

* Nonparametric Density Estimation

Nonparametric BP Algorithm
* Propagation of nonparametric messages
« Efficient multiscale sampling from products of mixtures

Results
 Sensor network self-calibration

* Tracking multiple indistinguishable targets

* Visual tracking of a 3D kinematic hand model



Nonparametric BP
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Stochastic update of kernel based messages:

|. Message Product: Draw samples of *t from the product of all
Incoming messages and the local observation potential

Il. Message Propagation: Draw samples of Zs from the
compatibility ¥st(2s, 2¢), fixing ¢ to the values sampled in step |

—— Samples form new kernel density estimate of outgoing
message (determine new kernel bandwidths)



|. Message Product

mys(xs) = a | Ysi(zs, z)e(en, ye) [ muwe(ee) day
L wel (t)\s
Y

N\ 7

For now, assume all potentials &

\ messages are Gaussian mixtures

d messages Product contains
M kernels each M? Kernels

How do we sample from the product
distribution without explicitly constructing it?



| Sampling from Product Densities

|
d mixtures of M Gaussians mixture of MY Gaussians

d
pi(z) —szN(a: i Ni) ——  p(@) o ] pi(z)
1=1

Exact sampling

Importance sampling
Proposal distribution?

Gibbs sampling

“‘parallel” & “sequential” versions
Multiscale Gibbs sampling
Epsilon-exact multiscale sampling



Product Mixture Labelings

—  Kernel in product density

Labeling of a single mixture
component in each message

Products of Gaussians are also
Gaussian, with easily computed

mean, variance, and mixture weight:

d
1=1

~1
AV %
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| Exact Sampling

L; > mixture component label for i input density
[ = [11, L ,ld] — |abel of component in product density
H%lzl wl-N(x; AN 1 d 1 1 d 1
— i 0 A — - A\ — Ay :
VLT T NG AL) LEXLNT O Nm= A

Calculate the weight partition function in
O(M?) operations: Z = > 1, wy,

Draw and sort M uniform [0,1] variables
Compute the cumulative distribution of

p(L) =7



Importance Sampling

I
true distribution (difficult to sample from)

p(x) assume may be evaluated up to normalization Z
q(x) —— proposal distribution (easy to sample from)

Draw N , M samples from proposal distribution:

z; ~ q(x) w; o< p(w;)/q(x;)
Sample M times (with replacement) from
p(z;) = w;/Z

Mixture IS: Randomly select a different mixture p.(x) for
each sample (other mixtures provide weight)

Fast Methods:

Need to repeatedly evaluate pairs of densities (FGT, etc.)



| Sampling from Product Densities

|
d mixtures of M Gaussians mixture of MY Gaussians

d
pi(z) —szN(a: i Ni) ——  p(@) o ] pi(z)
1=1

. Exact sampling

Importance sampling
Proposal distribution?

Gibbs sampling

“‘parallel” & “sequential” versions
Multiscale Gibbs sampling
Epsilon-exact multiscale sampling



Product of 3 messages, each containing 4 Gaussian kernels

‘ Sequential Gibbs Sampler

Labeled Kernels Sampling Weights
Highlighted Red Blue Arrows



Parallel Gibbs Sampler

‘ Product of 3 messages, each containing 4 Gaussian kernels

aaaaa

-

Labeled Kernels
Highlighted Red

Sampling
Weights Blue

Arrows



Multiscale — KD-trees

“K-dimensional Trees”

Multiscale representation of data set
Cache statistics of points at each level:

Bounding boxes

Mean & Covariance

Original use: efficient search algorithms

{1,2,34,5,6,7,8}

T N7

11,2,3,4} 15,6,7,8}
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‘ Multiscale Gibbs Sampling

| Build KD-tree for each input density

Perform Gibbs over progressively finer scales.:

Sample to change scales

LNITRC NI A/X\

Q‘ Continue Gibbs sampling at the next scale:

II t - /\
o
AN

ot

—

P |

Annealed Gibbs sampling
(analogies in MRFs)

—_—



| Sampling from Product Densities

|
d mixtures of M Gaussians mixture of MY Gaussians

d
pi(z) —szN(a: i Ni) ——  p(@) o ] pi(z)
1=1

. Exact sampling

Importance sampling
Proposal distribution?

