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‘N-body problem’ of physics



‘N-body problem’ of physics

Simulation (electrostatic, gravitational,
statistical mechanics):
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Some problems: Gaussian kernel



‘N-body problem’ of physics

Computational fluid dynamics
(smoothed particle hydrodynamics):

more complicated: 
nonstationary,
anisotropic,
edge-dependent (Gray thesis 2003)
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‘N-body problem’ of physics

Main obstacle: )( 2NO



Barnes-Hut Algorithm
[Barnes and Hut, 87]
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Fast Multipole Method 
[Greengard and Rokhlin 1987]
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For Gaussian kernel: “Fast Gauss Transform”
[Greengard and Strain 91]

Quadtree/octree:



• Barnes-Hut

non-rigorous,       uniform distribution

• FMM

non-rigorous,       uniform distribution

N-body methods: Runtime
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• Barnes-Hut

non-rigorous,       uniform distribution

• FMM

non-rigorous,       uniform distribution

[Callahan-Kosaraju 95]:    O(N) is impossible 
for log-depth tree

N-body methods: Runtime
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In practice…

Both are used

Often Barnes-Hut is chosen for several 
reasons…



Expansions
• Constants matter! pD factor is slowdown

• Adds much complexity (software, human time)

• Non-trivial to do new kernels (assuming they’re even 
analytic), heterogeneous kernels

• Well-known papers in computational physics:  
– “Implementing the FMM in 3 Dimensions”, J.Stat.Phys. 1991
– “A New Error Estimate for the Fast Gauss Transform”, 

J.Sci.Comput. 2002
– “An Implementation of the FMM Without Multipoles”, SIAM 

J.Sci.Stat.Comput. 1992



N-body methods: Adaptivity
• Barnes-Hut              recursive                                    

can use any kind of tree

• FMM                          hand-organized control flow
requires grid structure

quad-tree/oct-tree        not very adaptive
kd-tree                          adaptive
ball-tree/metric tree      very adaptive



N-body methods: Comparison
Barnes-Hut             FMM

runtime                            O(NlogN)              O(N)

expansions                       optional                required

simple,recursive?             yes                        no

adaptive trees?                 yes                        no   

error bounds?                   no                          yes
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N-body problems 
in statistical learning 

Obvious N-body problems:

[Gray and Moore, NIPS 2000]
[Gray PhD thesis 2003]

• Kernel density estimation (Gray & Moore 2000, 2003abc)
• Kernel regression:

• Locally-weighted regression
• Nadaraya-Watson regression (Gray 2005, next talk)

• Gaussian process regression (Gray CMU-TR 2003)
• RBF networks 
• Kernel machines
• Nonparametric Bayes classifiers (Gray et al. 2005)



N-body problems 
in statistical learning 
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Typical kernels: Gaussian, 
Epanechnikov (optimal):



N-body problems 
in statistical learning 

Less obvious N-body problems:

• n-point correlation (Gray & Moore 2000, 2004, Gray et al. 
2005)

• Fractal/intrinsic dimension (Gray 2005)
• All-nearest-neighbors, bichromatic (Gray & Moore 2000, 

Gray, Lee, Rotella & Moore 2005)

[Gray and Moore, NIPS 2000]
[Gray PhD thesis 2003]



Kernel density estimation
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• The optimal smoothing parameter h is all-important
• Guaranteed to converge to the true underlying density 
(consistency)
• Nonparametric – distribution need only meet some weak 
smoothness conditions
• Optimal kernel doesn’t happen to be the Gaussian



Kernel density estimation
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All-NN:  Compute

}2;;,min,arg,{ ⋅⋅∀ δ
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Abstract problem:

Operator 1

Operator 2
Kernel
function

Monadic
function

Multiplicity

Chromatic
number

All-nearest-neighbors
(bichromatic, k)



These are examples of…

Generalized N-body problems
All-NN:

2-point:

3-point:

KDE:
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[Gray PhD thesis 2003]

etc.



Physical simulation

• High accuracy required.  (e.g. 6-12 digits)

• Dimension is 1-3.

• Most problems are covered by Coulombic
kernel function.



Statistics/learning

• Accuracy on order of prediction accuracy 
required.

