Fast Methods and Nonparametric Belief Propagation

Alexander Ihler

Massachusetts Institute of Technology

ihler@mit.edu

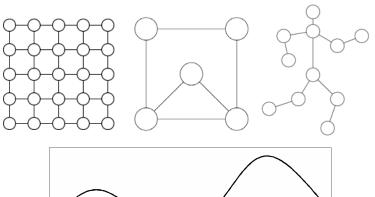
Joint work with Erik Sudderth

Erik Sudderth William Freeman Alan Willsky

Introduction

Nonparametric BP

- Perform inference on graphical models with variables which are
 - Continuous
 - High-dimensional
 - Non-Gaussian
- Sampling-based extension to BP
 - Applicable to general graphs
 - Nonparametric representation of uncertainty
- Efficient implementation requires fast methods



Outline

Background

- Graphical Models & Belief Propagation
- Nonparametric Density Estimation

Nonparametric BP Algorithm

- Propagation of nonparametric messages
- Efficient multiscale sampling from products of mixtures

Some Applications

- Sensor network self-calibration
- Tracking multiple indistinguishable targets
- Visual tracking of a 3D kinematic hand model

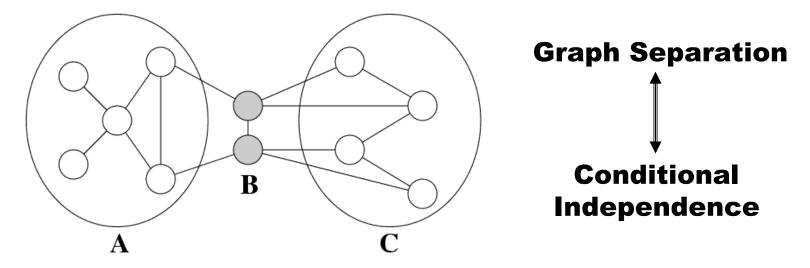
Graphical Models

An undirected graph ${\mathcal G}$ is defined by

$$\mathcal{V} \longrightarrow$$
 set of N nodes $\{1, 2, \dots, N\}$

 $\mathcal{E} \longrightarrow$ set of edges (s,t) connecting nodes $s,t \in \mathcal{V}$

Nodes $s \in \mathcal{V}$ are associated with random variables x_s



 $p(x_A, x_C | x_B) = p(x_A | x_B) p(x_C | x_B)$

Pairwise Markov Random Fields

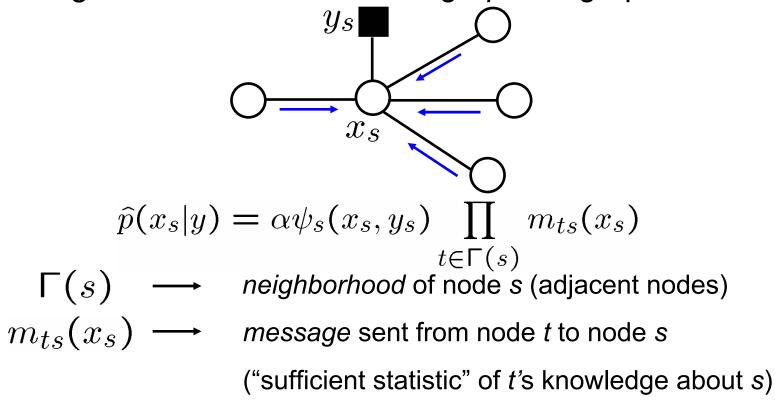
GOAL: Determine the conditional marginal distributions $p(x_s|y) = \alpha \int_{x_{V\setminus s}} p(x, y) \, dx_{V\setminus s}$

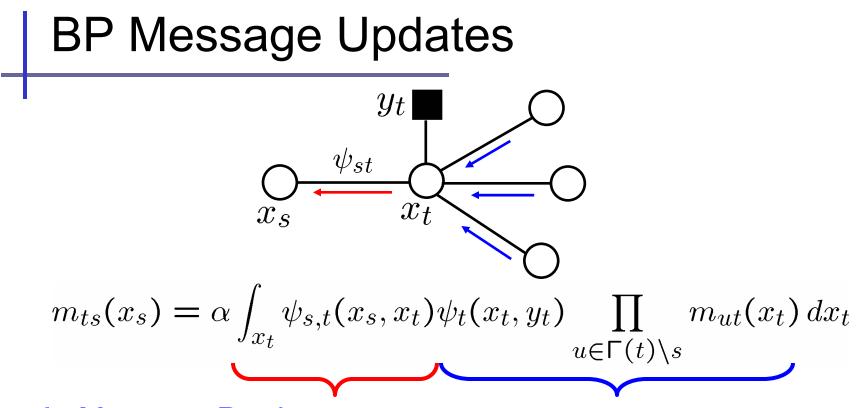
- Estimates: Bayes' least squares, max marginals, ...
- Degree of confidence in those estimates

Belief Propagation

Beliefs: Approximate posterior distributions summarizing information provided by all given observations

• Combine the observations from all nodes in the graph through a series of local *message-passing* operations

