
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 15 — Mar 17, 2009

Lecturer: Nando de Freitas Scribe: Matt Hoffman

15.1 Previous lectures

Previous lectures have presented Younes’ maximum likelihood (ML) algorithm
and contrastive divergence (CD) for classification using restricted Boltzmann
machines (RBMs). The basic idea is that CD stays “close” to the data, while
ML can simulate “everywhere” over the parameter space, so CD might be more
efficient, although this is somewhat uncertain.

It is easier to understand the convergence properties of Younes’ algorithm
by viewing it as a stochastic approximation method. This lecture will intro-
duce some of the basic underpinnings of stochastic approximation. Subsequent
lectures will show how stochastic approximation applies to RBMs.

15.2 Examples of stochastic approximation

Stochastic approximation has a wide variety of uses:
1. Stochastic boosting and mirrored averaging (c.f. J.Friedman, A.Tsybakov)
2. Control and reinforcement learning:

• Bellman’s operator in dynamic programming
• Stochastic policy gradient optimization

3. Sensor networks
4. Experimental design
5. Online expectation maximization (EM) algorithms

15.3 Fixed-point iterations

The idea behind stochastic approximation is to set up a fixed-point equation,
Ep(y|x)

[
g(y, x)

]
= x, whose solution, x, corresponds to the desired optimum.

This can be solved by writing

x = Ep(y|x)

[
g(y, x)

]
= E[g]

γx = γE[g]
x+ γx = x+ γE[g]

x = (1− γ)x+ γE[g].
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If it is possible to sample from p(y|x), then given some initial x0, x can be
solved for iteratively as

xt+1 = (1− γt)xt + γt
1
N

N∑
i=1

g
(
ỹ
(i)
t , xt

)
where {ỹ(i)

t } is a set of N samples taken from p(y|xt). The use of multiple
samples can prove wasteful from a computational standpoint. Only a single
sample is needed. The recursion can then be written as

xt+1 = (1− γt)xt + γtg(ỹt, xt)

where ỹt is one sample from p(y|xt).

Example. Consider some cost function G(x, y) parameterized by x and some
probability density p(y). The minimum expected cost is

min
x

∫
G(x, y) p(y) dy.

The minimum expected cost can be computed through stochastic approxima-
tion.

Assuming differentiability, etc., the gradient of the cost function can be
written as g(x, y) = ∇G(x, y) and the fixed-point equation can be written as
Ep(y)[g(x, y)] = 0. This can then be plugged into the recursion above to obtain

xt+1 = xt + γt g(xt, ỹt).

15.4 Robbins-Monro Form

One form of the stochastic approximation update equations that is particularly
useful for analysis is known as the Robbins-Monro stochastic approximation
algorithms. The update equations can be written in Robbins-Monro form as
follows

xt+1 = (1− γt)xt +
(
γt Ep(y|xt)

[
g(y, xt)

]
− γt Ep(y|xt)

[
g(y, xt)

])
+ γt g(ỹt, xt)

= (1− γt)xt + γt Ep(y|xt)

[
g(y, xt)

]
+ γt wt,

where the wt term can be thought of as “stochastic noise”, and is given by

wt = g(ỹt, xt)− Ep(y|xt)

[
g(y, xt)

]
.

Example. Assume, for the sake of argument, that wt ∼ N (0, σ2) and γt = γ ∈
[0, 1] is some constant (this form of wt does not hold in general). Then x will
“oscillate” around a region with variance γ2σ2.
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