Tutorial on Statistical N-Body Problems and Proximity Data Structures

> Alexander Gray School of Computer Science Carnegie Mellon University

- **1.** Physics problems and methods
- 2. Generalized N-body problems
- 3. Proximity data structures
- 4. Dual-tree algorithms
- **5.** Comparison

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

- • •
- • • •

•

•

- •
- •

Compute:

Simulation (electrostatic, gravitational, statistical mechanics):

$$K(x_i, x_j) \propto \frac{m_i m_j}{\left\|x_i - x_j\right\|^a}$$

Some problems: Gaussian kernel

Compute:

Computational fluid dynamics (smoothed particle hydrodynamics): $t = ||x_i - x_j||^2 / h^2$

more complicated: $4-6t^2+3t^3$ $0 \le t < 1$ nonstationary, $K(x,x_i) = (2-t)^3$ $1 \le t < 2$ anisotropic, 0 $t \ge 2$

 \rightarrow Main obstacle: $O(N^2)$

Barnes-Hut Algorithm [Barnes and Hut, 87]

Fast Multipole Method [Greengard and Rokhlin 1987]

Quadtree/octree:

$$\forall x, \sum_{i} K(x, x_{i}) \approx$$
 multipole/Taylor expansion if $S > r$ of order p

For Gaussian kernel: "Fast Gauss Transform" [Greengard and Strain 91]

N-body methods: Runtime Barnes-Hut $\approx O(N \log N)$

non-rigorous, \thickapprox uniform distribution

• FMM $\approx O(N)$

non-rigorous, \thickapprox uniform distribution

N-body methods: Runtime Barnes-Hut $\approx O(N \log N)$

non-rigorous, pprox uniform distribution

• FMM $\approx O(N)$

lacksquare

non-rigorous, pprox uniform distribution

[Callahan-Kosaraju 95]: O(N) is impossible for log-depth tree

In practice...

Both are used

Often Barnes-Hut is chosen for several reasons...

Expansions

- Constants matter! p^D factor is slowdown
- Adds much complexity (software, human time)
- Non-trivial to do new kernels (assuming they're even analytic), heterogeneous kernels
- Well-known papers in computational physics:
 - "Implementing the FMM in 3 Dimensions", J.Stat.Phys. 1991
 - "A New Error Estimate for the Fast Gauss Transform", J.Sci.Comput. 2002
 - "An Implementation of the FMM Without Multipoles", SIAM J.Sci.Stat.Comput. 1992

N-body methods: Adaptivity

Barnes-Hut

recursive

 \rightarrow can use any kind of tree

• FMM

hand-organized control flow
→ requires grid structure

quad-tree/oct-tree *kd*-tree ball-tree/metric tree not very adaptive adaptive very adaptive

N-body methods: Comparison		
runtime	Barnes-Hut O(<i>N</i> log <i>N</i>)	FMM O(N)
expansions	optional	required
simple,recursive?	yes	no
adaptive trees?	yes	no
error bounds?	no	yes

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

N-body problems in statistical learning

[Gray and Moore, NIPS 2000] [Gray PhD thesis 2003]

Obvious N-body problems:

- Kernel density estimation (Gray & Moore 2000, 2003abc)
- Kernel regression:
 - Locally-weighted regression
 - Nadaraya-Watson regression (Gray 2005, next talk)
- Gaussian process regression (Gray CMU-TR 2003)
- RBF networks
- Kernel machines
- Nonparametric Bayes classifiers (Gray et al. 2005)

N-body problems in statistical learning

Typical kernels: Gaussian, Epanechnikov (optimal):

$$K(x_{i}, x_{j}) = e^{-\|x_{i} - x_{j}\|^{2}/2h^{2}}$$

 $t = \|x_i - x_j\|^2 / h^2 \qquad K(x_i, x_j) = \frac{1 - t^{2a} \, 0 \le t < 1}{0} \qquad t \ge 1$

N-body problems in statistical learning

[Gray and Moore, NIPS 2000] [Gray PhD thesis 2003]

Less obvious N-body problems:

- n-point correlation (Gray & Moore 2000, 2004, Gray et al. 2005)
- Fractal/intrinsic dimension (Gray 2005)
- All-nearest-neighbors, bichromatic (Gray & Moore 2000, Gray, Lee, Rotella & Moore 2005)

