
Tutorial on
Statistical N-Body Problems

and Proximity Data Structures

Alexander Gray
School of Computer Science
Carnegie Mellon University

Outline:

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

Outline:

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

‘N-body problem’ of physics

‘N-body problem’ of physics

Simulation (electrostatic, gravitational,
statistical mechanics):

Compute:

a
ji

ji
ji

xx

mm
xxK

−
∝),(

),(, j

N

ij
i xxKi ∑

≠

∀

Some problems: Gaussian kernel

‘N-body problem’ of physics

Computational fluid dynamics
(smoothed particle hydrodynamics):

more complicated:
nonstationary,
anisotropic,
edge-dependent (Gray thesis 2003)

),(, j

N

ij
i xxKi ∑

≠

∀

Compute:

0
)2(
364

),(3

32

t
tt

xxK i −
+−

=

2
21
10

≥
<≤
<≤

t
t
t

22
/ hxxt ji −=

‘N-body problem’ of physics

Main obstacle:)(2NO

Barnes-Hut Algorithm
[Barnes and Hut, 87]

∑ ≈
i

RRi xKNxxK),(),(µ if

θ
rs >

s
r

Fast Multipole Method
[Greengard and Rokhlin 1987]

∑ ≈∀
i

ixxKx),(, multipole/Taylor expansion if
of order p

rs >

For Gaussian kernel: “Fast Gauss Transform”
[Greengard and Strain 91]

Quadtree/octree:

• Barnes-Hut

non-rigorous, uniform distribution

• FMM

non-rigorous, uniform distribution

N-body methods: Runtime
)log(NNO≈

)(NO≈
≈

≈

• Barnes-Hut

non-rigorous, uniform distribution

• FMM

non-rigorous, uniform distribution

[Callahan-Kosaraju 95]: O(N) is impossible
for log-depth tree

N-body methods: Runtime
)log(NNO≈

)(NO≈
≈

≈

In practice…

Both are used

Often Barnes-Hut is chosen for several
reasons…

Expansions
• Constants matter! pD factor is slowdown

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re even
analytic), heterogeneous kernels

• Well-known papers in computational physics:
– “Implementing the FMM in 3 Dimensions”, J.Stat.Phys. 1991
– “A New Error Estimate for the Fast Gauss Transform”,

J.Sci.Comput. 2002
– “An Implementation of the FMM Without Multipoles”, SIAM

J.Sci.Stat.Comput. 1992

N-body methods: Adaptivity
• Barnes-Hut recursive

can use any kind of tree

• FMM hand-organized control flow
requires grid structure

quad-tree/oct-tree not very adaptive
kd-tree adaptive
ball-tree/metric tree very adaptive

N-body methods: Comparison
Barnes-Hut FMM

runtime O(NlogN) O(N)

expansions optional required

simple,recursive? yes no

adaptive trees? yes no

error bounds? no yes

Outline:

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

N-body problems
in statistical learning

Obvious N-body problems:

[Gray and Moore, NIPS 2000]
[Gray PhD thesis 2003]

• Kernel density estimation (Gray & Moore 2000, 2003abc)
• Kernel regression:

• Locally-weighted regression
• Nadaraya-Watson regression (Gray 2005, next talk)

• Gaussian process regression (Gray CMU-TR 2003)
• RBF networks
• Kernel machines
• Nonparametric Bayes classifiers (Gray et al. 2005)

N-body problems
in statistical learning

22 2/),(hxx
ji

jiexxK −−=

0
1

),(
2a

ji
t

xxK
−

=
1
10

≥
<≤

t
t22

/ hxxt ji −=

Typical kernels: Gaussian,
Epanechnikov (optimal):

N-body problems
in statistical learning

Less obvious N-body problems:

• n-point correlation (Gray & Moore 2000, 2004, Gray et al.
2005)

• Fractal/intrinsic dimension (Gray 2005)
• All-nearest-neighbors, bichromatic (Gray & Moore 2000,

Gray, Lee, Rotella & Moore 2005)

[Gray and Moore, NIPS 2000]
[Gray PhD thesis 2003]

Kernel density estimation

∑
≠

−=
N

qr
rqhq xxK

N
xf)(1)(ˆ

• The optimal smoothing parameter h is all-important
• Guaranteed to converge to the true underlying density
(consistency)
• Nonparametric – distribution need only meet some weak
smoothness conditions
• Optimal kernel doesn’t happen to be the Gaussian

Kernel density estimation

}2},{;),(,,{ rKr ⋅Σ∀ δAbstract problem:

Operator 1

Operator 2
Kernel
function

Monadic
function

Multiplicity

Chromatic
number

KDE: Compute),(, j

N

ij
i xxKi ∑

≠

∀

All-NN: Compute

}2;;,min,arg,{ ⋅⋅∀ δ

jij
k xxi −∀ minarg,

Abstract problem:

Operator 1

Operator 2
Kernel
function

Monadic
function

Multiplicity

Chromatic
number

All-nearest-neighbors
(bichromatic, k)

These are examples of…

Generalized N-body problems
All-NN:

2-point:

3-point:

KDE:

SPH: };),(,,{
}}{;),(,,{
}),(,,,{

}),(,,{
},min,arg,{

twK
rK
wI

wI

r

r

R

r

δ
δ
δ

δ
δ

Σ∀
⋅Σ∀

ΣΣΣ
ΣΣ

⋅∀

[Gray PhD thesis 2003]

etc.

Physical simulation

• High accuracy required. (e.g. 6-12 digits)

• Dimension is 1-3.

• Most problems are covered by Coulombic
kernel function.

Statistics/learning

• Accuracy on order of prediction accuracy
required.

• Often high dimensionality.

• Test points can be different from training
points.

FFT

• Approximate points by nearby grid locations
• Use M grid points in each dimension
• Multidimensional FFT: O((MlogM)D)

Fast Gauss Transform
[Greengard and Strain 89, 91]

• Same series-expansion idea as FMM, but with
Gaussian kernel

• However: no data structure
• Designed for low-D setting (borrowed from physics)

• “Improved FGT” [Yang, Duraiswami 03]:
– appoximation is O(Dp) instead of O(pD)
– also ignore Gaussian tails beyond a threshold
– choose K<√N, find K clusters; compare each cluster to

each other: O(K2)=O(N)
– not a tree, just a set of clusters

Observations

• FFT: Designed for 1-D signals (borrowed
from signal processing). Considered
state-of-the-art in statistics.

• FGT: Designed for low-D setting
(borrowed from physics). Considered
state-of-the-art in computer vision.

Runtime of both depends explicitly on D.

Observations

Data in high D basically always lie on
manifold of (much) lower dimension, D’.

Nearest neighbor:

Range-search (radial): }1,,),(,,{

}1,,,min,arg,{

⋅⋅Σ⋅

⋅⋅⋅

δ

δ

rI

Degenerate N-body problems

How are these problems solved?

jj
k xx −minarg

()rxxI j

N

ij
<−∑

≠

Outline:

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

kd-trees:
most widely-used space-

partitioning tree
[Friedman, Bentley & Finkel 1977]

• Univariate axis-aligned splits
• Split on widest dimension
• O(N log N) to build, O(N) space

A kd-tree: level 1

A kd-tree: level 2

A kd-tree: level 3

A kd-tree: level 4

A kd-tree: level 5

A kd-tree: level 6

Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:

(){ } (){ }[]∑ −+−≥−
D

d
ddddii uxxlxx 0,max0,maxmin 22

(){ }∑ −−≤−
D

d
ddddii lxxuxx 22)(,maxmax

Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:

(){ } (){ }[]∑ −+−≥−
D

d
ddddii uxxlxx 0,max0,maxmin 22

(){ }∑ −−≤−
D

d
ddddii lxxuxx 22)(,maxmax

Range-count example

Idea #1.2: Recursive range-count algorithm
[folk algorithm]

Range-count example

Range-count example

Range-count example

Range-count example

Pruned!
(inclusion)

Range-count example

Range-count example

Range-count example

Range-count example

Range-count example

Range-count example

Range-count example

Range-count example

Pruned!
(exclusion)

Range-count example

Range-count example

Range-count example

What’s the best data structure
for proximity problems?

• There are hundreds of papers which have
proposed nearest-neighbor data structures
(maybe even thousands)

• Empirical comparisons are usually to one
or two strawman methods

Nobody really knows how things compare

The Proximity Project
[Gray, Lee, Rotella, Moore 2005]

Careful agostic empirical comparison, open source
15 datasets, dimension 2-1M
The most well-known methods from 1972-2004

• Exact NN: 15 methods
• All-NN, mono & bichromatic: 3 methods
• Approximate NN: 10 methods
• Point location: 3 methods
• (NN classification: 3 methods)
• (Radial range search: 3 methods)

…and the overall winner is?
(exact NN, high-D)

Ball-trees, basically – though there is high
variance and dataset dependence

• Auton ball-trees III [Omohundro 91],[Uhlmann 91],
[Moore 99]

• Cover-trees [Alina B.,Kakade,Langford 04]

• Crust-trees [Yianilos 95],[Gray,Lee,Rotella,Moore
2005]

A ball-tree: level 1

A ball-tree: level 2

A ball-tree: level 3

A ball-tree: level 4

A ball-tree: level 5

Anchors Hierarchy [Moore 99]

• ‘Middle-out’ construction
• Uses farthest-point method [Gonzalez 85] to

find sqrt(N) clusters – this is the middle
• Bottom-up construction to get the top
• Top-down division to get the bottom
• Smart pruning throughout to make it fast
• (NlogN), very fast in practice

Outline:

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

Questions

• What’s the magic that allows O(N)?
Is it really because of the expansions?

