Fast High-Dimensional
Feature Matching for
Object Recognition

David Lowe
Computer Science Department
University of British Columbia

Finding the panoramas

Finding the panoramas

Finding the panoramas

Location recognition

The Problem

= Match high-dimensional features to a

database of features from previous images

e Dominant cost for many recognition problems

e Typical feature dimensionality: 128 dimensions

e Typical number of features: 1000 to 10 million

e Time requirements: Match 1000 features in 0.1 to 0.01 seconds

= Applications

e Location recognition for a mobile vehicle or cell phone
e Object recognition for database of 10,000 images
e ldentify all matches among 100 digital camera photos

Invariant Local Features

= Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

-

—p—
N\
—

_ Y,

SIFT Features

Build Scale-Space Pyramid

= All scales must be examined to identify scale-invariant
features

= An efficient function is to compute the Difference of
Gaussian (DOG) pyramid (Burt & Adelson, 1983)

Resample / Q. %
Blur T\ \ Q
ANERNEr=ANEIAN

Key point localization

= Detect maxima and
minima of difference-of-
Gaussian in scale space

Select dominant orientation

= Create histogram of local
gradient directions computed
at selected scale

= Assign canonical orientation
at peak of smoothed
histogram

ol .

SIFT vector formation

= Thresholded image gradients are sampled over 16x16
array of locations in scale space

= Create array of orientation histograms
= 8 orientations x 4x4 histogram array = 128 dimensions

% | ¥

Image gradients Keypoint descriptor

Distinctiveness of features

= Vary size of database of features, with 30 degree affine
change, 2% image noise

= Measure % correct for single nearest neighbor match

100
80 S — e + 4
g -K
E 60 |
=
3]
(=
= Keypoint location & orientation ——
o 40 + .
@ Correct nearest descriptor -
G
&}
20 +
D i L L L P T T | L L . L . MR |
1000 10000 100000

Number of keypoints in database (log scale)

Approximate k-d tree matching

= Arya, Mount, et al., “An optimal algorithm for approximate
nearest neighbor searching,” Journal of the ACM, (1998).

e Original idea from 1993
s Best-bin-first algorithm (Beis & Lowe, 1997)
e Uses constant time cutoff rather than distance cutoff

1

Data pc-inlltsé e
K d 08 Remaining fﬁearch h?éj:gprrﬂpet i
ey idea. o | 5

= Search k-d tree bins in) f‘\
order of distance from | v)
query o4 |
= Requiresuseofa |
priority queue 0.2« |

0 ol

0 0.2 0.4 0.6 0.8

Distance ratio

Results for uniform distribution

1.12

1.1 F

1.08

1.06

1.04

1.02

0.98

e

BBF search ——
Restricted search -+

6 8 10 12 14

Dimension of space

16

18

20

m Compares original
k-d tree (restricted
search) with BBF
priority search
order (100,000
points with cutoff
after 200 checks)

Results:

= Close neighbor
found almost all
the time

= Non-exponential
increase with
dimension!

Probability of correct match

= Compare distance of nearest neighbor to second nearest
neighbor (from different object)

= Threshold of 0.8 provides excellent separation

0.8
¥
D.? I~ lII
0.6 | PDF for correct matches —+— L]
PDF for incorrect matches -
0.5 fo
.
D 0.4 B lII
1 III
0.3 | - '
D.2 B J.-"'r :::]
};; \\\ ;ch
0.1 | / R i
ry Ry
L e m———— =T ¥ Th—
D i Wl] " fom— = 1 I]] "

0 01 02 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)

Fraction of nearest neighbors found

0.9 r

0.8

0.7

0.6

04 + 7

Fraction of closest neighbours found

05 | L

BBF search ——
Restricted search -—+--

0.3 |
100

150

200

250 300 350

Emax (BBF)

400

= 100,000 uniform
points in 12
dimensions.

Results:

m Closest neighbor
found almost all
the time

= Continuing
improvement with
number of
neighbors
examined

Practical approach that we use

m Use best bin search order of k-d tree with a priority queue

m Cut off search after amount of time determined so that
nearest-neighbor computation does not dominate

e Typically cut off after checking 100 leaves

= Results:

e Speedup over linear search by factor of 5,000 for
database of 1 million features

e Find 90-95% of useful matches
e No improvements from ball trees, LSH,...

» Wanted: Ideas to find those last 10% of features

AlIBO? Entertainment Robot

Official U.5. Resources and Online Destinations

evolution
robotics..

Powering Intelligent Products

&

Sony Aibo

ERS-7 with:
Wireless LAN
AIBO MIND zoftware

Energy Station
AIRCne

Pink Ball

AIBO Cards (15)

WiAM Manager CD
Battery & AC Adapter

SIFT usage:

@ Recognize
charging
station

& Communicate
with visual
cards

3rd Generation
Pre-order Now!

Example application: Lane Hawk

evolution = Recognize any of
robotics 10,000 images of

products in a
grocery store

Powering Intelligent Products

How LaneHawk Fits Into The Check-Out Lane = MOnI.tOF all carts
passing at rate of 3
A. ' %IJFCSENEFEGUHUT ImageS/SeC
d ' e ® = Now available

productivity.

£
B.

B.

LaneHawk is inatalled

. flush-mounted and
watches every cart go by.

par Kaygo % | a

| I e

malch

Recognition in large databases

00

Rag 0.68 ms

REO
[Fit

[=a]

500 1076

matzh time par keaypeint versus log OB size (& of

i £
13 10
DB alzge (# ol kaypeintal

Courtesy of Evelution Robotics
Demo code downloadable from

1"——I

recegnition rate v& OB size (# of entrias}

0.95':

— e gl
naay

—lalee

L

1073 1074

Iv]
db size (# af anfrias)

http:/iwww.evolution.com/product/oem/download/?ch=Vision

SDK available

Conclusions

= Approximate NN search with k-d tree using priority search
order works amazingly well!

e Many people still refuse to believe this
m Constant time search cutoff works well in practice

= | have yet to find a better method in practice