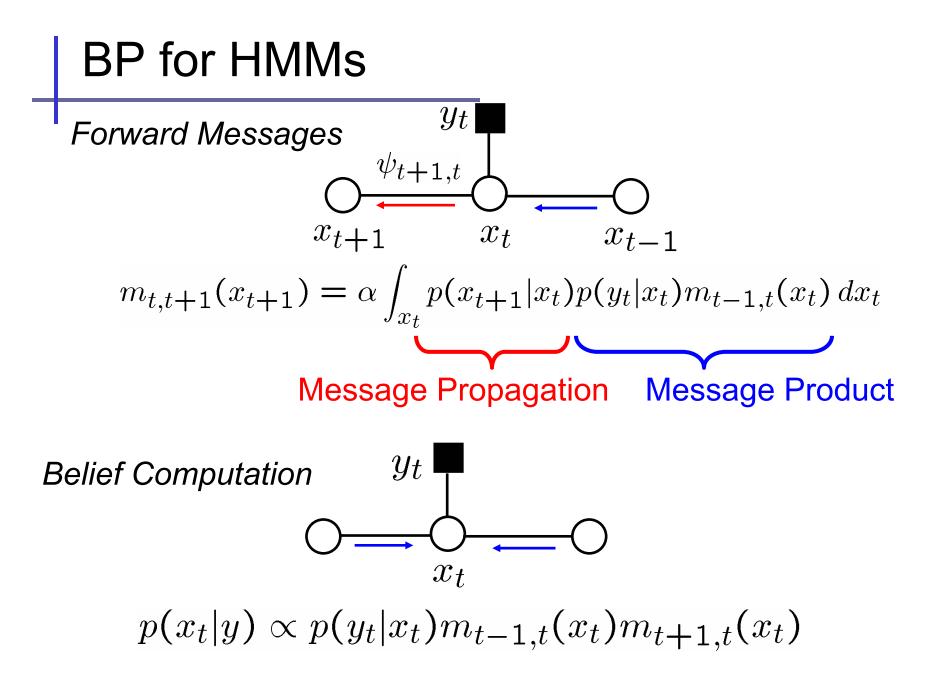




I. Message Product: Multiply incoming messages (from all nodes but s) with the local observation to form a distribution over x_t

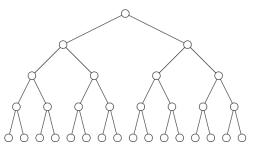
II. Message Propagation: Transform distribution from node *t* to node *s* using the pairwise interaction potential $\psi_{s,t}(x_s, x_t)$

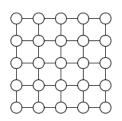
→ Integrate over x_t to form distribution summarizing node *t*'s knowledge about x_s



BP Justification

- Produces *exact* conditional marginals for tree-structured graphs (no cycles)
- For general graphs, exhibits excellent empirical performance in many applications (especially coding)





Statistical Physics & Free Energies (Yedidia, Freeman, and Weiss)

Variational interpretation, improved region-based approximations

BP as Reparameterization (Wainwright, Jaakkola, and Willsky)

Characterization of fixed points, error bounds

Many others...

Representational Issues

$$m_{ts}(x_s) = \alpha \int_{x_t} \psi_{s,t}(x_s, x_t) \psi_t(x_t, y_t) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t) \, dx_t$$

Message representations:

Discrete: Finite vectors

Gaussian: Mean and covariance (Kalman filter)

Continuous Non-Gaussian: No parametric form

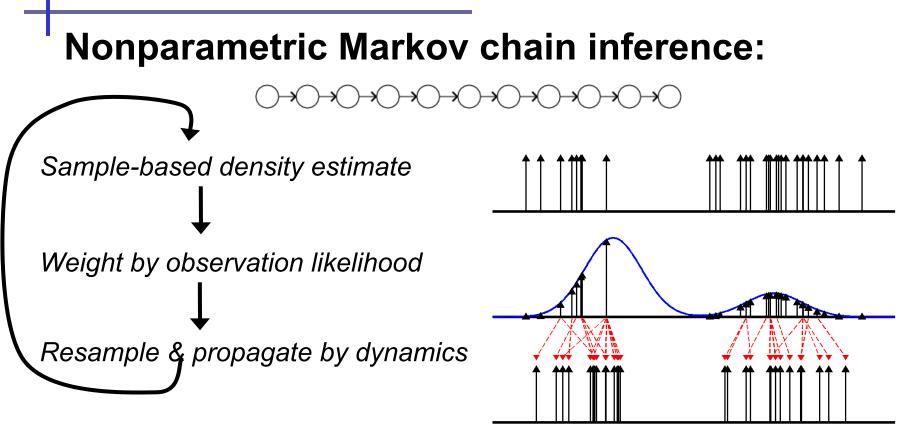
→ Discretization intractable in as few as 2-3 dimensions

BP Properties:

- May be applied to arbitrarily structured graphs, but
- Updates intractable for most continuous potentials

Particle Filters

Condensation, Sequential Monte Carlo, Survival of the Fittest,...



Particle Filter Properties:

- May approximate complex continuous distributions, but
- Update rules dependent on Markov chain structure

Nonparametric Inference For General Graphs

Belief Propagation

- General graphs
- Discrete or Gaussian

Particle Filters

- Markov chains
- General potentials

Nonparametric BP

- General graphs
- General potentials

Problem: What is the product of two collections of particles?

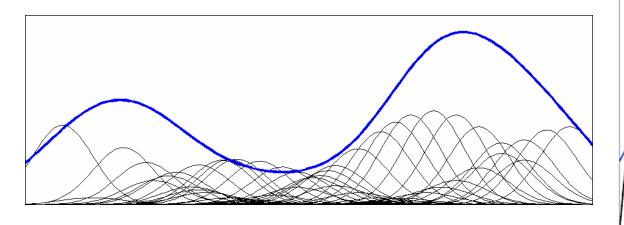
Nonparametric Density Estimates

Kernel (Parzen Window) Density Estimator

Approximate PDF by a set of smoothed data samples

$$\widehat{p}(x) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{\sigma} K\left(\frac{x - X_i}{\sigma}\right)$$

- $\{X_i\} \longrightarrow M$ independent samples from p(x)
- $K(\cdot) \longrightarrow Gaussian$ kernel function (self-reproducing)
 - \rightarrow Bandwidth (chosen automatically)



Outline

Background

- Graphical Models & Belief Propagation
- Nonparametric Density Estimation

Nonparametric BP Algorithm

- Propagation of nonparametric messages
- Efficient multiscale sampling from products of mixtures

Results

- Sensor network self-calibration
- Tracking multiple indistinguishable targets
- Visual tracking of a 3D kinematic hand model

