CPSC 550: Machine Learning 11 2008/9 Term 2
Lecture 13 — Mar 3, 2009
Lecturer: Nando de Freitas Scribe: Bo Chen

This lecture draws a theoretical comparison between two parameter learn-
ing algorithms, namely the Maximum Likelihood (ML) and the Con-
trastive Divergence (CD), in the context of Restricted Boltzmann
Machines (RBMs). Then, a multi-layer model called the Deep Belief
Net is introduced.

13.1 Comparison of Learning Methods

This section compares ML with CD for RBMs. A generic ML learning al-
gorithm for Boltzmann Machines is first presented, followed by a simplified
version for RBMs.

13.1.1 Notation

An RBM contains a layer of visible units v, a layer of hidden units A, and con-
nections between the two with weights W. The training data set is {d;}]_;.
For notational convenience the instance number ¢ is dropped when the con-
text is clear.

13.1.2 ML for Boltzmann Machines

In the previous lecture, the gradient of the log likelihood was derived. ML
basically tries to be as loyal to the exact gradient as possible and performs
gradient descent to update the weights W.

The algorithm starts with some initial guess of W. It then iteratively
updates W until some stopping criterion is met. In the kth iteration:

1. Sample the hidden units from the conditional using Markov chain
Monte Carlo (MCMC):

~(k)
h o~ P(hlv=d)
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2. Sample both the hidden and visible units by running a Gibbs Chain
until equilibrium:

~(k) ~(k-1)
v ~Pwh )

(k) k—1)
)

b~ P

3. Update the connection weights. Each w;; associated with the ith visible
unit and the jth hidden unit is updated as follows:

T
_ N(]f) z(k)z(k)
wi = wi ™ % > (dithﬁ — vy hy ) (13.1)
t=1

where 7 is the learning rate or step length, which usually decays as
the number of iterations grows.

This is called Controlled Markov Chain.
In case of RBMs, the updating formula (13.1) can be changed to:

T

— > ~(k)
) = ol + S (s = 1) = plo = Wi = 15,))
(13.2)

t=1

where the probabilities can all be computed exactly:

plhje = 1ldy) = o(>  wijd)
plvie = 1he) = 0 (D> wijhyy)

J
~(k) ~(k)
plhje =10, )=o) wivy, )

This is process is called Rao-Blackwellization. By computing the exact
posterior instead of sampling, Eq(13.2) can be shown to give an esti-
mator with less variance than Eq(13.1). This claim is proven in the
next lecture.
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13.1.3 CD-RBM

Unlike ML, which runs a long Gibbs Chain to acquire samples from the RBM,
CD learning draws one sample close to the training data. The kth iteration
of CD goes as follows:

1. Compute P(h;|d), the conditional distribution

2. Sample hidden units conditioning on the data:

~

hj ~ P(hj|d)
3. Sample the visible units conditioning on the samples of hidden units:
Bi ~ P(ulhy)

4. Compute P(h;|v;), the distribution over hidden units given the samples
of visible units

5. The CD updating equation is:

T
wz(f) = wz(al‘g_l) + % Z <ditp(hjt = 1|d;) — v P(hjr = 1|Uit)>

t=1

13.1.4 Comparison Between ML-RBM and CD-
RBM

As mentioned above, ML is computationally inhibitive since it runs
a Gibbs Chain until equilibrium in every gradient descent iteration.
Nonetheless, it is an unbiased estimator. On the contrary, CD is ex-
tremely efficient because only O(1) samples are needed for each update.
The disadvantage is that its samples are not drawn from the distribu-
tion implied by the RBM and hence the estimate of the gradient is not
necessarily unbiased.

To further appreciate the difference between the two, it is helpful to
examine the changes CD makes to the energy landscape ( See figure
13.1 ). The data form four clusters in the feature space. CD modifies
the energy surface near the data such that simulated data near the
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Figure 13.1. (left)Training data in 2D. (right)Energy surface after CD learning. Source:
CIAR Second Summer School Tutorial Lecture on Contrastive Divergence and Determin-
istic Energy-Based Models by Geoffrey Hinton

clusters give low energy, but it does not model the area far away from
the data. ML, on the other hand, will attempt to model the energy
landscape everywhere in the feature space, regardless of the amount
of support received from the data. Consequently, CD usually works
better when the test data are close to the training data, whereas ML
is more generalizable to completely novel data.

13.2 Deep Belief Nets

The RBMs can be stacked to create multi-layer networks called Deep
Belief Nets (DBNs).

Parameter estimation for DBNs is a simple extension of learning RBMs.
Ignoring the higher levels, the visible layer and the lowest hidden layer
constitute an RBM, of which the weights can be trained using CD. Then
the activities of the hidden layer are fixed (hence treated as data) and
used to learn higher-level weights. This procedure is repeated until the
top layer is reached, where various tasks, including dimensionality re-
duction and discrimination, take place. See figure 13.2 for an example.
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Figure 13.2. Illustration of learning a Deep Belief Net with three hidden lay-
ers. In step 1, an RBM consisting of (hy,x) is learned, then the weights be-
tween h; and = as well as the activations of h; are fixed. Similarly in step 2,
weights between he and h; (now treated as data) are learned. Finally in step 3,
an RBM for classification is trained on the data obtained by concatenating the la-
bels y (observed) and the hidden units ho (fixed after step 2). Adapted from
http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/Deep BeliefNetworks
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