Kernel density estimation

$$\hat{f}(x_q) = \frac{1}{N} \sum_{\substack{r \neq q}}^{N} K_h(||x_q - x_r||)$$

- The optimal smoothing parameter h is all-important
- Guaranteed to converge to the true underlying density (consistency)
- Nonparametric distribution need only meet some weak smoothness conditions
- Optimal kernel doesn't happen to be the Gaussian

Kernel density estimation

KDE: Compute

$$\forall i, \sum_{j\neq i}^N K(x_i, x_j)$$

All-nearest-neighbors (bichromatic, k)

All-NN: Compute $\forall i, \arg\min^k |x_i - x_j|$

These are examples of... **Generalized N-body problems** All-NN: { \forall , arg min, δ , ·} **2-point**: $\{\Sigma, \Sigma, I_r(\delta), w\}$ **3-point**: $\{\Sigma, \Sigma, \Sigma, \Sigma, I_{R}(\delta), w\}$ **KDE**: $\{\forall, \Sigma, K_r(\delta), \cdot; \{r\}\}$ **SPH:** $\{\forall, \Sigma, K_{v}(\delta), w; t\}$ etc.

[Gray PhD thesis 2003]

Physical simulation

• High accuracy required. (e.g. 6-12 digits)

• Dimension is 1-3.

• Most problems are covered by Coulombic kernel function.

Statistics/learning

Accuracy on order of prediction accuracy required.

• Often high dimensionality.

Test points can be different from training points.

FFT

- Approximate points by nearby grid locations
- Use M grid points in each dimension
- Multidimensional FFT: O((MlogM)^D)

Fast Gauss Transform [Greengard and Strain 89, 91]

- Same series-expansion idea as FMM, but with Gaussian kernel
- However: no data structure
- Designed for low-D setting (borrowed from physics)
- "Improved FGT" [Yang, Duraiswami 03]:
 - appoximation is $O(D^p)$ instead of $O(p^D)$
 - also ignore Gaussian tails beyond a threshold
 - choose K<√N, find K clusters; compare each cluster to each other: O(K²)=O(N)
 - not a tree, just a set of clusters

Observations

- FFT: Designed for 1-D signals (borrowed from signal processing). Considered state-of-the-art in statistics.
- FGT: Designed for low-D setting (borrowed from physics). Considered state-of-the-art in computer vision.

Runtime of both depends explicitly on D.

Observations

Data in high D basically always lie on manifold of (much) lower dimension, D'.

Degenerate N-body problems

Nearest neighbor:
$$\{\cdot, \arg\min, \delta, \cdot, \cdot, 1\}$$

 $\arg\min^{k} ||x - x_{j}||$

Range-search (radial): $\{\cdot, \Sigma, I_r(\delta), \cdot, \cdot, 1\}$

$$\sum_{j \neq i}^{N} I \left(\left\| x - x_j \right\| < r \right)$$

How are these problems solved?

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

most widely-used spacepartitioning tree

[Friedman, Bentley & Finkel 1977]

- Univariate axis-aligned splits
- Split on widest dimension
- O(N log N) to build, O(N) space

A kd-tree: level 5

A kd-tree: level 6

Exclusion and inclusion, using point-node *kd*-tree bounds.

O(D) bounds on distance minima/maxima:

$$\min_{i} ||x - x_{i}|| \ge \sum_{d}^{D} \left[\max\{(l_{d} - x_{d})^{2}, 0\} + \max\{(x_{d} - u_{d})^{2}, 0\} \right]$$
$$\max_{i} ||x - x_{i}|| \le \sum_{d}^{D} \max\{(u_{d} - x_{d})^{2}, (x_{d} - l_{d})^{2}\}$$

Exclusion and inclusion, using point-node *kd*-tree bounds.

O(D) bounds on distance minima/maxima:

Idea #1.2: Recursive range-count algorithm [folk algorithm]

Pruned! (inclusion)

Pruned! (exclusion)

What's the best data structure for proximity problems?

