CPSC 550: Machine Learning 11 2008/9 Term 2
Lecture 3 — Jan 19, 2009

Lecturer: Nando de Freitas Scribe: Bo Chen

This lecture introduces the confidence interval and three types of conver-
gence, and it proves the Weak Law of Large Numbers.

3.1 Review

e Estimator:
e Consistency:

e Markov’s Inequality: Vi > 0

P > 1) < LR

e Chebyshev’s Inequality: V¢t > 0, u = E(X),

V(X)

P((X =p)* > ) = P(X —pl > 1) < —3

Note that there exist other, tighter bounds than these. For example,
one can derive the Chernoff bound by exploring the following analysis of
Markov’s inequality (Ch. 4, Wasserman):

E(eX)

et

P(X >t)=p(e* >¢) <

Question: Is Maximum Likelihood the correct thing to do? What are the
valid ways of learning?
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An example using Chebyshev’s Inequality

(Chapter 4.3, p.64 of Wasserman)
Assume we have a predictor (neural network, SVM, logitBoost, ... ). Let
{X;}"_, be a set of i.i.d. Bernoulli ! random variables:

{ 1 if prediction is correct
X; =

0 if prediction is incorrect

Let X, = %Z X, be the observed error rate.

i=1

e What is the true error rate 67 1i.e., what is the parameter of the
Bernoulli distribution § = P(X; = 1)7

e How likely is X,, to be within € of true paramater §?

Using Chebyshev’s inequality:

UEDIRO

. V(X,)
P(|X,—0| >¢) < = = —a (3.1)
1 n
= a2 (X3) (3.2)
i=1
0(1—0)
— 3.3
ne2 (3.3)
where step 3.2 exploits the 7.i.d. assumption.
Since 6(1 — 0) < 1/4 always holds:
P, —0] > &) < —
n ~ =«
‘ 4ne?

As a quantitative example, if € = 0.2, n = 100, then o = 0.0625.

'Recall that Bernoulli(z; 0) ~ 6%(1—60)'~*, with mean 6 and standard deviation §(1—).
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3.2 Confidence Intervals

From the example,

1
O{ =
4ne?
1 1
€, = —A/—
2V an

Note that ¢, is a functi_on of n.
Let C = (X, — €,, X, + €,); then we have:

PO ¢C) = P(Xy—0l>e)<a
POeC) = 1-P(|X,—0|>¢,)>1—a

In other words, the confidence interval C “traps” the true parameter 6 with
probability 1 — a.
3.3 Convergence

Let {X,}°2; be a sequence of random variables where X,, ~ F,,, and let
X ~ F be another random variable. We discuss senses in which X,, can be
said to converge to X.

3.3.1 Convergence in Probability (Weak Convergence)

X,, converges to X in probability, or X,, > X, if Ve > 0:

lim P(| X, — X|>¢) =0

n—oo

Application: Weak Law of Large Numbers

Theorem 3.1. Let X;., be i.i.d. random variables.

>
i=1

o 1=E(X))=E(Xy) =...

« X, —

S|
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L] O'2 :V(Xl) :V(XQ) = ...

Then P(|X, — p| > €) — 0, as n — oo; i.e., X,, 2 p.

Proof:

Ve (XTL> 1=
P(‘Xn - :u‘ > 6) < 2 = 621
1
- V(X
V(X))
0_2

3.3.2 Convergence in Distribution (Law)

We say X,, converges to X in distribution, or X, ~» X, or X,, KR X, if Va
at which F' is continuous:

lim F,(a) = F(a)

3.3.3 Convergence in Quadratic Mean (L2 Norm)
X,, converges to X in quadratic mean, or X,, “% X if:

lim E(X,, — X)? =0

n—oo
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