• Often high dimensionality.

• Test points can be different from training 
points.



FFT

• Approximate points by nearby grid locations
• Use M grid points in each dimension
• Multidimensional FFT: O( (MlogM)D )



Fast Gauss Transform 
[Greengard and Strain 89, 91]

• Same series-expansion idea as FMM, but with 
Gaussian kernel

• However: no data structure
• Designed for low-D setting (borrowed from physics)

• “Improved FGT” [Yang, Duraiswami 03]:
– appoximation is O(Dp) instead of O(pD)
– also ignore Gaussian tails beyond a threshold
– choose K<√N, find K clusters; compare each cluster to 

each other: O(K2)=O(N)
– not a tree, just a set of clusters



Observations

• FFT: Designed for 1-D signals (borrowed 
from signal processing).  Considered 
state-of-the-art in statistics.

• FGT: Designed for low-D setting 
(borrowed from physics).  Considered 
state-of-the-art in computer vision.

Runtime of both depends explicitly on D.



Observations

Data in high D basically always lie on 
manifold of (much) lower dimension, D’.



Nearest neighbor:

Range-search (radial): }1,,),(,,{
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kd-trees:
most widely-used space-

partitioning tree
[Friedman, Bentley & Finkel 1977]

• Univariate axis-aligned splits
• Split on widest dimension
• O(N log N) to build, O(N) space



A kd-tree: level 1



A kd-tree: level 2



A kd-tree: level 3



A kd-tree: level 4



A kd-tree: level 5



A kd-tree: level 6



Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:
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Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:
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Range-count example

Idea  #1.2: Recursive range-count algorithm
[folk algorithm]



Range-count example



Range-count example



Range-count example



Range-count example

Pruned!
(inclusion)



Range-count example



Range-count example



Range-count example



Range-count example



Range-count example



Range-count example



Range-count example



Range-count example

Pruned!
(exclusion)



Range-count example



Range-count example



Range-count example



What’s the best data structure
for proximity problems?

• There are hundreds of papers which have 
proposed nearest-neighbor data structures 
(maybe even thousands)

• Empirical comparisons are usually to one 
or two strawman methods

Nobody really knows how things compare



The Proximity Project
[Gray, Lee, Rotella, Moore 2005]

Careful agostic empirical comparison, open source
15 datasets, dimension 2-1M
The most well-known methods from 1972-2004

• Exact NN: 15 methods
• All-NN, mono & bichromatic: 3 methods
• Approximate NN: 10 methods
• Point location: 3 methods
• (NN classification: 3 methods)
• (Radial range search: 3 methods)



…and the overall winner is?
(exact NN, high-D)

Ball-trees, basically – though there is high 
variance and dataset dependence

• Auton ball-trees III [Omohundro 91],[Uhlmann 91], 
[Moore 99]

• Cover-trees [Alina B.,Kakade,Langford 04]

• Crust-trees [Yianilos 95],[Gray,Lee,Rotella,Moore 
2005]



A ball-tree: level 1



A ball-tree: level 2



A ball-tree: level 3



A ball-tree: level 4



A ball-tree: level 5



Anchors Hierarchy [Moore 99]

• ‘Middle-out’ construction
• Uses farthest-point method [Gonzalez 85] to 

find sqrt(N) clusters – this is the middle
• Bottom-up construction to get the top
• Top-down division to get the bottom
• Smart pruning throughout to make it fast
• (NlogN), very fast in practice
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Questions

• What’s the magic that allows O(N)?
Is it really because of the expansions?

• Can we obtain an method that’s:
1. O(N)
2. Lightweight: - works with or without       

..............................expansions
- simple, recursive



New algorithm

• Use an adaptive tree (kd-tree or ball-tree)

• Dual-tree recursion

• Finite-difference approximation



Single-tree:

Dual-tree (symmetric):



Simple recursive algorithm

SingleTree(q,R)
{

if approximate(q,R), return.

if leaf(R), SingleTreeBase(q,R).
else,

SingleTree(q,R.left).
SingleTree(q,R.right).

}

(NN or range-search: recurse on the closer node first)



Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,R.left).
DualTree(Q.left,R.right).
DualTree(Q.right,R.left).
DualTree(Q.right,R.right).

