CPSC 550: Machine Learning II

2008/9 Term 2

Lecture 4 — Jan 21, 2009

Lecturer: Nando de Freitas Scribe: Sancho McCann

Notation

- $a_n \to a$ means a_n converges to a, as $n \to \infty$.
- $X_n \stackrel{qm}{\to} X$ means X_n converges in quadratic mean to X.
- $X_n \stackrel{p}{\to} X$ means X_n converges in probability to X.
- $X_n \leadsto X$ means X_n converges in distribution to X.

Theorem (Wasserman 5.4)

a)
$$X_n \stackrel{qm}{\to} X \Rightarrow X_n \stackrel{p}{\to} X$$

b)
$$X_n \stackrel{p}{\to} X \Rightarrow X_n \leadsto X$$

"Convergence in distribution is the weakest"

Proof: a)

$$P(|X_n - X| > \epsilon) \le \frac{\mathbb{E}[(X_n - X)^2]}{\epsilon^2}$$
 (by Markov's inequality)
 $\frac{\mathbb{E}[(X_n - X)^2]}{\epsilon^2} \stackrel{qm}{\to} 0$
 $P(|X_n - X| > \epsilon) \to 0$

Notation

estimator: $\hat{\theta}_n = g(X_{1:n})$, a function of the data

sampling distribution: distribution of random variable $\hat{\theta}_n$

standard error (se): $\sqrt{\operatorname{var}(\hat{\theta}_n)}$

Mean squared error (MSE)

MSE =
$$\mathbb{E}_{\theta}(\hat{\theta}_n - \theta)^2$$

= $\int [g(X_{1:n}) - \theta)^2]P(X_{1:n}, \theta)dX_{1:n}$

where $P(X_{1:n}, \theta) = \prod_{i=1}^{n} p(X_i, \theta)$ when data X_i are i.i.d.

Theorem 6.9

$$MSE = bias(\hat{\theta})^2 + var_{\theta}(\hat{\theta})$$

Proof

Let:

$$\bar{\theta}_n = \mathbb{E}_{\theta}(\hat{\theta}_n)
= \int g(X_{1:n}) P(dX_{1:n}; \theta)
= \int g(X_{1:n}) dP(X_{1:n}; \theta)
= \int g(X_{1:n}) P(X_{1:n}; \theta) dX_{1:n}$$

Then:

$$MSE = \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \theta)^{2}] = \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n} + \bar{\theta}_{n} - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n})^{2} + 2(\hat{\theta}_{n} - \bar{\theta}_{n})(\bar{\theta}_{n} - \theta) + (\bar{\theta}_{n} - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n})^{2}] + 2\mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n})(\bar{\theta}_{n} - \theta)] + \mathbb{E}_{\theta}[(\bar{\theta}_{n} - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n})^{2}] + 2(\bar{\theta}_{n} - \theta)\mathbb{E}_{\theta}(\hat{\theta}_{n} - \bar{\theta}_{n}) + (\hat{\theta}_{n} - \theta)^{2}$$

$$= \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n})^{2}] + 2(\bar{\theta}_{n} - \theta)(0) + (\hat{\theta}_{n} - \theta)^{2}$$

$$= \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \bar{\theta}_{n})^{2}] + (\hat{\theta}_{n} - \theta)^{2}$$

$$= \mathrm{var}_{\theta}(\hat{\theta}_{n}) + \mathrm{bias}(\hat{\theta})^{2}$$

Consistency

An estimator $\hat{\theta}_n$ of parameter θ is said to be *consistent* iff $\hat{\theta}_n \stackrel{p}{\to} \theta$.

Theorem (Wasserman 6.10)

If bias and variance go to zero as $n \to \infty$, then $\hat{\theta}_n$ is consistent.

Proof: If the bias and variance both converge to zero, then by Theorem 6.9, it follows that the MSE converges to 0, i.e. $\mathbb{E}_{\theta}(\hat{\theta}_n - \theta)^2 \to 0$. Thus $\hat{\theta}_n \stackrel{qm}{\to} \theta$. By Theorem 5.4(a), it follows that $\hat{\theta}_n \stackrel{p}{\to} \theta$. QED.