
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 14 — March 5th, 2009

Lecturer: Nando de Freitas Scribe: David Duvenaud

This lecture derives the learning rules for Gaussian Restricted Boltzmann
Machines, along with several variations. It also introduces deterministic au-
toencoders and derives the learning rule for them.

Gaussian Restricted Boltzmann Machines

In previous lectures, we derived the learning rules for Restricted Boltzmann
Machines with binary visible units (inputs). These RBMs took the form:

• Binary visible units vi ∈ {0, 1}
• Binary hidden units hj ∈ {0, 1}
• Parameters θ = (c, b, w, σ2), where

– ci is the bias on visible node i,
– bj is the bias on hidden node j,
– wij is the weight between visible node j and hidden node i

A simple variant would be one in which the visible units vi ∈ R each had a
Gaussian distribution N (ci+

∑
j wijhj, σ

2
i ). In this case, the joint probability

of V = v,H = h is given by:

Pθ(v, h) = Z(θ)−1 exp

{
(−1

2

∑
i

1

σ2
i

(
v2
i − 2civi + c2i

)
+
∑
i

∑
j

1

σ2
i

viwijhj +
∑
j

bjhj

}
We will now show how this joint distribution induces a Normal distribution
on the visible nodes given the hidden nodes. Ignoring terms not depending
on v, we can get an unnormalized formula for P (v|h):

Pθ(v|h) ∝ exp

{
−1

2

∑
i

1

σ2
i

(
v2
i − 2vi[ci +

∑
j

wijhj] + k2
i

)}
Which has a quadratic form ( for some constant ki ). Thus we can complete
the squares, and again drop terms independent of v to get:

Pθ(v|h) ∝ exp
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∑
i

1

σ2
i

(
v2
i − [ci +

∑
j

wijhj]

)2
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Which has the form of a normal distribution where each unit is independently
given by:

N (ci +
∑

j wijhj, σ
2
i ).

By using Bayes’ Theorem we can find an expression for P (hj|v). There are
two cases:

P (hj = 1|v) ∝ exp

{
bj +

∑
i

1

σ2
i

viwij

}
P (hj = 0|v) ∝ 1

Thus when we normalize, we get

P (hj = 1|v) = logit

(
bj +

∑
i

viwij
σ2
i

)
(14.1)

14.0.1 Beta RBMs

Another variant of RBMs is one in which the data have range vi ∈ [0, 1].
Then, we may wish to define our observation model with a Beta distribution:

P (vi) ∝ vα−1
i (1− vi)β−1.

In this case, our joint model becomes

Pθ(v, h) = Z(θ)−1 exp

{
(−1

2

∑
i

1

σ2
i

[
(αi − 1) log(vi) + (βi − 1) log(1− vi)− 2civi + c2i

]
+
∑
i

∑
j

1

σ2
i

viwijhj +
∑
j

bjhj

}

14.0.2 Rao-Blackwellization of Contrastive Divergence

The basic contrastive divergence model defines:

s = dih̃j − ˜̃vi
˜̃hj

Where s is the estimated likelihood gradient for Wij, d is the observed data, h̃
are samples of the hidden nodes, and ˜̃v are samples of the visible nodes given
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the sampled hidden nodes h̃. This can be called the Monte Carlo estimator
of s. We may be able to use our knowledge of the distribution of h to
create a better esimate of s. Specifically, we could use the Rao-Blackwellized
estimator:

sRB = diP (hj = 1|d)− ˜̃viP (hj = 1|˜̃v)

Where we have replaced the Monte Carlo estimates dh̃ and d˜̃h with their
expectations given d and ˜̃v, respectively. Recall:

E[dhj|d] = dE[hj|d] = d
∑
h′

j

I(hj = h′j)P (h′j|d) = dP (hj = 1|d)

The Rao-Blackwell Theorem states that this estimator will have lower vari-
ance than the Monte Carlo estimator.

