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The Problem

Match high-dimensional features to a 
database of features from previous images

Dominant cost for many recognition problems
Typical feature dimensionality: 128 dimensions
Typical number of features: 1000 to 10 million
Time requirements: Match 1000 features in 0.1 to 0.01 seconds

Applications
Location recognition for a mobile vehicle or cell phone
Object recognition for database of 10,000 images
Identify all matches among 100 digital camera photos



Invariant Local Features

Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



Build Scale-Space Pyramid

All scales must be examined to identify scale-invariant 
features
An efficient function is to compute the Difference of 
Gaussian (DOG) pyramid (Burt & Adelson, 1983)
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Key point localization

Detect maxima and 
minima of difference-of-
Gaussian in scale space Blur 

Res ample

Subtra ct



Select dominant orientation

Create histogram of local 
gradient directions computed 
at selected scale
Assign canonical orientation 
at peak of smoothed 
histogram

0 2π



SIFT vector formation
Thresholded image gradients are sampled over 16x16 
array of locations in scale space
Create array of orientation histograms
8 orientations x 4x4 histogram array = 128 dimensions



Distinctiveness of features
Vary size of database of features, with 30 degree affine 
change, 2% image noise
Measure % correct for single nearest neighbor match



Approximate k-d tree matching 
Arya, Mount, et al., “An optimal algorithm for approximate 

nearest neighbor searching,” Journal of the ACM, (1998).
Original idea from 1993

Best-bin-first algorithm (Beis & Lowe, 1997)
Uses constant time cutoff rather than distance cutoff

Key idea:
Search k-d tree bins in 
order of distance from 
query
Requires use of a 
priority queue



Results for uniform distribution

Compares original 
k-d tree (restricted 
search) with BBF 
priority search 
order (100,000 
points with cutoff 
after 200 checks)

Results:
Close neighbor 
found almost all 
the time
Non-exponential 
increase with 
dimension!



Probability of correct match
Compare distance of nearest neighbor to second nearest 
neighbor (from different object)
Threshold of 0.8 provides excellent separation



Fraction of nearest neighbors found

100,000 uniform 
points in 12 
dimensions.

Results:
Closest neighbor 
found almost all 
the time
Continuing 
improvement with 
number of 
neighbors 
examined



Practical approach that we use

Use best bin search order of k-d tree with a priority queue
Cut off search after amount of time determined so that 
nearest-neighbor computation does not dominate

Typically cut off after checking 100 leaves

Results:
Speedup over linear search by factor of 5,000 for 
database of 1 million features
Find 90-95% of useful matches
No improvements from ball trees, LSH,…

Wanted: Ideas to find those last 10% of features



Sony Aibo

SIFT usage:
Recognize  
charging 
station
Communicate
with visual
cards



Example application: Lane Hawk

Recognize any of 
10,000 images of 
products in a 
grocery store
Monitor all carts 
passing at rate of 3 
images/sec
Now available



Recognition in large databases



Conclusions

Approximate NN search with k-d tree using priority search 
order works amazingly well!

Many people still refuse to believe this

Constant time search cutoff works well in practice

I have yet to find a better method in practice


