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High-dimensional integration by:
• Nonparametric statistics
• Computational geometry
• Computational physics
• Monte Carlo methods
• Machine learning
• ...

…but NOT Markov chains.



The problem
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Motivating example: Bayesian inference on large datasets

We can evaluate f(x) at
any x.  But we have no
other special knowledge
about f.

Often f(x)
expensive to 
evaluate.



Curse of dimensionality

Quadrature doesn’t extend: O(mD).

How to get the job done (Monte Carlo):
1. Importance sampling (IS) [not general]
2. Markov Chain Monte Carlo (MCMC)

Often:
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MCMC 
(Metropolis-Hastings algorithm)

1. Start at random x
2. Sample xnew from N(x,s)
3. Draw u ~ U[0,1]
4. If u < min(f(xnew)/f(x),1), set x to xnew

5. Return to step 2.



MCMC 
(Metropolis-Hastings algorithm)

Do this a huge number of times.  Analyze the 
stream of x’s so far by hand to see if you can stop 
the process.

If you jump around f long enough (make a 
sequence long enough) and draw x’s from it 
uniformly, these x’s act as if drawn iid from f.
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Good

Really cool:
– Ultra-simple
– Requires only evaluations of f
– Faster than quadrature in high dimensions

gave us the bomb (??)
listed in “Top 10 algorithms of all time”



Bad
Really unfortunate:

1. No reliable way to choose the scale s; yet, its choice is 
critical for good performance

2. With multiple modes, can get stuck
3. Correlated sampling is hard to characterize in terms of 

error
4. Prior knowledge can be incorporated only in simple ways
5. No way to reliably stop automatically

Requires lots of runs/tuning/guesswork.  Many workarounds, for different 
knowledge about f.  (Note that in general case, almost nothing has 
changed.)

Must become an MCMC expert just to do integrals.
(…and the ugly) In the end, we can’t be quite sure about our answer.

Black art.  Not yet in Numerical Recipes.



Let’s try to make a new method
Goal:

– Simple like MCMC
– Weak/no requirements on f()
– Principled and automatic choice of key 

parameter(s) 
– Real error bounds
– Better handling of isolated modes
– Better incorporation of prior knowledge
– Holy grail: automatic stopping rule



Importance sampling
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• Choose q() close to f() if 
you can; try not to 
underestimate f()

• Unbiased
• Error is easier to 

analyze/measure

• But: not general (need to 
know something about f)



Adaptive importance sampling

Idea: can we improve q() as go along? 

Sample from q()

Re-estimate q() from samples

By the way…
Now we’re doing integration by statistical inference.



NAIS [Zhang, JASA 1996]

Assume f() is a density.
1. Generate x’s from an initial q()
2. Estimate density fhat from the x’s, using kernel 

density estimation (KDE):

3. Sample x’s from fhat.  
4. Return to step 2.

∑
≠

−=
N

ij
jihi xxK

N
xf )(1)(ˆ



Some attempts for q()
• Kernel density estimation [e.g. Zhang, JASA 1996]

– O(N2); choice of bandwidth

• Gaussian process regression [e.g. Rasmussen-
Ghahramani, NIPS 2002]
– O(N3); choice of bandwidth

• Mixtures (of Gaussians, betas…) [e.g. Owen-Zhou 1998]

– nonlinear unconstrained optimization is itself time-consuming 
and contributes variance; choice of k, …

• Neural networks [e.g. JSM 2003]

– (let’s get serious) awkward to sample from; like mixtures but 
worse

Bayesian quadrature: right idea but not general



None of these works

(i.e. is a viable alternative to MCMC)



Tough questions

• Which q()?
– ability to sample from it
– efficiently computable
– reliable and automatic parameter estimation

• How to avoid getting trapped?
• Can we actively choose where to sample?
• How to estimate error at any point?
• When to stop?
• How to incorporate prior knowledge?



What’s the right thing to do? 

(i.e. what objective function should we 
be optimizing?)



Is this active learning
(aka optimal experiment design)?

Basic framework:  
bias-variance decomposition of least-
squares objective function

minimize only variance term

Seems reasonable, but:
• Is least-squares really the optimal thing to do for 

our problem (integration)?