- There are hundreds of papers which have proposed nearest-neighbor data structures (maybe even thousands)
- Empirical comparisons are usually to one or two strawman methods

 \rightarrow Nobody really knows how things compare

The Proximity Project [Gray, Lee, Rotella, Moore 2005]

Careful agostic empirical comparison, open source 15 datasets, dimension 2-1M The most well-known methods from 1972-2004

- Exact NN: 15 methods
- All-NN, mono & bichromatic: 3 methods
- Approximate NN: 10 methods
- Point location: 3 methods
- (NN classification: 3 methods)
- (Radial range search: 3 methods)

...and the overall winner is? (exact NN, high-D)

Ball-trees, basically – though there is high variance and dataset dependence

- Auton ball-trees III [Omohundro 91],[Uhlmann 91], [Moore 99]
- Cover-trees [Alina B.,Kakade,Langford 04]
- Crust-trees [Yianilos 95],[Gray,Lee,Rotella,Moore 2005]

A ball-tree: level 1

A ball-tree: level 2

Anchors Hierarchy [Moore 99]

- 'Middle-out' construction
- Uses farthest-point method [Gonzalez 85] to find sqrt(N) clusters – this is the middle
- Bottom-up construction to get the top
- Top-down division to get the bottom
- Smart pruning throughout to make it fast
- (NlogN), very fast in practice

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison

Questions

• What's the magic that allows O(N)? Is it really because of the expansions?

- Can we obtain an method that's:
 - 1. *O(N)*
 - 2. Lightweight: works with or without expansions
 - simple, recursive

New algorithm

• Use an adaptive tree (*kd*-tree or ball-tree)

Dual-tree recursion

• Finite-difference approximation

Single-tree:

Dual-tree (symmetric):

Simple recursive algorithm

```
SingleTree(q,R)
if approximate(q,R), return.
if leaf(R), SingleTreeBase(q,R).
else,
  SingleTree(q,R.left).
  SingleTree(q,R.right).
```

Simple recursive algorithm

```
DualTree(Q,R)
```

```
if approximate(Q,R), return.
```

```
if leaf(Q) and leaf(R), DualTreeBase(Q,R). else,
```

DualTree(Q.left,R.left). DualTree(Q.left,R.right). DualTree(Q.right,R.left). DualTree(Q.right,R.right).

(NN or range-search: recurse on the closer node first)

Dual-tree traversal

(depth-first)

Finite-difference function approximation.

Taylor expansion:

$$f(x) \approx f(a) + f'(a)(x-a)$$

Gregory-Newton finite form:

$$f(x) \approx f(x_i) + \frac{1}{2} \left(\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \right) (x - x_i)$$

$$K(\delta) \approx K(\delta^{\min}) + \frac{1}{2} \left(\frac{K(\delta^{\max}) - K(\delta^{\min})}{\delta^{\max} - \delta^{\min}} \right) (\delta - \delta^{\min})$$

Finite-difference function approximation.

assumes monotonic decreasing kernel

$$\overline{K} = \frac{1}{2} \left[K(\delta_{QR}^{\min}) + K(\delta_{QR}^{\max}) \right]$$

$$err_{q} = \sum_{r}^{N_{R}} \left| K\left(\delta_{qr}\right) - \overline{K} \right| \leq \frac{N_{R}}{2} \left[K\left(\delta_{QR}^{\min}\right) - K\left(\delta_{QR}^{\max}\right) \right]$$

could also use center of mass

Stopping rule?

Simple approximation method

approximate(Q,R)
{
 dl = N_RK(
$$\delta_{max}$$
), du = N_RK(δ_{min}).
 if $\delta_{min} \ge \tau \cdot max(diam(Q), diam(R))$
 incorporate(dl, du).
}

→trivial to change kernel→hard error bounds

Big issue in practice...

Tweak parameters

- Case 1 algorithm gives no error bounds
- Case 2 algorithm gives hard error bounds: must run it many times
- Case 3 algorithm automatically achives your error tolerance

Automatic approximation method

approximate(Q,R)
{

$$dl = N_R K(\delta_{max}), du = N_R K(\delta_{min}).$$

if $K(\delta_{min}) - K(\delta_{max}) \le \frac{2\varepsilon}{N} \phi_{min}(Q)$
incorporate(dl , du). return.
}