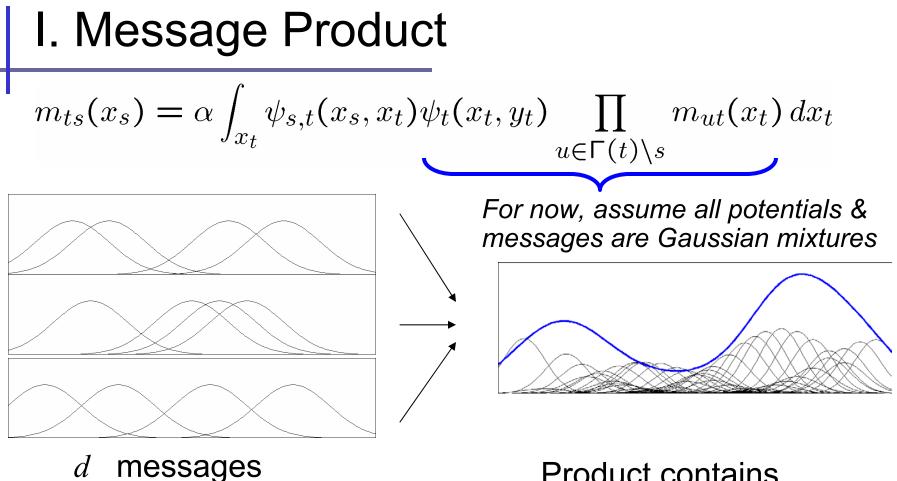
Nonparametric BP y_t ψ_{st} \mathcal{X} + Xs. $m_{ts}(x_s) = \alpha \int_{x_t} \psi_{s,t}(x_s, x_t) \psi_t(x_t, y_t) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t) \, dx_t$

Stochastic update of kernel based messages:

I. Message Product: Draw samples of x_t from the product of all incoming messages and the local observation potential

II. Message Propagation: Draw samples of x_s from the compatibility $\psi_{st}(x_s, x_t)$, fixing x_t to the values sampled in step I

→ Samples form new kernel density estimate of outgoing message (determine new kernel bandwidths)



M kernels each

Product contains M^d kernels

How do we sample from the product distribution without explicitly constructing it?

Sampling from Product Densities

d mixtures of M Gaussians

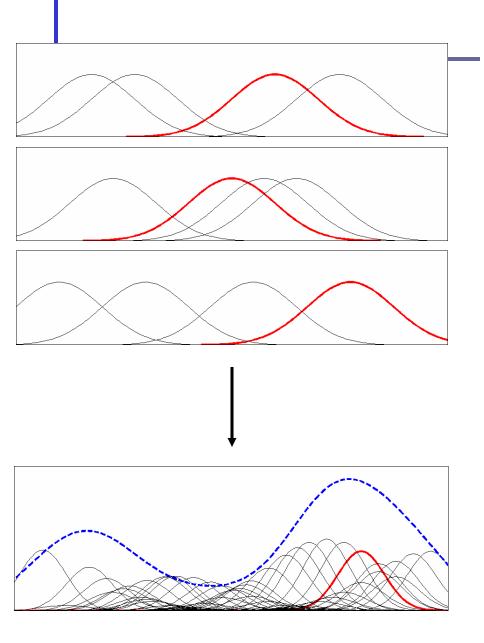
mixture of M^d Gaussians

1

$$p_i(x) = \sum_{l_i} w_{l_i} \mathcal{N}(x; \mu_{l_i}, \Lambda_i) \longrightarrow p(x) \propto \prod_{i=1}^a p_i(x)$$

- Exact sampling
- Importance sampling
 - Proposal distribution?
- Gibbs sampling
 - "parallel" & "sequential" versions
- Multiscale Gibbs sampling
- Epsilon-exact multiscale sampling

Product Mixture Labelings



Kernel in product density Labeling of a single mixture component in each message

Products of Gaussians are also Gaussian, with easily computed mean, variance, and mixture weight:

$$\prod_{i=1}^{d} \mathcal{N}(x; \mu_i, \Lambda_i) \propto \mathcal{N}(x; \bar{\mu}, \bar{\Lambda})$$
$$\bar{\Lambda}^{-1} = \sum_{i=1}^{d} \Lambda_i^{-1} \qquad \bar{\Lambda}^{-1} \bar{\mu} = \sum_{i=1}^{d} \Lambda_i^{-1} \mu_i$$
$$\bar{w} \propto \frac{\prod_{i=1}^{d} w_i \mathcal{N}(x; \mu_i, \Lambda_i)}{\mathcal{N}(x; \bar{\mu}, \bar{\Lambda})}$$

Exact Sampling

 $l_i \longrightarrow$ mixture component label for *i*th input density $L = [l_1, \dots, l_d] \rightarrow$ label of component in product density

$$w_{L} = \frac{\prod_{i=1}^{d} w_{l_{i}} \mathcal{N}(x; \mu_{L}, \Lambda_{i})}{\mathcal{N}(x; \mu_{L}, \Lambda_{L})} \qquad \Lambda_{L}^{-1} = \sum_{i=1}^{d} \Lambda_{i}^{-1} \qquad \Lambda_{L}^{-1} \mu_{L} = \sum_{i=1}^{d} \Lambda_{i}^{-1} \mu_{l_{i}}$$

- Calculate the weight partition function in $O(M^d)$ operations: $Z = \sum_L w_L$
- Draw and sort M uniform [0,1] variables
- Compute the cumulative distribution of

$$p(L) = \frac{w_L}{Z}$$

Importance Sampling

 $p(x) \longrightarrow$ true distribution (difficult to sample from) assume may be evaluated *up to normalization Z* $q(x) \longrightarrow$ proposal distribution (easy to sample from)

- - Draw N M samples from proposal distribution: $x_i \sim q(x)$ $w_i \propto p(x_i)/q(x_i)$ Sample M times (with replacement) from $\bar{p}(x_i) = w_i/Z$
- **Mixture IS:** Randomly select a different mixture $p_i(x)$ for each sample (other mixtures provide weight)

Fast Methods:

Need to repeatedly evaluate pairs of densities (FGT, etc.)