}
(NN or range-search: recurse on the closer node first)



Query points Reference points

Dual-tree traversal
(depth-first)



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal
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Dual-tree traversal
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Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Query points Reference points

Dual-tree traversal



Finite-difference function approximation.
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Gregory-Newton finite form:



Finite-difference function approximation.
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Stopping rule?

could also use center of mass



Simple approximation method

approximate(Q,R)
{

if                                                          

incorporate(dl, du).
}

))(),(max(min RdiamQdiam⋅≥τδ

).(),( minmax δδ KNduKNdl RR ==

trivial to change kernel
hard error bounds



Big issue in practice…

Tweak parameters

Case 1 – algorithm gives no error bounds
Case 2 – algorithm gives hard error bounds: must run it many 
times
Case 3 – algorithm automatically achives your error tolerance 



Automatic approximation method

approximate(Q,R)
{

if                                                          

incorporate(dl, du).  return.
}

)()()( min
2
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just set error tolerance, no tweak parameters
hard error bounds



Runtime analysis

THEOREM:  Dual-tree algorithm is O(N)

ASSUMPTION:  N points from density f

Cfc ≤≤<0



Recurrence for self-finding

)(logNON ⋅⇒
)1()1(

)1()2/()(
OT

ONTNT
=

+=

)1()1(
)1()2/(2)(

OT
ONTNT

=
+=

single-tree (point-node)

dual-tree (node-node)

)(NO⇒



Packing bound

LEMMA:  Number of nodes that are well-
separated from a query node Q is bounded 
by a constant  

DCcsg ),,(1+

Thus the recurrence yields the entire runtime.
Done.                           (cf. [Callahan-Kosaraju 95])

On a manifold, use its dimension D’
(the data’s ‘intrinsic dimension’).



Real data: SDSS, 2-D



Speedup Results: Number of points

One order-of-magnitude speedup
over single-tree at ~2M points2335 hrs1.6M

1031616*800K
57904*400K
21976*200K

1.0494100K
.4612350K
.313125K
.12712.5K

dual-
N        naïve  tree

5500x



Speedup Results: Different kernels

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N      Epan.  Gauss.

Epanechnikov: 
10-6 relative error

Gaussian: 
10-3 relative error



Speedup Results: Dimensionality

51231.6M
2210800K
115400K

52200K
21.0100K

1.1.4650K
.70.3125K
.32.1212.5K

N      Epan.  Gauss.



Speedup Results: Different datasets

Name        N           D           Time (sec)

923MPSF2d

2478410KMNIST

838136KCovType

105103KBio5



Exclusion and inclusion,
on multiple radii simultaneously.
Use binary search to locate critical radius:

min||x-xi|| < h1 => min||x-xi|| < h2

Also needed:
b_lo,b_hi are arguments; store bounds for each b

Application of
HODC principle



Speedup Results

One order-of-magnitude speedup
over single-radius at ~10,000 radii
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Experiments

• Optimal bandwidth h* found by LSCV
• Error relative to truth: maxerr=max |est – true| / true
• Only require that 95% of points meet this tolerance
• Measure CPU time given this error level
• Note that these are small datasets for manageability
• Methods compared:

– FFT
– IFGT
– Dual-tree (Gaussian)
– Dual-tree (Epanechnikov)



Experiments: tweak parameters

• FFT tweak parameter M: M=16, double until error 
satisfied

• IFGT tweak parameters K, rx, ry, p: 1) K=√N, get rx, 
ry=rx; 2) K=10√N, get rx, ry=16 and doubled until 
error satisfied; hand-tune p for dataset: {8,8,5,3,2}

• Dualtree tweak parameter tau: tau=maxerr, double 
until error satisfied

• Dualtree auto: just give it maxerr



colors (N=50k, D=2)

58.26.7 (6.7*)6.5 (6.7*)6.2 (6.7*)Dualtree
(Epanech.)

-24.8 
(117.2*)

18.7 
(89.8*)

12.2 
(65.1*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.1.7IFGT

->Exhaust.2.90.1FFT

329.7
[111.0]

---Exhaustive

Exact1%10%50%



sj2 (N=50k, D=2)

6.50.8 (0.8*)0.8 (0.8*)0.8 (0.8*)Dualtree
(Epanech.)