→just set error tolerance, no tweak parameters
→hard error bounds

Runtime analysis

THEOREM: Dual-tree algorithm is **O(N)**

ASSUMPTION: N points from density f

$$0 < c \le f \le C$$

Recurrence for self-finding

single-tree (point-node)

$$T(N) = T(N/2) + O(1)$$
$$T(1) = O(1) \implies N \cdot O(\log N)$$

dual-tree (node-node)

$$T(N) = 2T(N/2) + O(1)$$
$$T(1) = O(1) \Rightarrow O(N)$$

Packing bound

LEMMA: Number of nodes that are *well-separated* from a query node Q is bounded by a constant $[1+g(s,c,C)]^D$

Thus the recurrence yields the entire runtime. Done. (cf. [Callahan-Kosaraju 95])

> On a manifold, use its dimension D' (the data's 'intrinsic dimension').

Real data: SDSS, 2-D

Speedup Results: Number of points

		dual-
Ν	naïve	tree
12.5K	7	.12
25K	31	.31
50K	123	.46
100K	494	1.0
200K	1976*	2
400K	7904*	5
800K	31616*	10
1.6M	35 hrs	23

5500x

One order-of-magnitude speedup over single-tree at ~2M points

Speedup Results: Different kernels

Ν	Epan. C	Gauss
12.5K	.12	.32
25K	.31	.70
50K	.46	1.1
100K	1.0	2
200K	2	5
400K	5	11
800K	10	22
1.6M	23	51

Epanechnikov: 10⁻⁶ relative error Gaussian: 10⁻³ relative error

Speedup Results: Dimensionality

Ν	Epan. C	Gauss
12.5K	.12	.32
25K	.31	.70
50K	.46	1.1
100K	1.0	2
200K	2	5
400K	5	11
800K	10	22
1.6M	23	51

Speedup Results: Different datasets

Name	Ν	D	Time (sec)
Bio5	103K	5	10
CovType	136K	38	8
MNIST	10K	784	24
PSF2d	3M	2	9

Exclusion and inclusion, Application of HODC principle

Use binary search to locate critical radius:

min||x-xi|| < h1 => min||x-xi|| < h2

Also needed: b_lo,b_hi are arguments; store bounds for each b

Speedup Results

One order-of-magnitude speedup over single-radius at ~10,000 radii

1. Physics problems and methods

2. Generalized N-body problems

3. Proximity data structures

4. Dual-tree algorithms

5. Comparison
Experiments

- Optimal bandwidth h* found by LSCV
- Error relative to truth: maxerr=max |est true| / true
- Only require that 95% of points meet this tolerance
- Measure CPU time given this error level
- Note that these are small datasets for manageability
- Methods compared:
 - FFT
 - IFGT
 - Dual-tree (Gaussian)
 - Dual-tree (Epanechnikov)

Experiments: tweak parameters

- FFT tweak parameter M: M=16, double until error satisfied
- IFGT tweak parameters K, rx, ry, p: 1) K=√N, get rx, ry=rx; 2) K=10√N, get rx, ry=16 and doubled until error satisfied; hand-tune p for dataset: {8,8,5,3,2}
- Dualtree tweak parameter tau: tau=maxerr, double until error satisfied
- Dualtree auto: just give it maxerr

colors (N=50k, D=2)

	50%	10%	1%	Exact
Exhaustive	-	-	-	329.7
				[111.0]
FFT	0.1	2.9	>Exhaust.	-
IFGT	1.7	>Exhaust.	>Exhaust.	-
Dualtree	12.2	18.7	24.8	-
(Gaussian)	(65.1*)	(89.8*)	(117.2*)	
Dualtree (Epanech.)	6.2 (6.7*)	6.5 (6.7*)	6.7 (6.7*)	58.2

sj2 (N=50k, D=2)

	50%	10%	1%	Exact
Exhaustive	-	-	-	301.7
				[109.2]
FFT	3.1	>Exhaust.	>Exhaust.	-
IFGT	12.2	>Exhaust.	>Exhaust.	-
Dualtree (Gaussian)	2.7 (3.1*)	3.4 (4.8*)	3.8 (5.5*)	-
Dualtree (Epanech.)	0.8 (0.8*)	0.8 (0.8*)	0.8 (0.8*)	6.5

bio5 (N=100k, D=5)