Gibbs sampling

“parallel” & “sequential” versions
Multiscale Gibbs sampling
Epsilon-exact multiscale sampling



E-Exact Sampling (I)

Bounding box statistics TR RN K
Bounds on pairwise distances Drmax

Approximate kernel density evaluation
KDE: 8/, evaluate p(y;) =2, w; K(x;— ;)
FGT — low-rank approximations

Gray '03 — rank-one approximations
Find sets S, T such that

82T, p(y;) =2i,sK(x;— ;) 7 (2;w;)Cgqr (constant)

{1,2,34,5,6,7,8}

Evaluations within fractional error ¢:
If not < ¢, refine KD-tree regions
(= better bounds)




E-Exact Sampling (lI) R R R 503

U

Dmax Do
Use this relationship to bound the weights
_ T wiN (@ i, A ¢ Ail\j
1= K — . TN\ VI VN—
o N (z; @i, \) (jl;lle) igz’)N(M’My i) 1) =",
{’ J
Y

(pairwise relationships only)

Rank-one approximation:
Error bounded by product of pairwise bounds
Can consider sets of weights simultaneously

Fractional error tolerance
Est'd weights are within a percentage of true value
Normalization constant within a percent tolerance




E-Exact Sampling (llI)

o— oo OH

Each weight has fractional error
Normalization constant has fractional error
Normalized weights have absolute error:

wy wL| > 20

= 1-6

D1, —pr| = €

~

Z Z

Drawing a sample — two-pass
Compute approximate sum of weights Z
Draw N samples in [0,1) uniformly, sort.
Re-compute Z, find set of weights for each sample

Find label within each set
All weights V4 equal ) independent selection



| Taking Products — 3 mixtures

 Epsilon-exact sampling provides the highest accuracy

* Multiscale Gibbs sampling outperforms standard Gibbs

« Sequential Gibbs sampling mixes faster than parallel

# L =
"""""""

e

i‘r“'.

Input Mixtures

Product Mixture

KL Divergence

=== Exact

= S e—Exact

= S Seq. Gibbs {
M= Par. Gibbs

==+ Seq. Gibbs
Far. Gibbs

= = [Faussian s

= Mixture 13

-

0.1 0.2 03 .
Computation Time (sec)



| Taking Products — 5 mixtures

* Multiscale Gibbs samplers now outperform epsilon-exact

 Epsilon-exact still beats exact (1 minute vs. 7.6 hours)

» Mixture importance sampling is also very effective

2 :
: = =« Exact
1.8F 1 S5 e—Exact
) ". — M3 Seq. Gibbs
. = 1.6 MS Par. Gibbs |
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| Taking Products — 2 mixtures

* Importance sampling is sensitive to message alignment

* Multiscale methods show greater consistency & robustness
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|. Message Product

|
mys(Ts) = o i Vo r(@s, e)Pe(ze, ye) [ mw () day

o u€el (t)\s Y

Y

For now, assume all potentials &
messages are Gaussian mixtures

d messages Product contains

M kernels each M? kernels
We can now sample from this message product very efficiently



ll. Message Propagation (G.M.)

|
mis(zs) = a [ Psi(as,z)Pe(ze,ye) | mae(ae) day
. J/ wu€l (t)\s

Myt (1) | % /\ View Ws,t(x& ZIJt)

as a joint distribution

wsﬂj(ﬂ?t) _ N _ _/_\ < Add marg|na|¢8,t(xt)

to the product mix

Label selected by
() > sampler locates
_’r kernel center iff’s:t(%s)

Draw sample

Ys t(xs, Tt) %,t(xs)



Extension — Analytic Potentials

|
mis(xs) = a | Psi(es, ) V(e y) I mw(e) day
Tt u€el (t)\s
Assume pointwise evaluation is possible
Use importance sampling
Adjust sampling weights by kernel center value (i, yt)
Weight final sample by adjustment w; = (2%, yi) /¢ (Fi, 1)
« Must account for marginal influence induced by
pairwise potential:

