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Problem Formulation

Find good assignment of labels xi to sites i
– Set L of k labels
– Set S of n sites
– Neighborhood system N⊆S×S between sites

Undirected graphical model
– Graph G=(S,N)

– Hidden Markov Model (HMM), chain
– Markov Random Field (MRF), arbitrary graph
– Consider first order models

• Maximal cliques in G of size 2
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Problems We Consider

Labels x=(x1,…,xn), observations (o1,…,on)

Posterior distribution P(x|o) factors
P(x|o) ∝ ∏

i∈S
Ψi(xi) ∏(i,j)∈N

Ψij(xi,xj)

Sum over labelings
∑

x
(∏

i∈S
Ψi(xi) ∏(i,j)∈N

Ψij(xi,xj))

Min cost labeling
minx(∑i∈S

Ψ’i(xi)+∑
(i,j)∈N

Ψ’ij(xi,xj))

– Where Ψ’i = -ln(Ψi) and Ψ’ij = -ln(Ψij)
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Computational Limitation

Not feasible to directly compute clique 
potentials when large label set
– Computation of Ψij(xi,xj) requires O(k2) time
– Issue both for exact HMM methods and 

heuristic MRF methods

Restricts applicability of combinatorial 
optimization techniques
– Use variational or other approaches

However, often can do better
– Problems where pairwise potential based on 

differences between labels Ψij(xi,xj)=ρij(xi-xj)
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Applications

Pairwise potentials based on difference 
between labels
– Low-level computer vision problems such as 

stereo, and image restoration
• Labels are disparities or true intensities

– Event sequences such as web downloads
• Labels are time varying probabilities
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Fast Algorithms

Summing posterior (sum product)
– Express as a convolution

– O(klogk) algorithm using the FFT

– Better linear-time approximation algorithms 
for Gaussian models

Minimizing negative log probability cost 
function (corresponds to max product)
– Express as a min convolution

– Linear time algorithms for common models 
using distance transforms and lower envelopes
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Message Passing Formulation

For concreteness consider local message 
update algorithms
– Techniques apply equally well to recurrence 

formulations (e.g., Viterbi)

Iterative local update schemes 
– Every site in parallel computes local estimates

• Based on Ψ and neighboring estimates from 
previous iteration

– Exact (correct) for graphs without loops
– Also applied as heuristic to graphs with cycles 

(loopy belief propagation)
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Message Passing Updates

At each step j sends neighbor i a message
– Node j’s “view” of i’s labels

Sum product
mj→i(xi) = ∑xj

(Ψj(xj) ρji(xj-xi)
∏k∈N(j)\imk→j(xj))

Max product (negative log) 
m’j→i(xi) = minxj

(Ψ’j(xj) + ρ’ji(xj-xi)
+ ∑k∈N(j)\im’k→j(xj))

Ψjρji
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Sum Product Message Passing

Can write message update as convolution
mj→i(xi) = ∑xj

(ρji(xj-xi) h(xj))
= ρji h

– Where h(xj)= Ψj(xj) ∏k∈N(j)\imk→j(xj))

Thus FFT can be used to compute in 
O(klogk) time for k values

– Can be somewhat slow in practice

For ρji a (mixture of) Gaussian(s) do faster 
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Fast Gaussian Convolution

A box filter has value 1 in some range
bw(x) =  1 if 0≤x≤w

0 otherwise
A Gaussian can be approximated by 
repeated convolutions with a box filter
– Application of central limit theorem, 

convolving pdf’s tends to Gaussian
– In practice, 4 convolutions [Wells, PAMI 86]

bw1
(x) bw2

(x) bw3
(x) bw4

(x) ≈ Gσ(x)
– Choose widths wi such that ∑i(wi

2-1)/12 ≈ σ2
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Fast Convolution Using Box Sum

Thus can approximate Gσ(x) h(x) by 
cascade of box filters

bw1
(x) (bw2

(x) (bw3
(x) (bw4

(x) h(x))))

Compute each bw(x) f(x) in time 
independent of box width w – sliding sum

– Each successive shift of bw(x) w.r.t. f(x) 
requires just one addition and one subtraction

Overall computation just 4 add/sub per 
label, O(k) with very low constant
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Fast Sum Product Methods

Efficient computation without assuming 
parametric form of distributions
– O(klogk) message updates for arbitrary 

discrete distributions over k labels
• Likelihood, prior and messages

– Requires prior to be based on differences 
between labels rather than their identities

For (mixture of) Gaussian clique potential 
linear time method that in practice is both 
fast and simple to implement
– Box sum technique
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Max Product Message Passing

Can write message update as
m’j→i(xi) = minxj

(ρ’ji(xj-xi) + h’(xj))            

– Where h’(xj)= Ψ’j(xj) ∑k∈N(j)\im’k→j(xj))

– Formulation using minimization of costs, 
proportional to negative log probabilities