Sampling from Product Densities

d mixtures of M Gaussians

mixture of M^d Gaussians

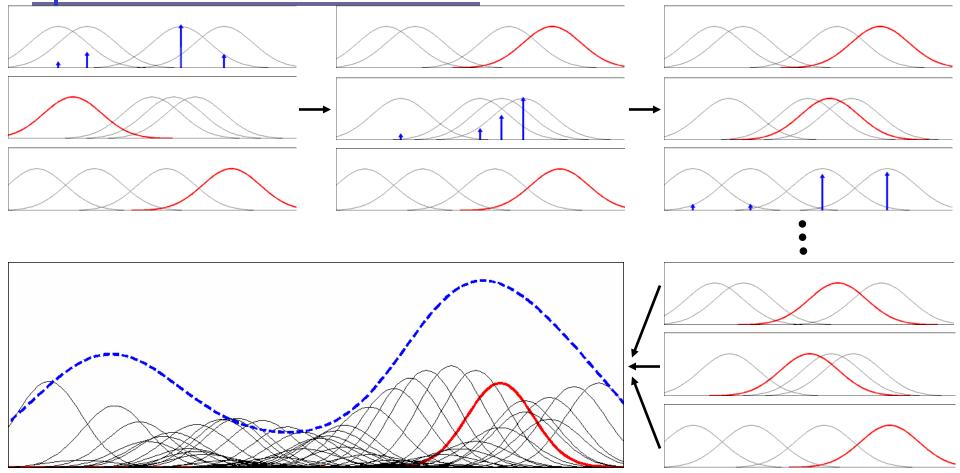
$$p_i(x) = \sum_{l_i} w_{l_i} \mathcal{N}(x; \mu_{l_i}, \Lambda_i) \longrightarrow p(x)$$

- Exact sampling
- Importance sampling
 Proposal distribution?
- Gibbs sampling
 - "parallel" & "sequential" versions
- Multiscale Gibbs sampling
- Epsilon-exact multiscale sampling

$$p(x) \propto \prod_{i=1}^{d} p_i(x)$$

Sequential Gibbs Sampler

Product of 3 messages, each containing 4 Gaussian kernels

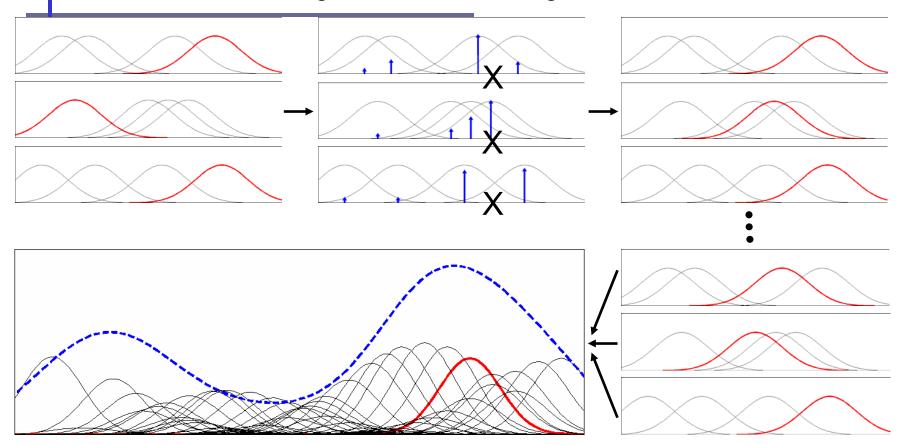


Labeled Kernels Highlighted Red

Sampling Weights Blue Arrows

Parallel Gibbs Sampler

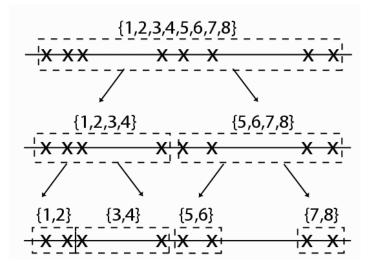
Product of 3 messages, each containing 4 Gaussian kernels

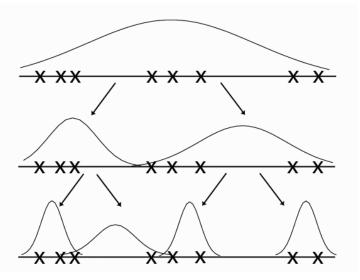


Labeled Kernels Highlighted Red Sampling Weights Blue Arrows

Multiscale – KD-trees

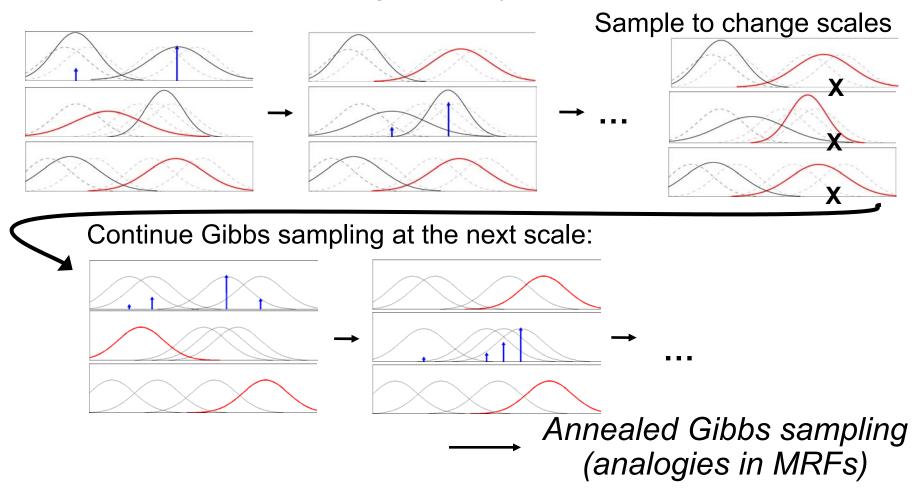
- "K-dimensional Trees"
- Multiscale representation of data set
- Cache statistics of points at each level:
 - Bounding boxes
 - Mean & Covariance
- Original use: efficient search algorithms





Multiscale Gibbs Sampling

- Build KD-tree for each input density
- Perform Gibbs over progressively finer scales:



Sampling from Product Densities

d mixtures of M Gaussians

mixture of M^d Gaussians

1

$$p_i(x) = \sum_{l_i} w_{l_i} \mathcal{N}(x; \mu_{l_i}, \Lambda_i) \longrightarrow p(x) \propto \prod_{i=1}^a p_i(x)$$

- Exact sampling
- Importance sampling
 - Proposal distribution?
- Gibbs sampling
 - "parallel" & "sequential" versions
- Multiscale Gibbs sampling
- Epsilon-exact multiscale sampling

ε-Exact Sampling (I)

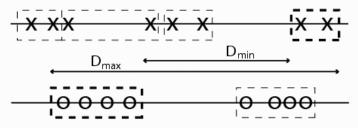
- Bounding box statistics
 - Bounds on pairwise distances