C(xt) :[c '(,bs,t(x&xt) dx s

— Constant for (common) case ¥ t(xs, zt) = Y(xs — x¢)



Related Work

I
Markov Chains

Regularized particle filters
Gaussian sum filters
Monte Carlo HMMs (Thrun & Langford 99)

Approximate Propagation Framework (Koller UAI 99)
« Postulate approximate message representations
and updates within junction tree

Particle Message Passing (Ilsard CVPR 03)

* Avoids bandwidth selection
* Requires pairwise potentials to be small Gaussian mixtures



‘ Outline

IBackground
» Graphical Models & Belief Propagation

* Nonparametric Density Estimation
Nonparametric BP Algorithm
* Propagation of nonparametric messages

« Efficient multiscale sampling from products of mixtures

Results

« Sensor network self-calibration
* Tracking multiple indistinguishable targets

* Visual tracking of a 3D kinematic hand model



‘ Sensor Localization

| Limited-range sensors
Scatter at random

Each sensor can communicate with other
“nearby” sensors

At most a few sensors have observations of
their location

« Measure inter-sensor spacing
« Time-delay (acoustic)
« Received signal strength (RF)

 Use relative info to find locations of all other
sSensors

* Note: MAP estimate vs. max-marginal estimate




Uncertainty in Localization

Model
Location of sensor tis x, and has prior p,(x)
Observe distance between t and u, o,, = 1, with probability
Po(XpX,) = exp(- lIxx,IlP /R (e.g.p=2) A
Observe d,, = ||x-x, || +Vv  where v=N(0,6%) ]

Nonlinear optimization problem
Also desirable to have an estimate of posterior uncertainty
Some sensor locations may be under-determined:

Example Network True mgrginal uncertainties NBP-estimated marginals

Prior info




Example Networks : Small

10-Node graph Joint MAP NBP
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Large

‘ Example Networks

“2-step” Graph

-step” Graph
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Hand model
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| Single-frame Inference
I _ _




| Summary & Ongoing Work

I Webpage: http://ssg.mit.edu/nbp/

Nonparametric Belief Propagation
« Applicable to general graphs

 Allows highly non-Gaussian interactions

» Multiscale samplers lead to computational efficiency
Applications

» Sensor networks & distributed systems

« Computer vision applications

Code
» Kernel density estimation code (KDE Toolbox)

* More NBP code upcoming...



Multi-Target Tracking

| Assumptions
« Receive noisy estimates of position of multiple targets

 Also receive spurious observations (outliers)

 Targets indistinguishable based on observations
— Must use temporal correlations to resolve ambiguities

Standard Approach: Particle Filter / Smoother
 State: joint configuration of all targets
* Advantages: allows complex data association rules

* Problems: grows exponentially with number of targets



‘ Graphical Models for Tracking
I

Multiple Independent Smoothers

O—O0—0—0—0—0
O—O0—0O—0—0—0

o State: independent Markov chain for each target
* Advantages: grows linearly with number of targets

* Problems: solutions degenerate to follow best target



Graphlcal Models for Tracking

others

E o0& 0&

 State: Markov chain for each target, where states of
different chains are coupled by a repulsive constraint:

Analogous to sensor network potentials
for missing distance measurements

* Advantages: storage & computation (NBP) grow linearly

* Problems (??): replaces strict data association rule by a
prior model on the state space (objects do not overlap)



Independent Trackers




Dependent (NBP) Trackers




E-Exact Sampling

Use bounding box statistics
Bounds on pairwise distances = -0t

Approximate kernel density evaluation [Gray03]:
Intuition: find sets of points which have nearly equal contributions

Provides evaluations within fractional error ¢:
If not within &, move down the KD-tree (smaller regions = better bounds)

Apply to exact sampling algorithm:

Can write weight equation in terms of density pairs
Estimate normalization (sum of all weights) Z
Draw & sort uniform random variables

———————————————

Find their corresponding labels 012345678
Tunable accuracy level: /S N
~ {1,2,3,4} {5,6,7,8}
B _p|_f'~UL_‘LUL‘<€ B R
LRz oz /NN

______________



