Linear Time Methods for Propagating Beliefs

Min Convolution, Distance Transforms and Box Sums

Problem Formulation

- Find good assignment of labels x_i to sites i
 - Set \mathcal{L} of k labels
 - Set *S* of n sites
 - Neighborhood system $\mathcal{N} \subseteq S \times S$ between sites
- Undirected graphical model
 - Graph $\mathcal{G}=(\mathcal{S},\mathcal{N})$
 - Hidden Markov Model (HMM), chain
 - Markov Random Field (MRF), arbitrary graph
 - Consider first order models
 - Maximal cliques in *G* of size 2

Problems We Consider

- Labels x=(x₁,...,x_n), observations (o₁,...,o_n)
- Posterior distribution P(x|o) factors P(x|o) $\propto \prod_{i \in S} \Psi_i(x_i) \prod_{(i,j) \in N} \Psi_{ij}(x_i, x_j)$
- Sum over labelings $\sum_{\mathbf{x}} (\prod_{i \in S} \Psi_i(\mathbf{x}_i) \prod_{(i,j) \in \mathcal{N}} \Psi_{ij}(\mathbf{x}_i, \mathbf{x}_j))$
- Min cost labeling $min_x(\sum_{i \in S} \Psi'_i(x_i) + \sum_{(i,j) \in \mathcal{N}} \Psi'_{ij}(x_i, x_j))$ – Where $\Psi'_i = -ln(\Psi_i)$ and $\Psi'_{ij} = -ln(\Psi_{ij})$

Computational Limitation

- Not feasible to directly compute clique potentials when large label set
 - Computation of $\Psi_{ij}(x_i, x_j)$ requires O(k²) time
 - Issue both for exact HMM methods and heuristic MRF methods
- Restricts applicability of combinatorial optimization techniques
 - Use variational or other approaches
- However, often can do better
 - Problems where pairwise potential based on differences between labels $\Psi_{ij}(x_i, x_j) = \rho_{ij}(x_i x_j)$

Applications

- Pairwise potentials based on difference between labels
 - Low-level computer vision problems such as stereo, and image restoration
 - Labels are disparities or true intensities
 - Event sequences such as web downloads
 - Labels are time varying probabilities

Fast Algorithms

- Summing posterior (sum product)
 - Express as a convolution
 - O(klogk) algorithm using the FFT
 - Better linear-time approximation algorithms for Gaussian models
- Minimizing negative log probability cost function (corresponds to max product)
 - Express as a min convolution
 - Linear time algorithms for common models using distance transforms and lower envelopes

Message Passing Formulation

- For concreteness consider local message update algorithms
 - Techniques apply equally well to recurrence formulations (e.g., Viterbi)
- Iterative local update schemes
 - Every site in parallel computes local estimates
 - Based on Ψ and neighboring estimates from previous iteration
 - Exact (correct) for graphs without loops
 - Also applied as heuristic to graphs with cycles (loopy belief propagation)

Message Passing Updates

- At each step j sends neighbor i a message
 - Node j's "view" of i's labels
- Sum product $m_{j \rightarrow i}(x_i) = \sum_{x_j} (\Psi_j(x_j) \rho_{ji}(x_j - x_i))$ $\prod_{k \in \mathcal{N}(j) \setminus i} m_{k \rightarrow j}(x_j))$
- Max product (negative log) $m'_{j \to i}(x_i) = min_{x_j}(\Psi'_j(x_j) + \rho'_{ji}(x_j - x_i) + \sum_{k \in \mathcal{N}(j) \setminus i} m'_{k \to j}(x_j))$

 $\Psi_{\mathbf{i}}$

ρ_{ji}

Sum Product Message Passing

• Can write message update as convolution $m_{j \rightarrow i}(x_i) = \sum_{x_j} (\rho_{ji}(x_j - x_i) h(x_j))$ $= \rho_{ji} \star h$

- Where $h(x_j) = \Psi_j(x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{k \to j}(x_j)$