• Can we obtain an method that’s:
1. O(N)
2. Lightweight: - works with or without

..............................expansions
- simple, recursive

New algorithm

• Use an adaptive tree (kd-tree or ball-tree)

• Dual-tree recursion

• Finite-difference approximation

Single-tree:

Dual-tree (symmetric):

Simple recursive algorithm

SingleTree(q,R)
{

if approximate(q,R), return.

if leaf(R), SingleTreeBase(q,R).
else,

SingleTree(q,R.left).
SingleTree(q,R.right).

}

(NN or range-search: recurse on the closer node first)

Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,R.left).
DualTree(Q.left,R.right).
DualTree(Q.right,R.left).
DualTree(Q.right,R.right).

}
(NN or range-search: recurse on the closer node first)

Query points Reference points

Dual-tree traversal
(depth-first)

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Query points Reference points

Dual-tree traversal

Finite-difference function approximation.

)()()(
2
1)()(

1

1
i

ii

ii
i xx

xx
xfxfxfxf −








−
−+≈

+

+

)()()(
2
1)()(min

minmax

minmax
min δδ

δδ
δδδδ −








−
−+≈ KKKK

))(()()(axafafxf −′+≈
Taylor expansion:

Gregory-Newton finite form:

Finite-difference function approximation.

() [])()(
2

maxmin
QRQR

R
N

r
qrq KKNKKerr

R

δδδ −≤−=∑

[])()(maxmin
2
1

QRQR KKK δδ +=

assumes monotonic decreasing kernel

Stopping rule?

could also use center of mass

Simple approximation method

approximate(Q,R)
{

if

incorporate(dl, du).
}

))(),(max(min RdiamQdiam⋅≥τδ

).(),(minmax δδ KNduKNdl RR ==

trivial to change kernel
hard error bounds

Big issue in practice…

Tweak parameters

Case 1 – algorithm gives no error bounds
Case 2 – algorithm gives hard error bounds: must run it many
times
Case 3 – algorithm automatically achives your error tolerance

Automatic approximation method

approximate(Q,R)
{

if

incorporate(dl, du). return.
}

)()()(min
2

maxmin QKK N φδδ ε≤−

).(),(minmax δδ KNduKNdl RR ==

just set error tolerance, no tweak parameters
hard error bounds

Runtime analysis

THEOREM: Dual-tree algorithm is O(N)

ASSUMPTION: N points from density f

Cfc ≤≤<0

Recurrence for self-finding

)(logNON ⋅⇒
)1()1(

)1()2/()(
OT

ONTNT
=

+=

)1()1(
)1()2/(2)(

OT
ONTNT

=
+=

single-tree (point-node)

dual-tree (node-node)

)(NO⇒

Packing bound

LEMMA: Number of nodes that are well-
separated from a query node Q is bounded
by a constant  

DCcsg),,(1+

Thus the recurrence yields the entire runtime.
Done. (cf. [Callahan-Kosaraju 95])

On a manifold, use its dimension D’
(the data’s ‘intrinsic dimension’).

Real data: SDSS, 2-D

Speedup Results: Number of points

One order-of-magnitude speedup
over single-tree at ~2M points2335 hrs1.6M

1031616*800K
57904*400K
21976*200K

1.0494100K
.4612350K
.313125K
.12712.5K

dual-
N naïve tree

5500x

Speedup Results: Different kernels

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N Epan. Gauss.

Epanechnikov:
10-6 relative error

Gaussian:
10-3 relative error

Speedup Results: Dimensionality

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N Epan. Gauss.

Speedup Results: Different datasets

Name N D Time (sec)

923MPSF2d

2478410KMNIST

838136KCovType

105103KBio5

Exclusion and inclusion,
on multiple radii simultaneously.
Use binary search to locate critical radius:

min||x-xi|| < h1 => min||x-xi|| < h2

Also needed:
b_lo,b_hi are arguments; store bounds for each b

Application of
HODC principle

Speedup Results

One order-of-magnitude speedup
over single-radius at ~10,000 radii

Outline:

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

Experiments

• Optimal bandwidth h* found by LSCV
• Error relative to truth: maxerr=max |est – true| / true
• Only require that 95% of points meet this tolerance
• Measure CPU time given this error level
• Note that these are small datasets for manageability
• Methods compared:

– FFT
– IFGT
– Dual-tree (Gaussian)
– Dual-tree (Epanechnikov)

Experiments: tweak parameters

• FFT tweak parameter M: M=16, double until error
satisfied

• IFGT tweak parameters K, rx, ry, p: 1) K=√N, get rx,
ry=rx; 2) K=10√N, get rx, ry=16 and doubled until
error satisfied; hand-tune p for dataset: {8,8,5,3,2}

• Dualtree tweak parameter tau: tau=maxerr, double
until error satisfied

• Dualtree auto: just give it maxerr

colors (N=50k, D=2)

58.26.7 (6.7*)6.5 (6.7*)6.2 (6.7*)Dualtree
(Epanech.)