-3.8 (5.5*)3.4 (4.8*)2.7 (3.1*)Dualtree
(Gaussian)

->Exhaust.>Exhaust.12.2IFGT

->Exhaust.>Exhaust.3.1FFT

301.7
[109.2]

---Exhaustive

Exact1%10%50%



bio5 (N=100k, D=5)

408.928.4 
(28.4*)

28.4 
(28.4*)

27.0 
(28.2*)

Dualtree
(Epanech.)

-87.5 
(128.7*)

79.6 
(111.8*)

72.2 
(98.8*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.>Exhaust.IFGT

->Exhaust.>Exhaust.>Exhaust.FFT

1966.3
[1074.9]

---Exhaustive

Exact1%10%50%



corel (N=38k, D=32)

261.610.1 
(10.1*)

10.1 
(10.1*)

10.0 
(10.0*)

Dualtree
(Epanech.)

-162.2 
(167.6*)

159.9 
(163*)

155.9 
(159.7*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.>Exhaust.IFGT

->Exhaust.>Exhaust.>Exhaust.FFT

710.2
[558.7]

---Exhaustive

Exact1%10%50%



covtype (N=150k, D=38)

1572.056.4 
(56.4*)

56.3 
(56.3*)

54.3 
(54.3*)

Dualtree
(Epanech.)

-142.7 
(148.6*)

140.4 
(145.7*)

139.9 
(143.6*)

Dualtree
(Gaussian)

->Exhaust.>Exhaust.>Exhaust.IFGT

->Exhaust.>Exhaust.>Exhaust.FFT

13157.1
[11486.0]

---Exhaustive

Exact1%10%50%



Myths

Multipole expansions are needed to:
1. Achieve O(N) 
2. Achieve high accuracy
3. Have hard error bounds



• Higher-order divide-and-conquer: 
generalizes divide-and-conquer to multiple 
sets

• Each set gets a space-partitioning tree
• Recursive with anytime bounds
• Generalized auto-approximation rule

[Gray PhD thesis 2003], [Gray 2005]

Generalized N-body solutions:
Multi-tree methods



• All-k-NN, bichromatic (Gray & Moore 2000, Gray, Lee, 
Rotella, Moore 2005): vanilla

• Kernel density estimation (Gray & Moore 2000, 2003abc): 
multiple bandwidths

• Gaussian process regression (Gray CMU-TR 2003): 
error bound is crucial

• Nonparametric Bayes classifiers (Gray et al. 2005): 
possible to get exact predictions

• n-point correlation (Gray & Moore 2000, 2004): n-tuples
> pairs are possible; Monte Carlo for large radii

Tricks for different 
N-body problems 



Discussion
• Related ideas: WSPD, spatial join, Appel’s

algorithm

• FGT with a tree: coming soon

• Auto-approx FGT with a tree: unclear how to 
do this



Summary
• Statistics problems have their own properties, and benefit 

from a fundamentally rethought methodology

• O(N) can be achieved without multipole expansions; via 
geometry

• Hard anytime error bounds are given to the user

• Tweak parameters should and can be eliminated

• Very general methodology

• Future work: tons (even in physics)
Looking for comments and collaborators! 
agray@cs.cmu.edu



THE END



Simple recursive algorithm

DualTree(Q,R)
{

if approximate(Q,R), return.

if leaf(Q) and leaf(R), DualTreeBase(Q,R).
else,

DualTree(Q.left,closer-of(R.left,R.right)).
DualTree(Q.left,farther-of(R.left,R.right)).
DualTree(Q.right,closer-of(R.left,R.right)).
DualTree(Q.right,farther-of(R.left,R.right)).

}
(Actually, recurse on the closer node first)



Exclusion and inclusion,
using kd-tree node-node bounds.

O(D) bounds on distance minima/maxima:

(Analogous to point-node bounds.)

Also needed:
Nodewise bounds.



Exclusion and inclusion,
using point-node kd-tree bounds.

O(D) bounds on distance minima/maxima:
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