
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 2 — Jan 14, 2009

Lecturer: Nando de Freitas Scribe: Chris Nell

This lecture introduces fundamental statistical concepts which will be
central the rest of the course. The topics presented in these notes are dis-
cussed in more detail in the referenced chapters of “All of Statistics” (Wasser-
man, 2004), freely available for authenticated users of the UBC network at
http://www.myilibrary.com/?id=18966.

Notation

In these notes, we use F to denote a distribution, and f a density. In
particular, we have F (x) = f(x)dx, where dx is called the measure.

The relationship between these quantities is illustrated for continuous
densities and the Lebesgue/Borel measure in Figure 2.1, and for discrete
densities using the counting measure (where F = f) in Figure 2.2. It is
important to note that in the continuous case we measure the probabilities
of intervals, not points as we do in the discrete case.

Figure 2.1. Example continuous density, distribution, and Lebesgue measure.
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Figure 2.2. Example discrete density/distibution. Here, Pr(even) = 1
6 + 1

6 + 1
6 = 1

2 which
we obtain by counting; hence the name ‘counting measure’.
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Chapter 6.1: Introduction to Statistical Learning

The goal of statistical learning is to find the generating distribution F (·) of
X, given observed data points X1:n , {X1, X2, ..., Xn}. Example settings for
learning include Gaussian processes (Figure 2.3) and mixtures of Gaussians
(Figure 2.4).

Figure 2.3. Learning a Gaussian process. Here, we estimate a function with mean µ
and variance (95% confidence intervals) σ2. At each data point, we assume the local
distribution (along the vertical line) is Gaussian.

Figure 2.4. Learning a mixture of Gaussians. Here, we estimate the parameters of a
mixture of two Gaussians, represented via contour map, from observed data points.
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Chapter 6.2: Models

A model is a set of distributions F. We speak of two classes of models:

1. parametric models: F = {f(x; θ), θ = Θ}

2. non-parametric models: F = { all distributions F}

When working with parametric models, such as that in Figure 2.5, our
goal is to learn the parameters θ specifying the distribution.

Figure 2.5. Mixture of Gaussians: f(x, θ) = π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2), θ =

{π1:2, µ1:2, σ1:2}

When working with non-parametric models, our goal is to select the ap-
propriate distribution F . The most familiar example might be histogram
building (Figure 2.6). Neural networks (Figure 2.7) provide an example
where the number of paramters increases rapidly with the number of inputs.
Technically, a non-parametric model is a set F which cannot be characterized
by a finite number of parameters.

Figure 2.6. Histrogramming. While the bin width is an important parameter, it does
not characterize the estimated distribution.
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Figure 2.7. Neural network. Each node represents a sigmoid function 1
1+exp(

P
θixj)

. The
number of parameters θi is exponential in the number of inputs xj .
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Chapter 6.3: Fundamental Concepts

A point estimate θ̂n of θ is a “best guess” of θ, based on data X1:n:

θ̂n = g(X1:n)

A specific example of an estimator is the mean estimator, with g(X1:n) =
1
n

∑n
i=1 Xi.

Bias is a measure of error due to the inability of an estimtor to account
exactly for the observed data, and is defined as:

bias(θ̂n) = Eθ(θ̂n)− θ

where Eθ (u(x)) =
∫

u(x)f(x; θ)dx is the expectation of u(x), and each

xi ∼ F . Note that while θ̂n is a data-dependent random variable, θ is not; it
is a truth.

Examples of high- and low-bias estimators are presented in Figure 2.8.
It is clear from the examples that bias alone is not a complete measure of
estimator quality. Instead, we seek consistency: θ̂n is a consistent estimator
of θ if θ̂n →p θ (θ̂n converges in probability to θ). Before we can define
convergence in probability (next lecture), however, we must introduce some
fundamental inequalities.

Figure 2.8. Bias and variance in estimators. Dotted line represents truth. The linear
estimator has high bias but low variance; the non-linear estimator has low bias but high
variance.
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Chapter 4.1: Probability Inequalities

The first inequality we will use is Markov’s inequality:

Theorem 2.1. Let X be a nonnegative random variable; suppose E(X) ex-
ists. For any t > 0:

Pr(X ≥ t) ≤ E(X)

t

Proof: Define the membership indicator function for set S as:

IS(u) =

{
1 if u ∈ S
0 otherwise

The following statement is a tautology over X ≥ 0 for any t > 0:

X ≥ tI[t,∞)(X)

Taking expectations:

E(X) ≥ tE
(
I[t,∞)(X)

)
= t Pr (X ∈ [t,∞)) = t Pr(X ≥ t)

�

Proof: Alternative, adapted from Wasserman. Since X ≥ 0:

E(X) =

∫ ∞

0

xf(x)dx =

∫ t

0

xf(x)dx +

∫ ∞

t

xf(x)dx

≥
∫ ∞

t

xf(x)dx ≥ t

∫ ∞

t

f(x)dx = t Pr(X ≥ t)

�

Next, we introduce Chebyshev’s inequality:

Theorem 2.2. Let X be a nonnegative random variable; suppose µ = E(X)
exists, and let σ2 = V(X), the variance of X. For any t > 0:

Pr(|X − µ| ≥ t) ≤ σ2

t2

Proof: Using Markov’s inequality, and recalling that V(X) = E(X2)− µ2:

Pr(|X − µ| ≥ t) = Pr
(
(X − µ)2 ≥ t2

)
≤ E ((X − µ)2)

t2
=

σ2

t2

�
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