-24.8
(117.2*)

18.7
(89.8*)

12.2
(65.1*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.1.7IFGT

->Exhaust.2.90.1FFT

329.7
[111.0]

---Exhaustive

Exact1%10%50%

sj2 (N=50k, D=2)

6.50.8 (0.8*)0.8 (0.8*)0.8 (0.8*)Dualtree
(Epanech.)

-3.8 (5.5*)3.4 (4.8*)2.7 (3.1*)Dualtree
(Gaussian)

->Exhaust.>Exhaust.12.2IFGT

->Exhaust.>Exhaust.3.1FFT

301.7
[109.2]

---Exhaustive

Exact1%10%50%

bio5 (N=100k, D=5)

408.928.4
(28.4*)

28.4
(28.4*)

27.0
(28.2*)

Dualtree
(Epanech.)

-87.5
(128.7*)

79.6
(111.8*)

72.2
(98.8*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.>Exhaust.IFGT

->Exhaust.>Exhaust.>Exhaust.FFT

1966.3
[1074.9]

---Exhaustive

Exact1%10%50%

corel (N=38k, D=32)

261.610.1
(10.1*)

10.1
(10.1*)

10.0
(10.0*)

Dualtree
(Epanech.)

-162.2
(167.6*)

159.9
(163*)

155.9
(159.7*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.>Exhaust.IFGT

->Exhaust.>Exhaust.>Exhaust.FFT

710.2
[558.7]

---Exhaustive

Exact1%10%50%

covtype (N=150k, D=38)

1572.056.4
(56.4*)

56.3
(56.3*)

54.3
(54.3*)

Dualtree
(Epanech.)

-142.7
(148.6*)

140.4
(145.7*)

139.9
(143.6*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.>Exhaust.IFGT

->Exhaust.>Exhaust.>Exhaust.FFT

13157.1
[11486.0]

---Exhaustive

Exact1%10%50%

Myths

Multipole expansions are needed to:
1. Achieve O(N)
2. Achieve high accuracy
3. Have hard error bounds

• Higher-order divide-and-conquer:
generalizes divide-and-conquer to multiple
sets

• Each set gets a space-partitioning tree
• Recursive with anytime bounds
• Generalized auto-approximation rule

[Gray PhD thesis 2003], [Gray 2005]

Generalized N-body solutions:
Multi-tree methods

• All-k-NN, bichromatic (Gray & Moore 2000, Gray, Lee,
Rotella, Moore 2005): vanilla

• Kernel density estimation (Gray & Moore 2000, 2003abc):
multiple bandwidths

• Gaussian process regression (Gray CMU-TR 2003):
error bound is crucial

• Nonparametric Bayes classifiers (Gray et al. 2005):
possible to get exact predictions

• n-point correlation (Gray & Moore 2000, 2004): n-tuples
> pairs are possible; Monte Carlo for large radii

Tricks for different
N-body problems

Discussion
• Related ideas: WSPD, spatial join, Appel’s

algorithm

• FGT with a tree: coming soon

• Auto-approx FGT with a tree: unclear how to
do this

Summary
• Statistics problems have their own properties, and benefit

from a fundamentally rethought methodology

• O(N) can be achieved without multipole expansions; via
geometry

• Hard anytime error bounds are given to the user

• Tweak parameters should and can be eliminated

• Very general methodology

• Future work: tons (even in physics)
Looking for comments and collaborators!
agray@cs.cmu.edu

THE END

Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,closer-of(R.left,R.right)).
DualTree(Q.left,farther-of(R.left,R.right)).
DualTree(Q.right,closer-of(R.left,R.right)).
DualTree(Q.right,farther-of(R.left,R.right)).

}
(Actually, recurse on the closer node first)

Exclusion and inclusion,
using kd-tree node-node bounds.

O(D) bounds on distance minima/maxima:

(Analogous to point-node bounds.)

Also needed:
Nodewise bounds.

Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:

(){ } (){ }[]∑ −+−≥−
D

d
ddddii uxxlxx 0,max0,maxmin 22

(){ }∑ −−≤−
D

d
ddddii lxxuxx 22)(,maxmax