- Thus FFT can be used to compute in O(klogk) time for k values
 - Can be somewhat slow in practice
- For ρ_{ji} a (mixture of) Gaussian(s) do faster

Fast Gaussian Convolution

- A box filter has value 1 in some range $b_w(x) = \begin{cases} 1 & \text{if } 0 \le x \le w \\ 0 & \text{otherwise} \end{cases}$
- A Gaussian can be approximated by repeated convolutions with a box filter
 - Application of central limit theorem, convolving pdf's tends to Gaussian
 - In practice, 4 convolutions [Wells, PAMI 86] $b_{w_1}(x) \star b_{w_2}(x) \star b_{w_3}(x) \star b_{w_4}(x) \approx G_{\sigma}(x)$
 - Choose widths w_i such that $\sum_i (w_i^2 \text{--}1)/12 \approx \sigma^2$

Fast Convolution Using Box Sum

Thus can approximate G_σ(x)*h(x) by cascade of box filters

 $b_{w_1}(x) \star (b_{w_2}(x) \star (b_{w_3}(x) \star (b_{w_4}(x) \star h(x))))$

- Compute each b_w(x)*f(x) in time independent of box width w – sliding sum
 - Each successive shift of b_w(x) w.r.t. f(x)
 requires just one addition and one subtraction
- Overall computation just 4 add/sub per label, O(k) with very low constant

Fast Sum Product Methods

- Efficient computation without assuming parametric form of distributions
 - O(klogk) message updates for arbitrary discrete distributions over k labels
 - Likelihood, prior and messages
 - Requires prior to be based on differences between labels rather than their identities
- For (mixture of) Gaussian clique potential linear time method that in practice is both fast and simple to implement
 - Box sum technique

Max Product Message Passing

- Can write message update as $m'_{j \rightarrow i}(x_i) = min_{x_j}(\rho'_{ji}(x_j-x_i) + h'(x_j))$
 - Where $h'(x_j) = \Psi'_j(x_j) \sum_{k \in \mathcal{N}(j) \setminus i} m'_{k \to j}(x_j)$
 - Formulation using minimization of costs,
 proportional to negative log probabilities
- Convolution-like operation over min,+ rather than $\sum_{i} \times [FH00,FHK03]$
 - No general fast algorithm like FFT
 - Certain important special cases in linear time

Commonly Used Pairwise Costs

- Potts model $\rho'(x) = \begin{cases} 0 & \text{if } x=0 \\ d & \text{otherwise} \end{cases}$
- Linear model $\rho'(x) = c|x|$
- Quadratic model $\rho'(x) = cx^2$
- Truncated models
 - Truncated linear $\rho'(x) = \min(d,c|x|)$
 - Truncated quadratic $\rho'(x) = \min(d, cx^2)$
- Min convolution can be computed in linear time for any of these cost functions

Potts Model

- No need to compare pairs x_i, x_i
 - Compute min over x_j once, then compare result with each x_i
- O(k) time for k labels
 - No special algorithm, just rewrite expression to make alternative computation clear

Linear Model

- Substituting in to min convolution yields $m'_{j \rightarrow i}(x_i) = min_{x_j}(c|x_j-x_i| + h'(x_j))$
- Similar form to the L₁ distance transform min_{xj}(|x_j-x_i| + 1(x_j))
 - Where $1(x) = \begin{cases} 0 & \text{when } x \in P \\ \infty & \text{otherwise} \end{cases}$

is an indicator function for membership in P

- Distance transform measures L₁ distance to nearest point of P
 - Can think of computation as lower envelope of cones, one for each element of P

Using the L₁ Distance Transform

- Linear time algorithm
 - Traditionally used for indicator functions, but applies to any sampled function
- Forward pass
 - For x_j from 1 to k-1 m(x_j) \leftarrow min(m(x_j),m(x_j -1)+c)

- For x_j from k-2 to 0 m(x_j) \leftarrow min(m(x_j),m(x_j +1)+c)
- Example, c=1

Cornell University

- (3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)