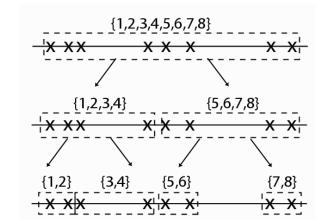
- Approximate kernel density evaluation KDE: 8 *j* , evaluate $p(y_i) = \sum_i w_i K(x_i - y_i)$

- FGT low-rank approximations
- Gray '03 rank-one approximations
- Find sets S, T such that

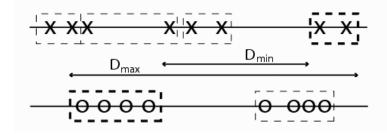
8 *j* 2 *T* , $p(y_j) = \sum_{i \ge S} K(x_i - y_j) \frac{1}{4} (\sum_i w_i) C_{ST}$ (constant)

 Evaluations within fractional error ε: If not < ε, refine KD-tree regions (= better bounds)





E-Exact Sampling (II)



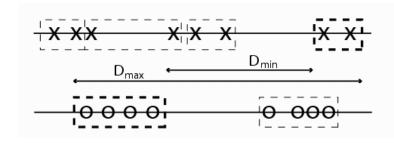
Use this relationship to bound the weights

$$\bar{w} \propto \frac{\prod_{i=1}^{d} w_i \mathcal{N}(x; \mu_i, \Lambda_i)}{\mathcal{N}(x; \bar{\mu}, \bar{\Lambda})} = \left(\prod_{j=1}^{d} w_j\right) \cdot \prod_{(i,j>i)} \mathcal{N}(\mu_i; \mu_j, \Lambda_{(i,j)})$$

$$\Lambda_{(i,j)} = \frac{\Lambda_i \Lambda_j}{\Lambda_L}$$

- (pairwise relationships only)
- Rank-one approximation:
 - Error bounded by product of pairwise bounds
 - Can consider sets of weights simultaneously
- Fractional error tolerance
 - Est'd weights are within a percentage of true value
 - Normalization constant within a percent tolerance

E-Exact Sampling (III)



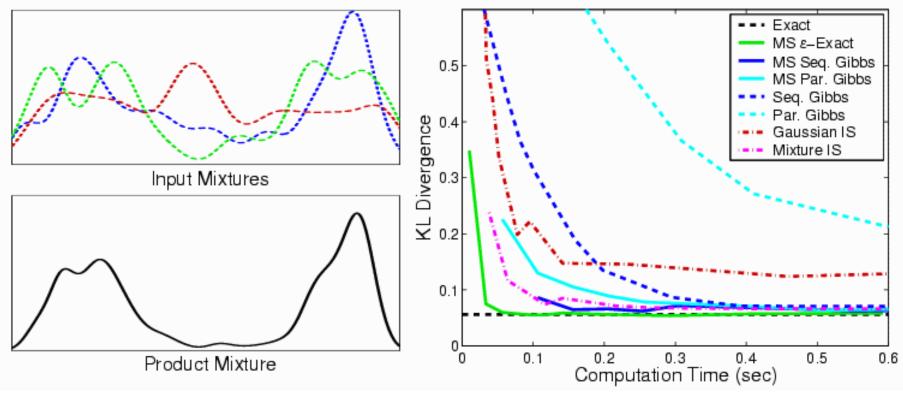
- Each weight has fractional error
- Normalization constant has fractional error
- Normalized weights have absolute error:

$$|\hat{p}_L - p_L| = \left|\frac{\hat{w}_L}{\hat{Z}} - \frac{w_L}{Z}\right| \le \frac{2\delta}{1-\delta} \equiv \epsilon$$

- Drawing a sample two-pass
 - Compute approximate sum of weights Z
 - Draw N samples in [0,1) uniformly, sort.
 - Re-compute Z, find set of weights for each sample
 - Find label within each set
 - All weights ¼ equal) independent selection

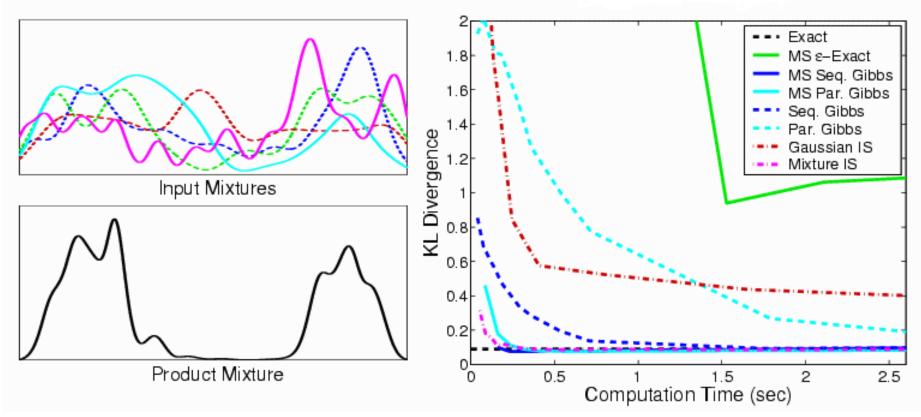
Taking Products – 3 mixtures

- Epsilon-exact sampling provides the highest accuracy
- Multiscale Gibbs sampling outperforms standard Gibbs
- Sequential Gibbs sampling mixes faster than parallel



