
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 5 — Jan 27, 2009

Lecturer: Nando de Freitas Scribe: Gustavo Lacerda

These notes are based on Wasserman’s “All of Statistics” pages 77-82.

Notation

• V(X) means the variance of X.

• Pn  P means “Pn converges in distribution to P”.

• xn → x means lim
n→∞

xn = x.

• mgf means “moment-generating function”.

The Central Limit Theorem (CLT)

Theorem 5.1 (Central Limit Theorem). Let X1, ..., Xn be IID with mean
µ and variance σ2.

Let X̄n = n−1

n∑
i=1

Xi

Let Zn =
X̄n − µ√

V(X̄n)
=

√
n(X̄n − µ)

σ

Then Zn  Z, where Z ∼ N(0, 1).

In other words: for all z, lim
n→∞

P (Zn ≤ z) = Φ(z) =

z∫
−∞

1√
2π

e−
x2

2 dx.

That is, for large n, probability statements about X̄n can be approximated
by similar statements about a normal distribution.
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Alternative ways to state the CLT

Zn ∼ N(0, 1) (5.1)

X̄n ∼ N(µ,
σ2

n
) (5.2)

X̄n − µ ∼ N(0,
σ2

n
) (5.3)

√
n(X̄n − µ) ∼ N(0, σ2) (5.4)

√
n(X̄n − µ)

σ
∼ N(0, 1) (5.5)

Moment Generating Functions

Let M(t) be the mgf of a distribution P over random variable X. We now
look at the definition and properties of M.

1. Definition:

M(t) =

∫
etxp(x)dx

Then the rth moment of P (X) is given by:

M(r)(0) = E(Xr)

For example:

M′(t) =

∫
X

etxp(x)dx

M′(0) =

∫
X

p(x)dx = E(X)

2. If X has mgf MX(t) and Y = aX + b, then

MY (t) = E(etY )

= E(et(aX+b)) = E(etaX)etb

= etbMX(ta)

3. Let X, Y be independent random variables with mgfs MX(t) and MY (t),
let Z = X + Y , then

MZ(t) = E(etZ) = E(etXetY )

= E(etX)E(etY ) = MX(t)MY (t)
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4. A Guassian example: let X ∼ N(0, 1),

MX(t) =

∫
X

1√
2π

e−
x2

2 etxdx = et2/2

M′
X(0) = 0

M′′
X(0) = 1

Lemma 5.2 (based on p.81 (Lemma 5.20) in Wasserman). The mgf
of X is MX(t) = E(etX). Let Mn be the mgf of Zn. Let Z be a random
variable with mgf M.

If Mn(t) → M(t) ∀t in an open interval around 0, then Zn  Z.

Proof (Central Limit Theorem): Let Yi =
Xi − µ

σ
. Note that since Xi

are IID, the Yi are also IID.

Then Zi = n−
1
2

∑
i

Yi.

Let M(t) be the mgf of Y1. (Since the Y are IID, we only need one mgf)

The mgf of
∑

i

Yi is

E(et
P

i Xi) = E(etX1 . . . etXn) (5.6)

= E(etX1) . . . E(etXn) (5.7)

= M(t) . . . M(t) (5.8)

= (M(t))n (5.9)

Since Zn = n−
1
2

∑
i

Yi, the mgf of Zn is

ξn(t) =

(
M

(
t√
n

))n

(5.10)

Remember that taking the i-th derivative of the mgf gives the i-th mo-
ment. Since the Yi are standardized in mean and variance, we have:

M′(0) = E(Yi) = 0 (5.11)

M′′(0) = V(Yi) = 1 (5.12)

5-3



CPSC 550 Lecture 5 — Jan 27, 2009 2008/9 Term 2

Taylor’s theorem guarantees that there is a neighborhood around 0 in
which, for all t:

M(t) = M(0) + tM′(0) +
t2

2
M′′(0) +

t3

3!
M′′′(0) + ... (5.13)

= 1 + 0 +
t2

2
+

t3

3!
M′′′(0) + ... (5.14)

= 1 +
t2

2
+

t3

3!
M′′′(0) + ... (5.15)

The mgf of Zn is ξn(t) =

(
M

(
t√
n

))n

(5.16)

=

(
1 +

t2

2n
+

t3

3!n
3
2

M′′′(0) + ...

)n

(5.17)

=

1 +

t2

2
+ t3

3!n
1
2
M′′′(0) + ...

n

n

(5.18)

→ e
t2

2 (5.19)

The last step follows from the fact that for any sequence an → a, it is the

case that
(
1 +

an

n

)n

→ ea.

This result says that the mgf of Zn converges to the mgf of a N(0, 1) on
a neighborhood of 0. Using the lemma, we conclude that Zn converges in
distribution to Z ∼ N(0, 1). �
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