Convolution-like operation over min,+ 
rather than ∑,× [FH00,FHK03]
– No general fast algorithm like FFT

– Certain important special cases in linear time
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Commonly Used Pairwise Costs

Potts model ρ’(x) =  0 if x=0
d otherwise

Linear model ρ’(x) = c|x|

Quadratic model ρ’(x) = cx2

Truncated models 
– Truncated linear ρ’(x)=min(d,c|x|)

– Truncated quadratic ρ’(x)=min(d,cx2)

Min convolution can be computed in linear 
time for any of these cost functions 
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Potts Model

Substituting in to min convolution
m’j→i(xi) = minxj

(ρ’ji(xj-xi) + h’(xj))
can be written as

m’j→i(xi) = min(h’(xi), minxj
h’(xj)+d)

No need to compare pairs xi, xj

– Compute min over xj once, then compare 
result with each xi

O(k) time for k labels
– No special algorithm, just rewrite expression 

to make alternative computation clear
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Linear Model

Substituting in to min convolution yields
m’j→i(xi) = minxj

(c|xj-xi| + h’(xj))
Similar form to the L1 distance transform

minxj
(|xj-xi| + 1(xj))

– Where 1(x) =  0 when x∈P
∞ otherwise

is an indicator function for membership in P

Distance transform measures L1 distance 
to nearest point of P
– Can think of computation as lower envelope 

of cones, one for each element of P
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Using the L1 Distance Transform

Linear time algorithm
– Traditionally used for indicator functions, but 

applies to any sampled function

Forward pass
– For xj from 1 to k-1

m(xj) ← min(m(xj),m(xj-1)+c)

Backward pass
– For xj from k-2 to 0

m(xj) ← min(m(xj),m(xj+1)+c)

Example, c=1
– (3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)
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Quadratic Model

Substituting in to min convolution yields
m’j→i(xi) = minxj

(c(xj-xi)2 + h’(xj))
Again similar form to distance transform
– However algorithms for L2 (Euclidean) distance 

do not directly apply as did in L1 case

Compute lower envelope of parabolas
– Each value of xj defines 

a quadratic constraint, 
parabola rooted at (xj,h(xj))

– Comp. Geom. O(klogk) but 
here parabolas are ordered
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Lower Envelope of Parabolas

Quadratics ordered x1<x2< … <xn

At step j consider adding j-th one to LE 

– Maintain two ordered lists

• Quadratics currently visible on LE

• Intersections currently visible on LE

– Compute intersection of j-th quadratic
with rightmost visible on LE

• If right of rightmost intersection 
add quadratic and intersection 

• If not, this quadratic hides at least 
rightmost quadratic, remove and 
try again

NewRightmost

New Rightmost
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Running Time of Lower Envelope

Consider adding each quadratic just once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again

Simple amortized analysis
– Total number of removals O(k)

• Each quadratic, once removed, never considered 
for removal again

Thus overall running time O(k)
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Overall Algorithm (1D)
static float *dt(float *f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n], k = 0;
v[0] = 0; 
z[0] = -INF; z[1] = +INF;
for (int q = 1; q <= n-1; q++) {

float s = ((f[q]+c*square(q)) (f[v[k]]+c*square(v[k])))
/(2*c*q-2*c*v[k]);

while (s <= z[k]) {
k--;
s  = ((f[q]+c*square(q))-(f[v[k]]+c*square(v[k])))

/(2*c*q-2*c*v[k]);    }
k++;
v[k] = q;
z[k] = s;
z[k+1] = +INF; }
k = 0;

for (int q = 0; q <= n-1; q++) {
while (z[k+1] < q)

k++;
d[q] = c*square(q-v[k]) + f[v[k]];  }

return d;}
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Combined Models

Truncated models
– Compute un-truncated message m’
– Truncate using Potts-like computation on m’ 

and original function h’
min(m’(xi), minxj

h’(xj)+d)

More general combinations
– Min of any constant number of linear and 

quadratic functions, with or without truncation
• E.g., multiple “segments”
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Illustrative Results

Image restoration using MRF formulation 
with truncated quadratic clique potentials
– Simply not practical with conventional 

techniques, message updates 2562

Fast quadratic min convolution technique 
makes feasible
– A multi-grid technique 

can speed up further

Powerful formulation
largely abandoned
for such problems
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Illustrative Results

Pose detection and object recognition
– Sites are parts of an articulated object such as 

limbs of a person
– Labels are locations of each part in the image

• Millions of labels, conventional quadratic time 
methods do not apply

– Compatibilities are spring-like 
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Summary

Linear time methods for propagating beliefs 
– Combinatorial approach
– Applies to problems with discrete label space 

where potential function based on differences 
between pairs of labels

Exact methods, not heuristic pruning or 
variational techniques
– Except linear time Gaussian convolution which 

has small fixed approximation error

Fast in practice, simple to implement
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