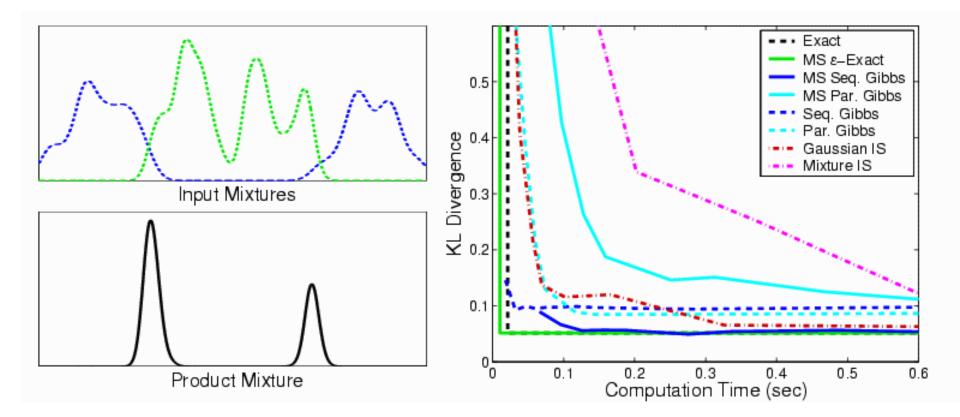
Taking Products – 5 mixtures

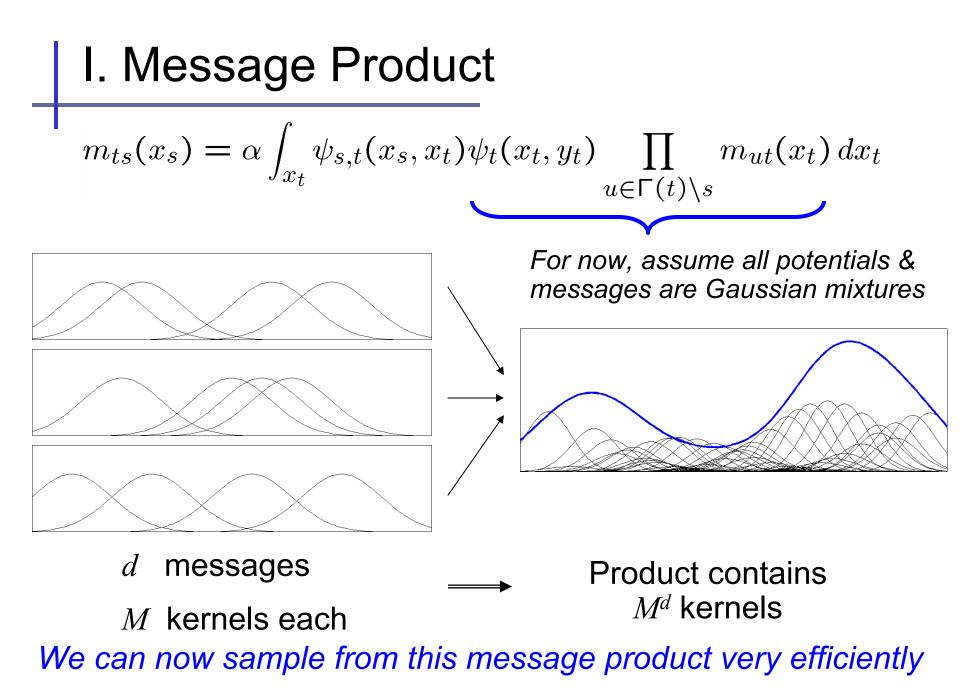
- Multiscale Gibbs samplers now outperform epsilon-exact
- Epsilon-exact still beats exact (1 minute vs. 7.6 hours)
- Mixture importance sampling is also very effective

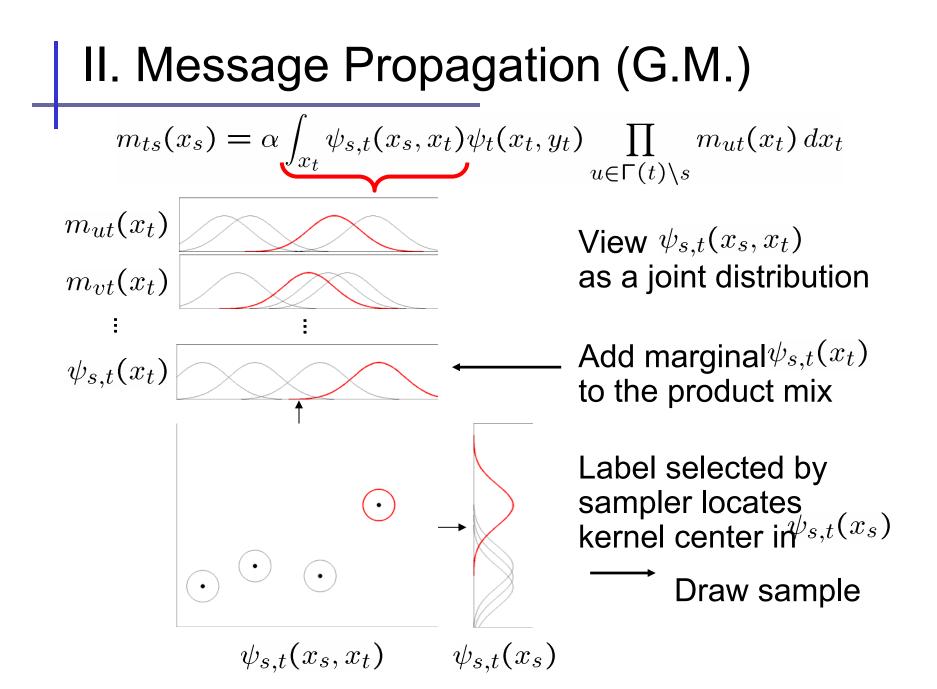


Taking Products – 2 mixtures

- Importance sampling is sensitive to message alignment
- Multiscale methods show greater consistency & robustness







Extension – Analytic Potentials

$$m_{ts}(x_s) = \alpha \int_{x_t} \psi_{s,t}(x_s, x_t) \psi_t(x_t, y_t) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t) \, dx_t$$

- Assume pointwise evaluation is possible
- Use importance sampling
 - Adjust sampling weights by kernel center value $\psi_t(\bar{\mu}_i, y_t)$
 - Weight final sample by adjustment $w_i = \psi_t(x_t^i, y_t)/\psi_t(\bar{\mu}_i, y_t)$
- Must account for *marginal* influence induced by pairwise potential:

$$\zeta(x_t) = \int_{x_s} \psi_{s,t}(x_s, x_t) \, dx_s$$

- Constant for (common) case $\psi_{s,t}(x_s, x_t) = \psi(x_s - x_t)$

Related Work

Markov Chains

- Regularized particle filters
- Gaussian sum filters
- Monte Carlo HMMs (Thrun & Langford 99)

Approximate Propagation Framework (Koller UAI 99)