Observation #1:

Least-squares is
somehow not exactly right.

• It says to approximate well everywhere.
• Shouldn’t we somehow focus more on 

regions where f() is large?
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Back to basics
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Back to basics
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Back to basics
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Idea #1: 
Minimize importance sampling 

error
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Error estimate
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What kind of estimation?



Observation #2:

Regression, 
not density estimation.
(even if f() is a density)

• Supervised learning vs unsupervised.

• Optimal rate for regression is faster than 
that of density estimation (kernel estimators, finite-
sample)



Idea #2: 
Use Nadaraya-Watson 

regression (NWR) for q()
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Why Nadaraya-Watson?
• Nonparametric
• Good estimator (though not best) – optimal rate
• No optimization procedure needed
• Easy to add/remove points
• Easy to sample from – choose xi with probability

then draw from N(xi,h*)
• Guassian kernel makes non-zero everywhere, 

sample more widely
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How can we avoid getting 
trapped?



Idea #3: 
Use defensive mixture for q()
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This also answered:
“How can we incorporate prior 

knowledge”?



Can we do NWR tractably?



Observation #3:

NWR is a 
‘generalized N-body problem’.

• distances between n-tuples [pairs] of  
points in a metric space [Euclidean]

• modulated by a (symmetric) positive 
monotonic kernel [pdf]

• decomposable operator [summation]



Idea #4: 
1. Use fast KDE alg. for denom.
2. Generalize to handle numer.
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Extension from KDE to NWR

• First: allow weights on each point
• Second: allow those weights to be negative
• Not hard 



Okay, so we can compute NWR 
efficiently with accuracy.

How do we find the bandwidth 
(accurately and efficiently)?



What about an analytical method?

Bias-variance decomposition
has many terms that can be estimated (if 
very roughly)

But the real problem is D.

Thus, this is not reliable in our setting.



Idea #5: 
‘Least-IS-error’ cross-validation
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Idea #6: 
Incremental cross-validation
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Idea #7: 
Simultaneous-bandwidth 

N-body algorithm

We can share work 
between bandwidths.
[Gray and Moore, 2003]



Idea #8: 
Use ‘equivalent kernels’

transformation
• Epanechnikov kernel (optimal) has finite extent

• 2-3x faster than Gaussian kernel
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How can we pick samples in 
a guided fashion?

• Go where we’re uncertain?
• Go by the f() value, to ensure low intrinsic 

dimension for the N-body algorithm?



Idea #9: 
Sample more where the error 

was larger
• Choose new xi with probability pi

• Draw from N(xi,h*)
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Should we forget old points?

I tried that.  It doesn’t work.
So I remember all the old samples.
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Idea #10: 
Incrementally update estimates



Overall method: FIRE

Repeat:
1. Resample N points from {xi} using

Add to training set.        
Build/update

2.   Compute 

3.   Sample N points {xi} from

4.   For each xi compute                using 

5.   Update I and V 
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Properties

• Because FIRE is importance sampling:
– consistent
– unbiased

• The NWR estimate approaches f(x)/I
• Somewhat reminiscent of particle filtering; 

EM-like; like N interacting Metropolis 
samplers



Test problems

• Thin region
Anisotropic Gaussian
a s2 in off-diagonals
a={0.99,0.9,0.5}, D={5,10,25,100}

• Isolated modes
Mixture of two normals
0.5N(4,1) + 0.5N(4+b,1)
b={2,4,6,8,10}, D={5,10,25,100}



Competitors

• Standard Monte Carlo
• MCMC (Metropolis-Hastings)

– starting point [Gelman-Roberts-Gilks 95]
– adaptation phase [Gelman-Roberts-Gilks 95]
– burn-in time [Geyer 92]
– multiple chains [Geyer 92]
– thinning [Gelman 95]



How to compare

Look at its relative error over many runs

When to stop it?
1. Use its actual stopping criterion
2. Use a fixed wall-clock time



Anisotropic Gaussian (a=0.9,D=10)

• MCMC
– started at center of mass 
– when it wants to stop: >2 hours
– after 2 hours