Quadratic Model

- Substituting in to min convolution yields $m'_{j \to i}(x_i) = \min_{x_j}(c(x_j x_i)^2 + h'(x_j))$
- Again similar form to distance transform
 - However algorithms for L_2 (Euclidean) distance do not directly apply as did in L_1 case
- Compute lower envelope of parabolas
 - Each value of x_j defines

 a quadratic constraint,
 parabola rooted at (x_j,h(x_j))
 - Comp. Geom. O(klogk) but here parabolas are ordered

Lower Envelope of Parabolas

- Quadratics ordered x₁ < x₂ < ... < x_n
- At step j consider adding j-th one to LE
 - Maintain two ordered lists
 - Quadratics currently visible on LE
 - Intersections currently visible on LE
 - Compute intersection of j-th quadratic with rightmost visible on LE
 - If right of rightmost intersection add quadratic and intersection
 - If not, this quadratic hides at least rightmost quadratic, remove and try again

Running Time of Lower Envelope

- Consider adding each quadratic just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Simple <u>amortized analysis</u>
 - Total number of removals O(k)
 - Each quadratic, once removed, never considered for removal again
- Thus overall running time O(k)

Overall Algorithm (1D)

```
static float *dt(float *f, int n) {
  float *d = new float[n], *z = new float[n];
  int *v = new int[n], k = 0;
 v[0] = 0;
  z[0] = -INF; z[1] = +INF;
  for (int q = 1; q \le n-1; q++) {
    float s = ((f[q]+c*square(q)) (f[v[k]]+c*square(v[k])))
                 /(2*c*q-2*c*v[k]);
   while (s \le z[k]) {
     k - -;
      s = ((f[q]+c*square(q)) - (f[v[k]]+c*square(v[k])))
             /(2*c*a-2*c*v[k]); }
   k++;
   v[k] = q;
    z[k] = s;
    z[k+1] = +INF; \}
     k = 0;
  for (int q = 0; q \le n-1; q++) {
   while (z[k+1] < q)
     k++;
   d[q] = c*square(q-v[k]) + f[v[k]]; 
  return d;}
```

Combined Models

- Truncated models
 - Compute un-truncated message m'
 - Truncate using Potts-like computation on m' and original function h' min(m'(x_i), min_{xi}h'(x_j)+d)
- More general combinations
 - Min of any constant number of linear and quadratic functions, with or without truncation
 - E.g., multiple "segments"

Illustrative Results

- Image restoration using MRF formulation with truncated quadratic clique potentials
 - Simply not practical with conventional techniques, message updates 256²
- Fast quadratic min convolution technique makes feasible
 - A multi-grid technique can speed up further
- Powerful formulation largely abandoned for such problems

Cornell University

Illustrative Results

- Pose detection and object recognition
 - Sites are parts of an articulated object such as limbs of a person
 - Labels are locations of each part in the image
 - Millions of labels, conventional quadratic time methods do not apply
 - Compatibilities are spring-like

Summary

- Linear time methods for propagating beliefs
 - Combinatorial approach
 - Applies to problems with discrete label space where potential function based on differences between pairs of labels
- Exact methods, not heuristic pruning or variational techniques
 - Except linear time Gaussian convolution which has small fixed approximation error
- Fast in practice, simple to implement

Readings

- P. Felzenszwalb and D. Huttenlocher, Efficient Belief Propagation for Early Vision, Proceedings of IEEE CVPR, Vol 1, pp. 261-268, 2004.
- P. Felzenszwalb and D. Huttenlocher, Distance Transforms of Sampled Functions, Cornell CIS Technical Report TR2004-1963, Sept. 2004.
- P. Felzenszwalb and D. Huttenlocher, Pictorial Structures for Object Recognition, *Intl. Journal* of Computer Vision, 61(1), pp. 55-79, 2005.
- P. Felzenszwalb, D. Huttenlocher and J.
 Kleinberg, Fast Algorithms for Large State Space HMM's with Applications to Web Usage Analysis, NIPS 16, 2003.