 Postulate approximate message representations and updates within junction tree

Particle Message Passing (Isard CVPR 03)

- Avoids bandwidth selection
- Requires pairwise potentials to be small Gaussian mixtures

Outline

Background

- Graphical Models & Belief Propagation
- Nonparametric Density Estimation

Nonparametric BP Algorithm

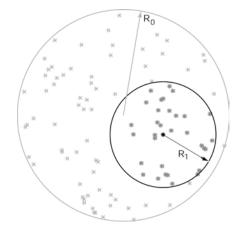
- Propagation of nonparametric messages
- Efficient multiscale sampling from products of mixtures

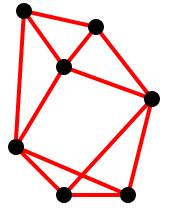
Results

- Sensor network self-calibration
- Tracking multiple indistinguishable targets
- Visual tracking of a 3D kinematic hand model

Sensor Localization

- Limited-range sensors
- Scatter at random
- Each sensor can communicate with other "nearby" sensors
- At most a few sensors have observations of their location
- Measure inter-sensor spacing
 - Time-delay (acoustic)
 - Received signal strength (RF)
- Use relative info to find locations of all other sensors
- Note: MAP estimate vs. max-marginal estimate



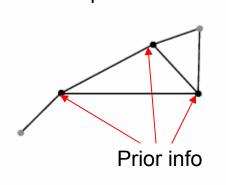


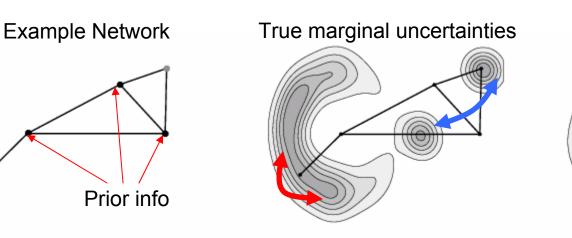
Uncertainty in Localization

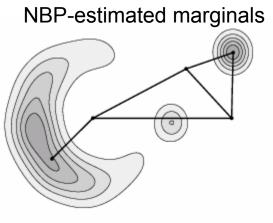
Model

Location of sensor t is x_t and has prior $p_t(x_t)$ Observe distance between *t* and *u*, $o_{tu} = 1$, with probability $\mathsf{P}_{o}(x_{t}, x_{t}) = \exp(-\|x_{t} - x_{t}\|^{\rho} / R^{\rho}) \qquad (\text{e.g. } \rho = 2)$ Observe $d_{tv} = ||x_t - x_v|| + v$ where $v = N(0,\sigma^2)$

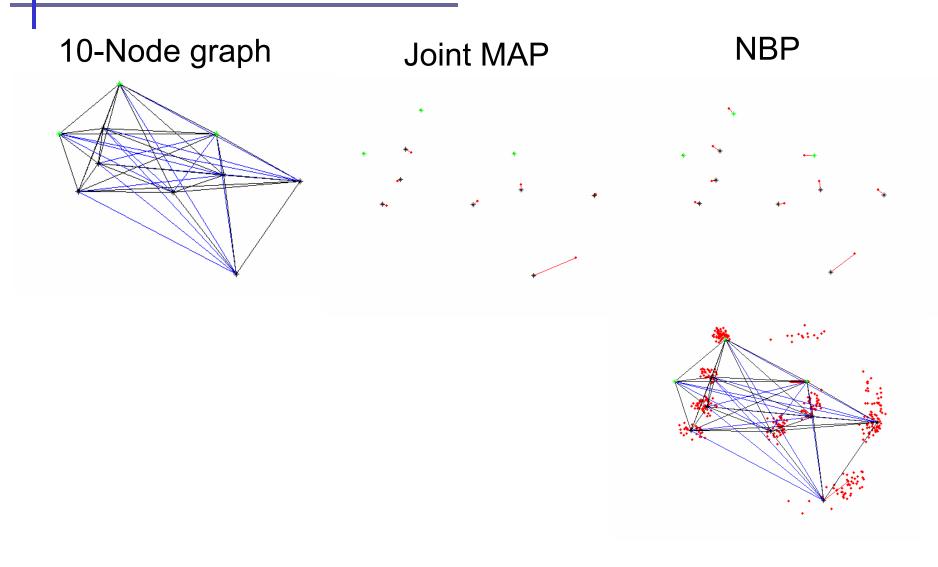
- Nonlinear optimization problem
- Also desirable to have an estimate of posterior uncertainty
- Some sensor locations may be under-determined:



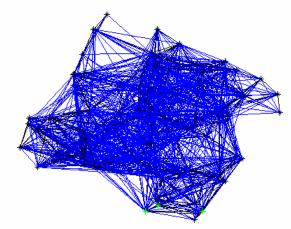




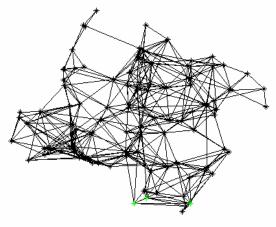
Example Networks : Small



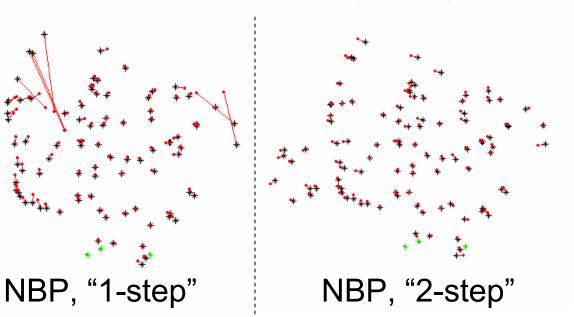
Example Networks : Large

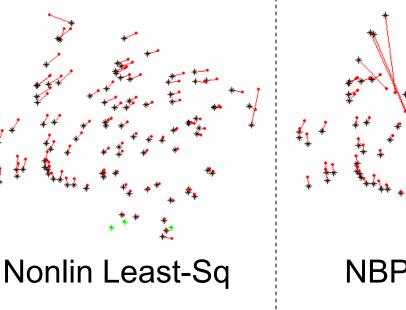


"2-step" Graph

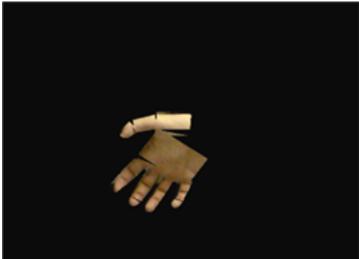


"1-step" Graph



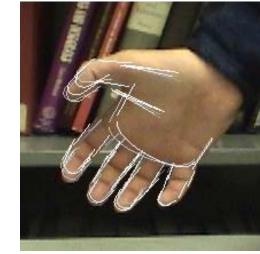


Hand model



35°

Single-frame Inference



Summary & Ongoing Work

Webpage: http://ssg.mit.edu/nbp/

Nonparametric Belief Propagation

- Applicable to general graphs
- Allows highly non-Gaussian interactions
- Multiscale samplers lead to computational efficiency