• with best s: rel. err {24%,11%,3%,62%}
• small s and large s: >250% errors
• automatic s: {59%,16%,93%,71%}

– ~40M samples
• FIRE

– when it wants to stop: ~1 hour
– after 2 hours: rel. err {1%,2%,1%,1%}
– ~1.5M samples



Mixture of Gaussians 
(b=10,D=10)

• MCMC
– started at one mode 
– when it wants to stop: ~30 minutes
– after 2 hours: 

• with best s: rel. err {54%,42%,58%,47%}
• small s, large s, automatic s: similar

– ~40M samples
• FIRE

– when it wants to stop: ~10 minutes
– after 2 hours: rel. err {<1%,1%,32%,<1%}
– ~1.2M samples



Extension #1

Non-positive functions

Positivization [Owen-Zhou 1998]



Extension #2

More defensiveness, and accuracy

Control variates [Veach 1997]



Extension #3

More accurate regression

Local linear regression



Extension #4 (maybe)

Fully automatic stopping

Function-wide confidence bands
stitch together pointwise bands, control with 

FDR



Summary

• We can do high-dimensional integration 
without Markov chains, by statistical 
inference

• Promising alternative to MCMC
– safer (e.g. isolated modes)
– not a black art
– faster

• Intrinsic dimension - multiple viewpoints
• MUCH more work needed – please help 

me!



One notion of intrinsic dimension

‘Correlation dimension’

Similar: notion in metric analysis

log r

log C(r)



N-body problems

• Coulombic a
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N-body problems

• Coulombic

• Kernel density 
estimation
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N-body problems

• Coulombic

• Kernel density 
estimation

• SPH (smoothed 
particle 
hydrodynamics)
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Also: different for every point, non-isotropic, edge-dependent, …

(only moderate accuracy required, often high-D)

(only moderate accuracy required)

(high accuracy required)



N-body methods: Approximation

• Barnes-Hut
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N-body methods: Approximation

• Barnes-Hut

• FMM
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• Barnes-Hut

non-rigorous,       uniform distribution

• FMM

non-rigorous,       uniform distribution

N-body methods: Runtime
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• Barnes-Hut

non-rigorous,       uniform distribution

• FMM

non-rigorous,       uniform distribution

[Callahan-Kosaraju 95]:    O(N) is impossible for
log-depth tree (in the          
worst case)

N-body methods: Runtime
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Expansions

• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re 
even analytic), heterogeneous kernels



Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re 
even analytic), heterogeneous kernels

• BUT: Needed to achieve O(N) 
Needed to achieve high accuracy
Needed to have hard error bounds  



Expansions
• Constants matter! pD factor is slowdown

• Large dimension infeasible

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re 
even analytic), heterogeneous kernels

• BUT: Needed to achieve O(N) (?)  
Needed to achieve high accuracy (?)
Needed to have hard error bounds (?)



N-body methods: Adaptivity
• Barnes-Hut              recursive                                    

can use any kind of tree

• FMM                          hand-organized control flow
requires grid structure

quad-tree/oct-tree        not very adaptive
kd-tree                          adaptive
ball-tree/metric tree      very adaptive



kd-trees:
most widely-used space-

partitioning tree
[Friedman, Bentley & Finkel 1977]

• Univariate axis-aligned splits
• Split on widest dimension
• O(N log N) to build, O(N) space



A kd-tree: level 1



A kd-tree: level 2



A kd-tree: level 3



A kd-tree: level 4



A kd-tree: level 5



A kd-tree: level 6



A ball-tree: level 1

[Uhlmann 1991], [Omohundro 1991]



A ball-tree: level 2



A ball-tree: level 3



A ball-tree: level 4



A ball-tree: level 5



N-body methods: Comparison
Barnes-Hut             FMM

runtime                            O(NlogN)              O(N)

expansions                       optional                required

simple,recursive?             yes                        no

adaptive trees?                 yes                        no   

error bounds?                   no                          yes



Questions

• What’s the magic that allows O(N)?
Is it really because of the expansions?

