CPSC 550: Machine Learning II	2008/9 Term 2
Lecture $3 - Jan 19, 2009$	
Lecturer: Nando de Freitas	Scribe: Bo Chen

This lecture introduces the confidence interval and three types of convergence, and it proves the Weak Law of Large Numbers.

3.1 Review

• Estimator:

$$\hat{\theta}_n = g(X_{1:n})$$

• Consistency:

 $\hat{\theta}_n \xrightarrow{p} \theta$

• Markov's Inequality: $\forall t > 0$

$$P(f(X) > t) \le \frac{\mathbb{E}(f(X))}{t}$$

• Chebyshev's Inequality: $\forall t > 0, \mu = \mathbb{E}(X),$

$$P((X - \mu)^2 > t^2) = P(|X - \mu| > t) \le \frac{\mathbb{V}(X)}{t^2}$$

Note that there exist other, tighter bounds than these. For example, one can derive the **Chernoff bound** by exploring the following analysis of Markov's inequality (Ch. 4, Wasserman):

$$P(X > t) = p(e^X > e^t) \le \frac{\mathbb{E}(e^X)}{e^t}$$

Question: Is Maximum Likelihood the correct thing to do? What are the valid ways of learning?

An example using Chebyshev's Inequality

(Chapter 4.3, p.64 of Wasserman)

Assume we have a predictor (neural network, SVM, logitBoost, ...). Let $\{X_i\}_{i=1}^n$ be a set of *i.i.d.* Bernoulli ¹ random variables:

$$X_i = \begin{cases} 1 & \text{if prediction is correct} \\ 0 & \text{if prediction is incorrect} \end{cases}$$

Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the observed error rate.

- What is the true error rate θ ? i.e., what is the parameter of the Bernoulli distribution $\theta = P(X_i = 1)$?
- How likely is \overline{X}_n to be within ϵ of true parameter θ ?

Using Chebyshev's inequality:

$$P(|\bar{X}_n - \theta| > \epsilon) \le \frac{\mathbb{V}(\bar{X}_n)}{\epsilon^2} = \frac{\mathbb{V}(\frac{1}{n}\sum_{i=1}^n X_i)}{\epsilon^2}$$
(3.1)

=

=

$$\frac{1}{n^2 \epsilon^2} \sum_{i=1}^n \mathbb{V}(X_i) \tag{3.2}$$

$$\frac{\theta(1-\theta)}{n\epsilon^2} \tag{3.3}$$

where step 3.2 exploits the *i.i.d.* assumption.

Since $\theta(1-\theta) \leq 1/4$ always holds:

$$P(|\bar{X}_n - \theta| > \epsilon) \le \frac{1}{4n\epsilon^2} \equiv \alpha$$

As a quantitative example, if $\epsilon = 0.2$, n = 100, then $\alpha = 0.0625$.

¹Recall that Bernoulli $(x; \theta) \sim \theta^x (1-\theta)^{1-x}$, with mean θ and standard deviation $\theta(1-\theta)$.

3.2 Confidence Intervals

From the example,

$$\alpha = \frac{1}{4n\epsilon^2}$$
$$\epsilon_n = \frac{1}{2}\sqrt{\frac{1}{\alpha n}}$$

Note that ϵ_n is a function of n.

Let $\mathcal{C} = (\bar{X}_n - \epsilon_n, \bar{X}_n + \epsilon_n)$; then we have:

$$P(\theta \notin \mathcal{C}) = P(|\bar{X}_n - \theta| > \epsilon_n) \le \alpha$$

$$P(\theta \in \mathcal{C}) = 1 - P(|\bar{X}_n - \theta| > \epsilon_n) \ge 1 - \alpha$$

In other words, the confidence interval C "traps" the true parameter θ with probability $1 - \alpha$.

3.3 Convergence

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables where $X_n \sim F_n$, and let $X \sim F$ be another random variable. We discuss senses in which X_n can be said to converge to X.

3.3.1 Convergence in Probability (Weak Convergence)

 X_n converges to X in probability, or $X_n \xrightarrow{p} X$, if $\forall \epsilon > 0$:

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

Application: Weak Law of Large Numbers

Theorem 3.1. Let $X_{1:n}$ be *i.i.d.* random variables.

•
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• $\mu = \mathbb{E}(X_1) = \mathbb{E}(X_2) = \dots$

• $\sigma^2 = \mathbb{V}(X_1) = \mathbb{V}(X_2) = \dots$

Then $P(|\bar{X}_n - \mu| > \epsilon) \to 0$, as $n \to \infty$; i.e., $\bar{X}_n \xrightarrow{p} \mu$.

Proof:

$$P(|\bar{X}_n - \mu| > \epsilon) \le \frac{\mathbb{V}(\bar{X}_n)}{\epsilon^2} = \frac{\mathbb{V}(\frac{1}{n}\sum_{i=1}^n X_i)}{\epsilon^2}$$
$$= \frac{1}{n\epsilon^2}\mathbb{V}(X_1)$$
$$= \frac{\sigma^2}{n\epsilon^2} \to 0 \quad \text{as } n \to \infty$$

3.3.2 Convergence in Distribution (Law)

We say X_n converges to X in distribution, or $X_n \rightsquigarrow X$, or $X_n \stackrel{d}{\rightarrow} X$, if $\forall a$ at which F is continuous:

$$\lim_{n \to \infty} F_n(a) = F(a)$$

3.3.3 Convergence in Quadratic Mean (L2 Norm)

 X_n converges to X in quadratic mean, or $X_n \stackrel{q.m.}{\rightarrow} X$, if:

$$\lim_{n \to \infty} \mathbb{E}(X_n - X)^2 = 0$$