Applications

- Sensor networks & distributed systems
- Computer vision applications

Code

- Kernel density estimation code (KDE Toolbox)
- More NBP code upcoming...

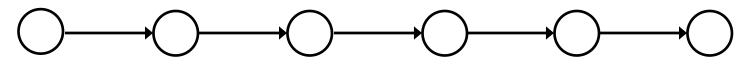
Multi-Target Tracking

Assumptions

- Receive noisy estimates of position of multiple targets
- Also receive spurious observations (outliers)
- Targets indistinguishable based on observations

 \rightarrow Must use temporal correlations to resolve ambiguities

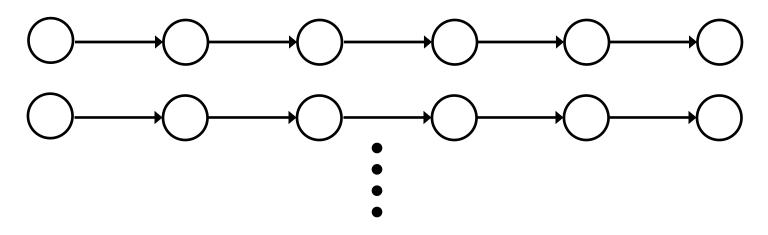
Standard Approach: Particle Filter / Smoother



- State: joint configuration of all targets
- Advantages: allows complex data association rules
- *Problems:* grows exponentially with number of targets

Graphical Models for Tracking

Multiple Independent Smoothers



- State: independent Markov chain for each target
- Advantages: grows linearly with number of targets
- Problems: solutions degenerate to follow best target

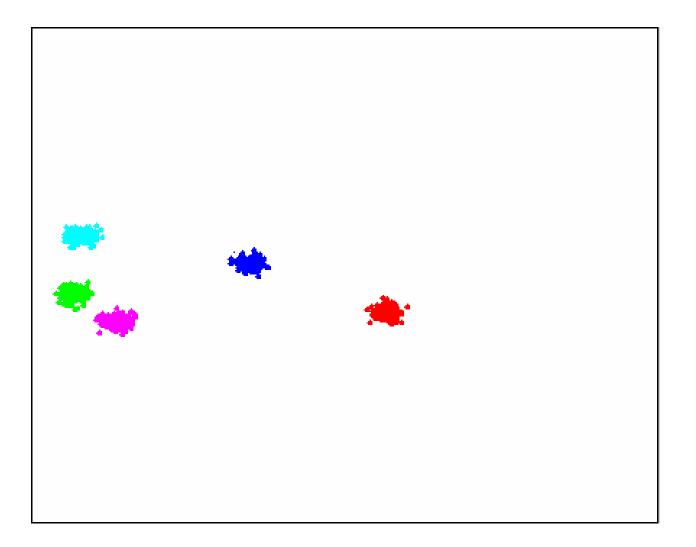
Graphical Models for Tracking Multiple Dependent Smoothers

• *State:* Markov chain for each target, where states of different chains are coupled by a repulsive constraint:

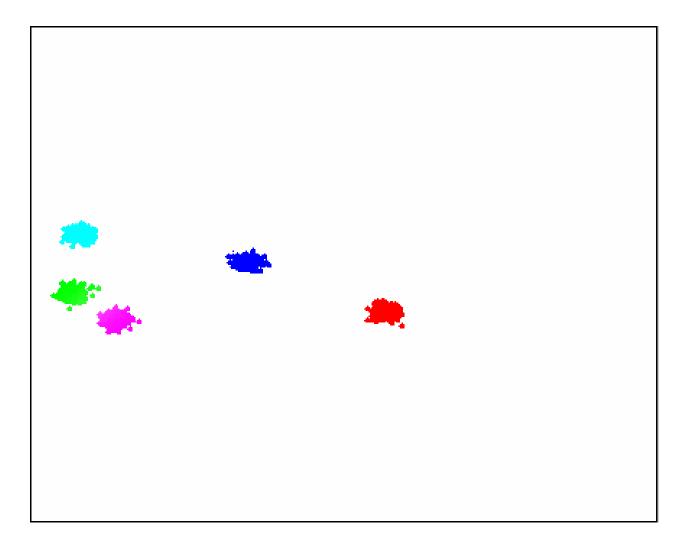
Analogous to sensor network potentials for missing distance measurements

- Advantages: storage & computation (NBP) grow linearly
- *Problems (??):* replaces strict data association rule by a prior model on the state space (objects do not overlap)

Independent Trackers

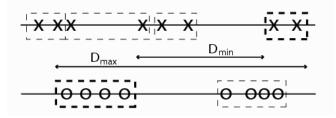


Dependent (NBP) Trackers



&-Exact Sampling

- Use bounding box statistics
 - Bounds on pairwise distances



- Approximate kernel density evaluation [Gray03]:
 - Intuition: find sets of points which have nearly equal contributions
 - Provides evaluations within fractional error ε:
 If not within ε, move down the KD-tree (smaller regions = better bounds)
- Apply to exact sampling algorithm:
 - Can write weight equation in terms of density pairs
 - Estimate normalization (sum of all weights) Z
 - Draw & sort uniform random variables
 - Find their corresponding labels
 - Tunable accuracy level:

$$|\hat{p}_L - p_L| = \left|\frac{\hat{w}_L}{\hat{Z}} - \frac{w_L}{Z}\right| \le \epsilon$$

