
Fast High-Dimensional
Feature Matching for
Object Recognition

David Lowe
Computer Science Department
University of British Columbia

Finding the panoramas

Finding the panoramas

Finding the panoramas

Location recognition

The Problem

Match high-dimensional features to a
database of features from previous images

Dominant cost for many recognition problems
Typical feature dimensionality: 128 dimensions
Typical number of features: 1000 to 10 million
Time requirements: Match 1000 features in 0.1 to 0.01 seconds

Applications
Location recognition for a mobile vehicle or cell phone
Object recognition for database of 10,000 images
Identify all matches among 100 digital camera photos

Invariant Local Features

Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT Features

Build Scale-Space Pyramid

All scales must be examined to identify scale-invariant
features
An efficient function is to compute the Difference of
Gaussian (DOG) pyramid (Burt & Adelson, 1983)

Blur

Res ample

Subtra ct

Blur

Res ample

Subtra ct

Blur

Resample

Subtract

Key point localization

Detect maxima and
minima of difference-of-
Gaussian in scale space Blur

Res ample

Subtra ct

Select dominant orientation

Create histogram of local
gradient directions computed
at selected scale
Assign canonical orientation
at peak of smoothed
histogram

0 2π

SIFT vector formation
Thresholded image gradients are sampled over 16x16
array of locations in scale space
Create array of orientation histograms
8 orientations x 4x4 histogram array = 128 dimensions

Distinctiveness of features
Vary size of database of features, with 30 degree affine
change, 2% image noise
Measure % correct for single nearest neighbor match

Approximate k-d tree matching
Arya, Mount, et al., “An optimal algorithm for approximate

nearest neighbor searching,” Journal of the ACM, (1998).
Original idea from 1993

Best-bin-first algorithm (Beis & Lowe, 1997)
Uses constant time cutoff rather than distance cutoff

Key idea:
Search k-d tree bins in
order of distance from
query
Requires use of a
priority queue

Results for uniform distribution

Compares original
k-d tree (restricted
search) with BBF
priority search
order (100,000
points with cutoff
after 200 checks)

Results:
Close neighbor
found almost all
the time
Non-exponential
increase with
dimension!

Probability of correct match
Compare distance of nearest neighbor to second nearest
neighbor (from different object)
Threshold of 0.8 provides excellent separation

Fraction of nearest neighbors found

100,000 uniform
points in 12
dimensions.

Results:
Closest neighbor
found almost all
the time
Continuing
improvement with
number of
neighbors
examined

Practical approach that we use

Use best bin search order of k-d tree with a priority queue
Cut off search after amount of time determined so that
nearest-neighbor computation does not dominate

Typically cut off after checking 100 leaves

Results:
Speedup over linear search by factor of 5,000 for
database of 1 million features
Find 90-95% of useful matches
No improvements from ball trees, LSH,…

Wanted: Ideas to find those last 10% of features

Sony Aibo

SIFT usage:
Recognize
charging
station
Communicate
with visual
cards

Example application: Lane Hawk

Recognize any of
10,000 images of
products in a
grocery store
Monitor all carts
passing at rate of 3
images/sec
Now available

Recognition in large databases

Conclusions

Approximate NN search with k-d tree using priority search
order works amazingly well!

Many people still refuse to believe this

Constant time search cutoff works well in practice

I have yet to find a better method in practice

