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Problem Formulation

= Find good assignment of labels x; to sites i
- Set £ of k labels
— Set S of n sites
— Neighborhood system NSS§xS between sites

= Undirected graphical model
- Graph ¢g=(§,¥)
- Hidden Markov Model (HMM), chain
- Markov Random Field (MRF), arbitrary graph

— Consider first order models
e Maximal cliques in ¢ of size 2
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Problems We Consider

= Labels x=(x4,...,X,), observations (04,...,0,)
= Posterior distribution P(x|o) factors
P(x]0) oc Hiesqji(xi) I1 ¥i5(Xi,%;)
= Sum over labelings
ZX(Hies\Pi(Xi) 11

(i,J)eN

= Min cost labeling
minX(Zi€SW’i(xi)+Z(i,j)€N‘P'ij(Xi,Xj))
- Where V', = -In(¥;) and ¥"; = -In('¥};)




Computational Limitation

= Not feasible to directly compute clique
potentials when large label set
- Computation of ¥;(x;,x;) requires O(k?) time

— Issue both for exact HMM methods and
heuristic MRF methods

= Restricts applicability of combinatorial
optimization techniques
— Use variational or other approaches

= However, often can do better

— Problems where pairwise potential based on
differences between labels ¥;;(x;,X;)=p;(X;-X;)

é‘f@j@ Cornell University
s




Applications

= Pairwise potentials based on difference
between labels

- Low-level computer vision problems such as
stereo, and image restoration

e Labels are disparities or true intensities
- Event sequences such as web downloads
e Labels are time varying probabilities
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Fast Algorithms

= Summing posterior (sum product)
— Express as a convolution
- O(klogk) algorithm using the FFT

— Better linear-time approximation algorithms
for Gaussian models

= Minimizing negative log probability cost
function (corresponds to max product)

— Express as a min convolution

- Linear time algorithms for common models
using distance transforms and lower envelopes
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Message Passing Formulation

= For concreteness consider local message
update algorithms

— Techniques apply equally well to recurrence
formulations (e.qg., Viterbi)

= Jterative local update schemes

— Every site in parallel computes local estimates

e Based on ¥ and neighboring estimates from
previous iteration

— Exact (correct) for graphs without loops

— Also applied as heuristic to graphs with cycles
(loopy belief propagation)
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Message Passing Updates

= At each step j sends neighbor i a message
— Node j's “view” of i's labels
= Sum product
M;i(X;) = ij(\Pj(Xj) P;i(X=X;)
ke vniMisi(X5))

= Max product (negative log)
m’_i(x;) = minxj(\{l’j(xj) + p'5i(X-%;)
+ Zke M koil(X5))




Sum Product Message Passing

= (Can write message update as convolution
m; ;(X;) = ij(pji(xj_xi) h(X;))
= Pji*h
- Where h(Xj)= LPj(xj) er‘/\/(j)\imk—>j(xj))
= Thus FFT can be used to compute in
O(klogk) time for k values

— Can be somewhat slow in practice

= For p; a (mixture of) Gaussian(s) do faster




Fast Gaussian Convolution

= A box filter has value 1 in some range

b,(X) = |1 if O<x<w
0 otherwise

= A Gaussian can be approximated by
repeated convolutions with a box filter

Application of central limit theorem,
convolving pdf’s tends to Gaussian

In practice, 4 convolutions [Wells, PAMI 86]
b,,(X)*b,,(x)*b,,(X)*b,,(X) ~ G,(x)
Choose widths w, such that >.(w;?-1)/12 = 2




Fast Convolution Using Box Sum

= Thus can approximate G_(x)*h(x) by
cascade of box filters

b, (x)*(b,,(x)*(b,,(x)*(b,,(x)%*h(x))))
= Compute each b, (x)*f(x) in time
independent of box width w - sliding sum

- Each successive shift of b, (x) w.r.t. f(x)
requires just one addition and one subtraction

= QOverall computation just 4 add/sub per
label, O(k) with very low constant




Fast Sum Product Methods

= Efficient computation without assuming
parametric form of distributions

— O(klogk) message updates for arbitrary
discrete distributions over k labels

e Likelihood, prior and messages
— Requires prior to be based on differences
between labels rather than their identities

= For (mixture of) Gaussian cligue potential
linear time method that in practice is both
fast and simple to implement

- Box sum technique
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Max Product Message Passing

= (Can write message update as
m’;i(X;) = minxj(p’ji(xj_xi) + h'(X;))
- Where h’(Xj)= qj’j(xj) ZkeN(j)\im’k—)j(Xj))
- Formulation using minimization of costs,
proportional to negative log probabilities

= Convolution-like operation over min,+
rather than >,x [FHOO,FHKO3]

— No general fast algorithm like FFT
— Certain important special cases in linear time
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Commonly Used Pairwise Costs

= Potts model p’(x) = [0 if x=0
d otherwise

= Linear model p’(x) = c|X]
= Quadratic model p'(x) = cx?
= Truncated models
— Truncated linear p’(x)=min(d,c|x|)
- Truncated quadratic p’(x)=min(d,cx?)

