
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 6 — Feb 5, 2009

Lecturer: Nando de Freitas Scribe: Kevin Swersky

This lecture continues the discussion of the Lebesque integral and intro-
duces the concepts of measurable spaces, measurable functions, and simple
functions.

6.1 The Lebesgue integral continued

Unlike the Reimann integral which partitions the domain, the Lebesgue inte-
gral partitions the range into intervals [yi, yi+1), i ∈ {1, ..., n}. The Lebesgue
sum is then defined to be:

n∑
i=1

y∗i ν (Ai) (6.1)

Where ν (Ai) is the measure of the set Ai and Ai is defined as:

Ai = {x : yi ≤ f(x) < yi+1} (6.2)

In other words, for each interval [yi, yi+1) we take the measure of the
rectangles formed from the intersection of the interval with the function, as
shown in figure 6.1, and multiply them by the height of the interval, and
repeat this for each partition.

Taking the number of partitions to infinity, and taking them infentesi-
mally small so that y∗i → f(x), we get the Lebesgue integral:∫

y∗i dν(Ai)→
∫
f(x)dν(x) =

∫
fdν (6.3)

Example 6.1. We return to the problem of integrating over a particular
function from last class, defined as:

f(x) = IQ(x) =

{
1 if x is rational
0 if x is irrational

}
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a b
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Figure 6.1. The rectangles formed by intersecting a function f(x) with a particular
interval [yi, yi+1). We assign each of these rectangles a “height” y∗i . The Lebesgue sum is
the sum of the area of these rectangles over all intervals.

If you recall, this was not Reimann integrable, however using the Lebesgue
integral we are able to find that∫

IQ(x)dν (x) = ν (Q ∩ R) = 0

The details of the solution are beyond the scope of this course, but can
be found in [1].

6.2 Measurable Spaces

Now we will move on to the notion of measurability. First we will need to
define the notion of a measurable space:

Definition 6.2. A measurable space consists of a set of events Ω, and a
collection of subsets F of Ω such that:

(i) The null space is in F: φ ∈ F

(ii) If the set A is in F then so is its complement: A ∈ F =⇒ A ∈ F
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(iii) F is closed under countable unions: Ai ∈ F ∀i =⇒
⋃
i

Ai ∈ F

Under these properties, we can say that F consists of measurable events. F

is known as a σ-field.

Once we have a measurable space, we will want to define the concept of
a measure on that space.

Definition 6.3. Given a measurable space (Ω,F), a measure ν : F → R ∪
{+∞,−∞} is a function that assigns a real nuber to events in F. To be
considered a measure, ν must have the following properties [3]:

(i) ν(E) > 0 ∀ E ∈ F

(ii) ν(φ) = 0

(iii) if {Ei}i∈I is a set of pairwise disjoint sets from I ∈ F then

ν

(⋃
i∈I

Ei

)
=
∑
i∈I

ν (Ei)

Definition 6.4. The Borel σ-field on the set of real numbers R, denoted
B(R), is the smallest σ-field of R that contains all intervals. The Borel
measure is a measure ν defined on the Borel σ-field

6.3 Measurable Functions

Now that we have the concept of measurable spaces, we can discuss measur-
able functions which transform points from one measurable space to another
measurable space.

Definition 6.5. Let (Ω,F) and (Σ,T) be two measurable spaces, then f :
Ω→ Σ is measurable if for any subset E ∈ T, f−1(E) = {x : f(x) ∈ E} ∈ F.
f−1(E) is called the preimage of E under f [2].

Example 6.6. Consider the function f : R → R on the measurable spaces
(R,B(R)), (R,B(R)):

f(x) = IA(x) =

{
1 if x ∈ A
0 otherwise

}
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B
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In the diagram above, B is an interval over the range, known as a Borel
set since it is a subset of B(R). We can determine the I−1

A (B) by looking at
the values of the domain which map to any interval B. There are 4 possible
cases:

I−1
A (B) =


φ if 0 /∈ B, 1 /∈ B
A if 0 /∈ B, 1 ∈ B
A if 0 ∈ B, 1 /∈ B
R if 0 ∈ B, 1 ∈ B

In this case, we see that the preimage I−1
A (B) is an element of B(R) for

all possible choices of B. Thus, IA(X) is measurable.

6.4 Simple Functions

Now that we have the theory of a measurable function, we can define the
Lebesgue integral more formally through the use of simple functions.

First, we will need to define the integral of an indicator function of a
measurable set S:

∫
ISdν = ν(S) (6.4)

Definition 6.7. Let (Ω,F) be a measurable space. Let A1, ..., An ∈ F be a
sequence of measurable sets, and let a1, ..., an be a sequence of non-negative
real numbers. A simple function is a function of the form[4]:

f(x) =
n∑

i=1

aiIAi
(x) (6.5)

Where IAi
(x) is 1 if x ∈ Ai and 0 otherwise.
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Using this definition, we can build the Lebesgue integral for non-negative
simple functions by taking:∫

fdν =

∫ n∑
i=1

aiIAi
(x)dν(x) =

n∑
i=1

ai

∫
IAi

(x)dν(x) =
n∑

i=1

aiν(Ai) (6.6)

This can be extended to define the integral of a real-valued simple func-
tion, and furthermore it can be shown that a measurable function is the point-
wise limit of a sequence of simple functions. Thus, using the Lebesgue integral
over measurable simple functions, it is possible to compute the Lebesgue in-
tegral over arbitrary, measurable functions. More information can be found
in [5].

Exercise 6.8. Show that:

(i)
∑n

i=1 aiIAi
(x)

(ii) lim
n→∞

∑n
i=1 aiIAi

(x)

are measurable.

6.5 Measure Continuity

In the next class we will cover measure continuity, where we will prove the
following proposition:

Proposition 6.9. Let A1 ⊂ A2 ⊂ A3 ⊂ ...

Then ν( lim
n→∞

An) = lim
n→∞

ν(An)

where An =
n⋃

i=1

Ai
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