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The Problem

= Match high-dimensional features to a

database of features from previous images

e Dominant cost for many recognition problems

e Typical feature dimensionality: 128 dimensions

e Typical number of features: 1000 to 10 million

e Time requirements: Match 1000 features in 0.1 to 0.01 seconds

= Applications

e Location recognition for a mobile vehicle or cell phone
e Object recognition for database of 10,000 images
e ldentify all matches among 100 digital camera photos



Invariant Local Features

= Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters
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Build Scale-Space Pyramid

= All scales must be examined to identify scale-invariant
features

= An efficient function is to compute the Difference of
Gaussian (DOG) pyramid (Burt & Adelson, 1983)
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Key point localization

= Detect maxima and
minima of difference-of-
Gaussian in scale space




Select dominant orientation

= Create histogram of local
gradient directions computed
at selected scale

= Assign canonical orientation
at peak of smoothed
histogram
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SIFT vector formation

= Thresholded image gradients are sampled over 16x16
array of locations in scale space

= Create array of orientation histograms
= 8 orientations x 4x4 histogram array = 128 dimensions
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Distinctiveness of features

= Vary size of database of features, with 30 degree affine
change, 2% image noise

= Measure % correct for single nearest neighbor match
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Approximate k-d tree matching

= Arya, Mount, et al., “An optimal algorithm for approximate
nearest neighbor searching,” Journal of the ACM, (1998).

e Original idea from 1993
s Best-bin-first algorithm (Beis & Lowe, 1997)
e Uses constant time cutoff rather than distance cutoff
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Distance ratio

Results for uniform distribution
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m Compares original
k-d tree (restricted
search) with BBF
priority search
order (100,000
points with cutoff
after 200 checks)

Results:

= Close neighbor
found almost all
the time

= Non-exponential
increase with
dimension!



Probability of correct match

= Compare distance of nearest neighbor to second nearest
neighbor (from different object)

= Threshold of 0.8 provides excellent separation

0.8
¥
D.? I~ lII
0.6 | PDF for correct matches —+— L]
PDF for incorrect matches -
0.5 fo
.
D 0.4 B lII
1 III
0.3 | - '
D.2 B J.-"'r ::: ]
};; \\\ ;ch
0.1 | / R i
ry Ry
L e m———— =T ¥ Th—
D i Wl ] " fom— = 1 I ] ] "

0 01 02 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)



Fraction of nearest neighbors found
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= 100,000 uniform
points in 12
dimensions.

Results:

m Closest neighbor
found almost all
the time

= Continuing
improvement with
number of
neighbors
examined



Practical approach that we use

m Use best bin search order of k-d tree with a priority queue

m Cut off search after amount of time determined so that
nearest-neighbor computation does not dominate

e Typically cut off after checking 100 leaves

= Results:

e Speedup over linear search by factor of 5,000 for
database of 1 million features

e Find 90-95% of useful matches
e No improvements from ball trees, LSH,...

» Wanted: Ideas to find those last 10% of features
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Example application: Lane Hawk
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robotics 10,000 images of

products in a
grocery store
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watches every cart go by.
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Conclusions

= Approximate NN search with k-d tree using priority search
order works amazingly well!

e Many people still refuse to believe this
m Constant time search cutoff works well in practice

= | have yet to find a better method in practice



