
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 3 — Jan 19, 2009

Lecturer: Nando de Freitas Scribe: Bo Chen

This lecture introduces the confidence interval and three types of conver-
gence, and it proves the Weak Law of Large Numbers.

3.1 Review

• Estimator:
θ̂n = g(X1:n)

• Consistency:
θ̂n

p→ θ

• Markov’s Inequality: ∀t > 0

P (f(X) > t) ≤ E(f(X))

t

• Chebyshev’s Inequality: ∀t > 0, µ = E(X),

P ((X − µ)2 > t2) = P (|X − µ| > t) ≤ V(X)

t2

Note that there exist other, tighter bounds than these. For example,
one can derive the Chernoff bound by exploring the following analysis of
Markov’s inequality (Ch. 4, Wasserman):

P (X > t) = p(eX > et) ≤ E(eX)

et

Question: Is Maximum Likelihood the correct thing to do? What are the
valid ways of learning?
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An example using Chebyshev’s Inequality

(Chapter 4.3, p.64 of Wasserman)
Assume we have a predictor (neural network, SVM, logitBoost, . . . ). Let

{Xi}n
i=1 be a set of i.i.d. Bernoulli 1 random variables:

Xi =

{
1 if prediction is correct
0 if prediction is incorrect

Let X̄n = 1
n

n∑
i=1

Xi be the observed error rate.

• What is the true error rate θ? i.e., what is the parameter of the
Bernoulli distribution θ = P (Xi = 1)?

• How likely is X̄n to be within ε of true paramater θ?

Using Chebyshev’s inequality:

P (|X̄n − θ| > ε) ≤ V(X̄n)

ε2
=

V( 1
n

n∑
i=1

Xi)

ε2
(3.1)

=
1

n2ε2

n∑
i=1

V(Xi) (3.2)

=
θ(1− θ)

nε2
(3.3)

where step 3.2 exploits the i.i.d. assumption.
Since θ(1− θ) ≤ 1/4 always holds:

P (|X̄n − θ| > ε) ≤ 1

4nε2
≡ α

As a quantitative example, if ε = 0.2, n = 100, then α = 0.0625.

1Recall that Bernoulli(x; θ) ∼ θx(1−θ)1−x, with mean θ and standard deviation θ(1−θ).
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3.2 Confidence Intervals

From the example,

α =
1

4nε2

εn =
1

2

√
1

αn

Note that εn is a function of n.
Let C = (X̄n − εn, X̄n + εn); then we have:

P (θ /∈ C) = P (|X̄n − θ| > εn) ≤ α

P (θ ∈ C) = 1− P (|X̄n − θ| > εn) ≥ 1− α

In other words, the confidence interval C “traps” the true parameter θ with
probability 1− α.

3.3 Convergence

Let {Xn}∞n=1 be a sequence of random variables where Xn ∼ Fn, and let
X ∼ F be another random variable. We discuss senses in which Xn can be
said to converge to X.

3.3.1 Convergence in Probability (Weak Convergence)

Xn converges to X in probability, or Xn
p→ X, if ∀ε > 0:

lim
n→∞

P (|Xn −X| > ε) = 0

Application: Weak Law of Large Numbers

Theorem 3.1. Let X1:n be i.i.d. random variables.

• X̄n = 1
n

n∑
i=1

Xi

• µ = E(X1) = E(X2) = . . .
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• σ2 = V(X1) = V(X2) = . . .

Then P (|X̄n − µ| > ε) → 0, as n →∞; i.e., X̄n
p→ µ.

Proof:

P (|X̄n − µ| > ε) ≤ V(X̄n)

ε2
=

V( 1
n

n∑
i=1

Xi)

ε2

=
1

nε2
V(X1)

=
σ2

nε2
→ 0 as n →∞

�

3.3.2 Convergence in Distribution (Law)

We say Xn converges to X in distribution, or Xn  X, or Xn
d→ X, if ∀a

at which F is continuous:

lim
n→∞

Fn(a) = F (a)

3.3.3 Convergence in Quadratic Mean (L2 Norm)

Xn converges to X in quadratic mean, or Xn
q.m.→ X, if:

lim
n→∞

E(Xn −X)2 = 0
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