14.0.3 Justification

Specifically, the Rao-Blackwell theorem states that, for an unbiased estimator
X,

Var(X) ≥ Var(E(X|Y ))

meaning that we can sometimes improve (and never worsen) our estimator
by replacing it with its expectation given some relevant statistic Y . In this
case, we use the related inequality

Var(dh) ≥ Var(dE(h|d))

(Note that here, d is a variable, not the differentiation operator)

Proof:

Var(dh) = E(d2h2)− [E(dh)]2

= E[E(d2h2|d)]− [E[E(dh|d)]]2

= E[Var(dh|d) + [E(dh|d)]2]− [E[E(dh|d)]]2

= E[Var(dh|d)︸ ︷︷ ︸
always positive

+Var[E(dh|d)]]

≥ Var[E(dh|d)]]

= Var[dE(h|d)]]

�
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Armed with this knowledge, we can replace the standard contrastive di-
vergence estimator

s = dih̃j − ˜̃vi
˜̃hj

with the Rao-Blackwellized version:

diP (hj = 1|d)− P (vi = 1|˜̃h)P (hj = 1|˜̃v)

which will be gauranteed to give as low or lower variance than our original
estimator.

14.0.4 Example: Rao-Blackwellizing a Monte Carlo Es-
timator

This example will show another example of Rao-Blackwellizing a Monte Carlo
estimator in order to get an estimator with lower variance. Consider a switch-
ing model, such as a mixture of Gaussians, with parameters (θ, Z) with
θ ∈ R, Z ∈ 1...k and

P (θ, Z) = P (θ|Z)P (Z)

and
P (Z = z) = πz

If we wish to find P (θ ∈ A), we could use a Monte Carlo estimator, which
first samples Z, then samples θ, and averages over all samples:

P̂ (θ ∈ A) =
1

N

N∑
i=1

I(θ(i) ∈ A).

Or, we could replace the estimator P̂ with its expectation given Z

P̂ (θ ∈ A) =
1

N

N∑
i=1

I(θ(i) ∈ A) (14.2)

P̂RB(θ ∈ A) =
1

N

N∑
i=1

P (θ ∈ A|Z(i)) (14.3)
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and do the same for P (Z):

P̂ (θ ∈ A) =
∑
z

P (θ ∈ A|z)
1

N

N∑
i=1

I(Z(i) = z) (14.4)

P̂RB(θ ∈ A) =
∑
z

P (θ ∈ A|z)P (z) (14.5)

Thereby recovering the exact expression of P (θ ∈ A). Of course, the exact
expression has zero variance, which is better than our original estimator.
In general, the Rao-Blackwellization method is applicable if an intractable
joint distribution can be factored into a conditional distribution times an
unconditional distribution.
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14.0.5 Autoencoders

d

h

v

Figure 14.1. An autoencoder network, with 4 observed nodes and 3 hidden nodes.

We define an autoencoder as a transformation from the data d to a set
of hidden units h, and from the hidden units back to visible units v in the
same domain as the data. Typically, the number of hidden units h is smaller
than the number of visible units, meaning that the data is being econded in
a lower-dimensional representation.

A sigmoid autoencoder has the following transformations defined: For an
individual data point indexed by t, the state of hidden unit hj is defined as:

hjt = σ

(∑
i

wijdit

)
vit = σ

(∑
j

wijhjt

)
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where

σ(x) =
1

1 + e−x
.

We can assign an L2 loss function on the reconstruction of the data:

C(w) =
∑
t

∑
i

(dit − vit)2

or we can assign a cross-entropy loss function:

C(w) =
∑
t

∑
i

[dit log(vit) + (1− dit) log(1− vit)] .

Note: The derivative of σ(x) = σ(1− σ(x)).
Assuming a Bernoulli distribution on d, and using cross-entropy loss, we

can now solve for the backpropagation gradient of w:

δC(w)

δwij
=

∑
t

[
dit

δ
δwij

vit

vit
+ (1− dit)

δ
δwij

(1− vit)
1− vit

]

=
∑
t

[
dit(1− vit)

(
wij

δhjt
δwij

+ hjt

)
− (1− dit)vit

(
wij

δhjt
δwij

+ hjt

)]
=

∑
t

[(dit − vit)(hjt + wijhjt(1− hjt)dit)]

Note that vit is a function of h, and hjt is a function of d.
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