	50%	10%	1%	Exact
Exhaustive	-	-	-	1966.3
				[1074.9]
FFT	>Exhaust.	>Exhaust.	>Exhaust.	-
IFGT	>Exhaust.	>Exhaust.	>Exhaust.	-
Dualtree	72.2	79.6	87.5	-
(Gaussian)	(98.8*)	(111.8*)	(128.7*)	
Dualtree (Epanech.)	27.0 (28.2*)	28.4 (28.4*)	28.4 (28.4*)	408.9

corel (N=38k, D=32)

	50%	10%	1%	Exact
Exhaustive	-	-	-	710.2
				[558.7]
FFT	>Exhaust.	>Exhaust.	>Exhaust.	-
IFGT	>Exhaust.	>Exhaust.	>Exhaust.	-
Dualtree	155.9	159.9	162.2	-
(Gaussian)	(159.7*)	(163*)	(167.6*)	
Dualtree	10.0	10.1	10.1	261.6
(Epanech.)	(10.0^)	(10.1^)	(10.1^)	

covtype (N=150k, D=38)

	50%	10%	1%	Exact
Exhaustive	_	-	_	13157.1 [11486.0]
FFT	>Exhaust.	>Exhaust.	>Exhaust.	-
IFGT	>Exhaust.	>Exhaust.	>Exhaust.	_
Dualtree (Gaussian)	139.9 (143.6*)	140.4 (145.7*)	142.7 (148.6*)	_
Dualtree (Epanech.)	54.3 (54.3*)	56.3 (56.3*)	56.4 (56.4*)	1572.0

Myths

Multipole expansions are needed to:

- 1. Achieve O(N)
- 2. Achieve high accuracy
- 3. Have hard error bounds

Generalized N-body <u>solutions:</u> Multi-tree methods

- Higher-order divide-and-conquer: generalizes divide-and-conquer to multiple sets
- Each set gets a space-partitioning tree
- Recursive with anytime bounds
- Generalized auto-approximation rule

[Gray PhD thesis 2003], [Gray 2005]

Tricks for different N-body problems

- All-k-NN, bichromatic (Gray & Moore 2000, Gray, Lee, Rotella, Moore 2005): vanilla
- Kernel density estimation (Gray & Moore 2000, 2003abc): multiple bandwidths
- Gaussian process regression (Gray CMU-TR 2003): error bound is crucial
- Nonparametric Bayes classifiers (Gray et al. 2005): possible to get exact predictions
- n-point correlation (Gray & Moore 2000, 2004): n-tuples
 > pairs are possible; Monte Carlo for large radii

Discussion

Related ideas: WSPD, spatial join, Appel's algorithm

• FGT with a tree: coming soon

 Auto-approx FGT with a tree: unclear how to do this

Summary

- Statistics problems have their own properties, and benefit from a <u>fundamentally rethought methodology</u>
- O(N) can be achieved <u>without multipole expansions;</u> via <u>geometry</u>
- Hard anytime error bounds are given to the user
- **Tweak parameters** should and can be eliminated
- Very <u>general</u> methodology
- Future work: tons (even in physics)
- → Looking for comments and collaborators! <u>agray@cs.cmu.edu</u>

Simple recursive algorithm

```
DualTree(Q,R)
```

```
if approximate(Q,R), return.
```

```
if leaf(Q) and leaf(R), DualTreeBase(Q,R). else,
```

DualTree(Q.left,closer-of(R.left,R.right)). DualTree(Q.left,farther-of(R.left,R.right)). DualTree(Q.right,closer-of(R.left,R.right)). DualTree(Q.right,farther-of(R.left,R.right)).

(Actually, recurse on the closer node first)

Exclusion and inclusion, using *kd*-tree <u>node-node</u> bounds.

O(D) bounds on distance minima/maxima:

(Analogous to point-node bounds.)

Also needed: Nodewise bounds.

Exclusion and inclusion, using point-node *kd*-tree bounds.

O(D) bounds on distance minima/maxima:

$$\min_{i} ||x - x_{i}|| \ge \sum_{d}^{D} \left[\max\{(l_{d} - x_{d})^{2}, 0\} + \max\{(x_{d} - u_{d})^{2}, 0\} \right]$$
$$\max_{i} ||x - x_{i}|| \le \sum_{d}^{D} \max\{(u_{d} - x_{d})^{2}, (x_{d} - l_{d})^{2}\}$$