= Min convolution can be computed in linear
time for any of these cost functions




Potts Model

= Substituting in to min convolution
mM’i(%;) = min, (p'i(X-%;) + h'(X;))
can be written as
m’i(x;) = min(h’(x;), mlnXJh (x;)+d)
= No need to compare pairs X;, X;

- Compute min over x; once, then compare
result with each x;

= O(k) time for k labels

— No special algorithm, just rewrite expression
to make alternative computation clear
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Linear Model

=  Substituting in to min convolution yields
m'(x;) = min, (clx;-x| + h'(x;))
= Similar form to the L; distance transform
min, (1X;-%;| + 1(x;))
- Where 1(x) ={ 0 when xeP

o otherwise
is an indicator function for membership in P

= Distance transform measures L, distance
to nearest point of P

— Can think of computation as lower envelope
of cones, one for each element of P
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Using the L, Distance Transform

= Linear time algorithm

— Traditionally used for indicator functions, but
applies to any sampled function

= Forward pass
- For x; from 1 to k-1
m(X;) < min(m(x;),m(X;-1)+c)
» Backward pass R
- For x; from k-2 to O
m(X;) < min(m(x;),M(x;+1)+c)

= Example, c=1
- (3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)




Quadratic Model

= Substituting in to min convolution yields
m'i(x) = min,(c(x;-x)2 + h'(x)))
= Again similar form to distance transform

- However algorithms for L, (Euclidean) distance
do not directly apply as did in L, case

= Compute lower envelope of parabolas
- Each value of x; defines j//
parabola rooted at (x;,h(x;)) , 7 /
— Comp. Geom. O(klogk) but m,;}

a quadratic constraint,
here parabolas are ordered e
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Lower Envelope of Parabolas

= Quadratics ordered x;<X,< ... <X,
= At step j consider adding j-th one to LE
— Maintain two ordered lists

e Quadratics currently visible on LE At

e Intersections currently visible on LE Rightrmost New

— Compute intersection of j-th quadratic
with rightmost visible on LE

o If right of rightmost intersection
add quadratic and intersection

e If not, this quadratic hides at least
rightmost quadratic, remove and / \
try again New Rightmost
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Running Time of Lower Envelope

= Consider adding each quadratic just once
— Intersection and comparison constant time
— Adding to lists constant time
— Removing from lists constant time
e But then need to try again
= Simple amortized analysis

— Total number of removals O(k)

e Each quadratic, once removed, never considered
for removal again

= Thus overall running time O(k)
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Overall Algorithm (1D)

static float *dt(float *f, int n) {

float *d = new float[n], *z = new float[n];
int *v = new int[n], = 0;
v[0] = O;
z[0] = -INF; z[1l] = +INF;
for (int =1; g <= n-1; g++) {
float = ((f[g]ltc*square(q)) (f[v[k]]+c*square(v[k])))

/ (2*c*g-2*c*v[k]) ;
while (s <= z[k]) {

k--;
s = ((f[g]+c*square(q))-(f[v[k]]+c*square(v[k])))
/ (2*c*q-2*c*v[k]); }
k++;
vik] = q;
z[k] = s;
z[k+1l] = +INF; }
k =0;
for (int = 0; g <= n-1; g++) {
while (z[k+1l] < q)
k++;

d[q] = c*square(g-v[k]) + f£[v[k]]; }
return d4d;}
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Combined Models

» Truncated models
— Compute un-truncated message m’

— Truncate using Potts-like computation on m’
and original function h’
min(m’(x;), min, h’(x;)+d)

= More general combinations

— Min of any constant number of linear and
quadratic functions, with or without truncation

e E.g., multiple “segments”
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Illustrative Results

= Image restoration using MRF formulation
with truncated quadratic clique potentials

— Simply not practical with conventional
techniques, message updates 2562

= Fast quadratic min convolution technique
makes feasible TR

— A multi-grid technique
can speed up further
= Powerful formulation
largely abandoned
for such problems
@ Cornell University




Illustrative Results

= Pose detection and object recognition

— Sites are parts of an articulated object such as
limbs of a person

— Labels are locations of each part in the image

e Millions of labels, conventional quadratic time
methods do not apply

— Compatibilities are spring-like
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Summary

» Linear time methods for propagating beliefs
— Combinatorial approach

— Applies to problems with discrete label space
where potential function based on differences

between

= Exact met
variationa

pairs of labels
nods, not heuristic pruning or

techniques

— Except linear time Gaussian convolution which
has small fixed approximation error

= Fast in practice, simple to implement
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