• Can we obtain an method that’s:
1. O(N)
2. lightweight: works with or without       

..............................expansions
simple, recursive



New algorithm

• Use an adaptive tree (kd-tree or ball-tree)

• Dual-tree recursion

• Finite-difference approximation



Single-tree:

Dual-tree (symmetric):



Simple recursive algorithm

SingleTree(q,R)
{

if approximate(q,R), return.

if leaf(R), SingleTreeBase(q,R).
else,

SingleTree(q,R.left).
SingleTree(q,R.right).

}

(NN or range-search: recurse on the closer node first)



Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,R.left).
DualTree(Q.left,R.right).
DualTree(Q.right,R.left).
DualTree(Q.right,R.right).

}
(NN or range-search: recurse on the closer node first)



Query points Reference points

Dual-tree traversal
(depth-first)



Query points Reference points

Dual-tree traversal
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Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Finite-difference function approximation.
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Finite-difference function approximation.
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Stopping rule: approximate if s > r

could also use center of mass



Simple approximation method

approximate(Q,R)
{

if                                                          

incorporate(dl, du).
}
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trivial to change kernel
hard error bounds



Runtime analysis

THEOREM:  Dual-tree algorithm is O(N)
in worst case (linear-depth trees)

NOTE: Faster algorithm using different 
approximation rule: O(N) expected case

ASSUMPTION:  N points from density f

Cfc ≤≤<0



Recurrence for self-finding
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Packing bound

LEMMA:  Number of nodes that are well-
separated from a query node Q is bounded 
by a constant  

DCcsg ),,(1+

Thus the recurrence yields the entire runtime.
Done.

CONJECTURE: should actually be D’
(the intrinsic dimension).



Real data: SDSS, 2-D



Speedup Results: Number of points

One order-of-magnitude speedup
over single-tree at ~2M points2335 hrs1.6M

1031616*800K
57904*400K
21976*200K

1.0494100K
.4612350K
.313125K
.12712.5K

dual-
N        naïve  tree

5500x



Speedup Results: Different kernels

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N      Epan.  Gauss.

Epanechnikov: 
10-6 relative error

Gaussian: 
10-3 relative error



Speedup Results: Dimensionality

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N      Epan.  Gauss.



Speedup Results: Different datasets

Name        N           D           Time (sec)

923MPSF2d

2478410KMNIST

838136KCovType

105103KBio5



Meets desiderata?
Kernel density estimation

• Accuracy good enough?   yes
• Separate query and reference datasets?  yes
• Variable-scale kernels?   yes
• Multiple scales simultaneously?   yes
• Nonisotropic kernels?   yes
• Arbitrary dimensionality?   yes (depends on D’<<D)
• Allows all desired kernels?   mostly
• Field-tested, compared to existing methods?   yes

[Gray and Moore, 2003], [Gray and Moore 2005 in 
prep.]



Meets desiderata?
Smoothed particle hydrodynamics
• Accuracy good enough?   yes
• Variable-scale kernels?   yes
• Nonisotropic kernels?   yes
• Allows all desired kernels?   yes
• Edge-effect corrections (mixed kernels)?   yes
• Highly non-uniform data?   yes
• Fast tree-rebuilding?   yes, soon perhaps faster
• Time stepping integrated?  no
• Field-tested, compared to existing methods?   no



Meets desiderata?
Coulombic simulation

• Accuracy good enough?   open question
• Allows multipole expansions?   yes
• Allows all desired kernels?   yes
• Fast tree-rebuilding?   yes, soon perhaps faster
• Time stepping integrated?   no
• Field-tested, compared to existing methods?   no
• Parallelized?   no



Which data structure is best
in practice?

• consider nearest-neighbor as a proxy (and its 
variants: approximate, all-nearest-neighbor, 
bichromatic nearest-neighbor, point location)

• kd-trees?  Uhlmann’s metric trees?  Fukunaga’s
metric trees? SR-trees? Miller et al.’s separator 
tree?  WSPD? navigating nets? Locality-sensitive 
hashing?

• [Gray, Lee, Rotella, Moore] Coming soon to a 
journal near you



Side note: Many problems are easy 
for this framework 

• Correlation dimension
• Hausdorff distance
• Euclidean minimum spanning tree
• more



Last step…

Now use q() to do importance sampling.
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