
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 5 — Feb 3, 2009

Lecturer: Nando de Freitas Scribe: David Duvenaud

This lecture proves the consistency of the maximum likelihood estimator
(MLE), and also introduces the Lebesgue Integral.

Consistency of the MLE Estimator

Proof outline:
First, we will show that using the MLE will cause the data to have the

same likelihood as under the true parameter. Then we will show that if the
model is identifiable, then an estimate that gives the same likelihood as the
true parameter must be the true parameter. Throughout this, we assume
that the data has been generated by the distribution f(x|θ0) for some true
parameter θ0.

The MLE estimate is defined as

θ̂n = argmax
θ

n∏
i=1

f(xi|θ) (5.1)

= argmax
θ

n∑
i=1

log f(xi|θ) (5.2)

= argmax
θ

1
n

n∑
i=1

log f(xi|θ) (5.3)

= argmax
θ

1
n

n∑
i=1

log f(xi|θ)− 1
n

n∑
i=1

log f(xi|θ0) (5.4)

= argmax
θ

1
n

n∑
i=1

log
f(xi|θ)
f(xi|θ0)

(5.5)

= argmax
θ

Mn(θ) (5.6)

(5.7)

where θ0 is the true parameter, and
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Mn(θ) = 1
n

n∑
i=1

log
f(xi|θ)
f(xi|θ0)

Mean Likelihood Converges to KL-Divergence

The intuition behind convergence is that, as n→∞,

Mn(θ) = 1
n

n∑
i=1

log
f(xi|θ)
f(xi|θ0)

(5.8)

→ Eθ0 [log
f(xi|θ)
f(xi|θ0)

] (5.9)

=

∫
log

f(xi|θ)
f(xi|θ0)

f(x|θ0)dx (5.10)

= −
∫

log
f(xi|θ0)

f(xi|θ)
f(x|θ0)dx (5.11)

= −KL[f(xi|θ0)||f(xi|θ)] (5.12)

= −KL[θ0, θ] (5.13)

(5.14)

So that, by the weak law of large numbers,

Mn(θ)
p→M(θ) = −KL(θ0, θ)

And therefore when we take an argmax over Mn(θ), we will be minimiz-
ing KL-divergence, which is at a minimum when we pick θ = θ0 because
KL(θ0, θ0) = 0.

Max-Likelihood gives Minimum Divergence

First we will show that using the MLE θ̂n will cause the likelihood to asymp-
totically converge to the likelihood under the true parameter θ0.

Theorem 9.13

Suppose that
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1. sup
θ
|Mn(θ)−M(θ)| p→ 0

or equivalently:

For all θ, Mn(θ)
p→M(θ)

2. For every ε > 0, sup
θ:|θ−θ0|≥ε

M(θ) < M(θ0)

( Note: this condition is equivalent to identifiability )

To put this condition another way:

For any ε > 0, with |θ − θ0| ≥ ε, there exists δ > 0 such that M(θ) <
M(θ0)− δ

Given these two conditions, we have that for the MLE:

θ̂n
p→ θ0

or equivalently,

plim(θ̂n) = θ0

or equivalently,

lim
n→∞P (|θ̂n − θ0| > α)→0

for every α.

Proof:

M(θ0)−M(θ̂n) = Mn(θ0)−M(θ̂n) +M(θ0)−Mn(θ0) (5.15)

≤ Mn(θ̂n)−M(θ̂n) +M(θ0)−Mn(θ0) (5.16)

( The above uses the fact that
Mn(θ0) ≤Mn(θ̂n), since θ̂n = argmaxθMn(θ) ).
Using condition 1, and because all terms go to zero,

M(θ0)−M(θ̂n) ≤ sup
θ
|Mn(θ)−M(θ)|+M(θ0)−Mn(θ0) (5.17)

p→ 0 (5.18)

�

5-3



CPSC 550 Lecture 5 — Feb 3, 2009 2008/9 Term 2

Now that we have proven that the MLE will converge to the same like-
lihood as the true parameter, all that remains is to show that, if we have
identifiability, this implies that the MLE is converging to the true parame-
ter.

Proof: For δ > 0:

P (|M(θ0)−M(θ̂n)|) > δ
p→ 0 (5.19)

P (M(θ̂n) < M(θ0)− δ)
p→ 0 (5.20)

(5.21)

Using condition 2 above,

P (|θ̂n − θ0|) ≥ ε) ≤ P [M(θ̂n) < M(θ0)− δ]
p→ 0

∴ θ̂n
p→ θ0

�
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The Riemann Integral

The Riemann integral over the interval [a, b],

I =

∫ b

a

f(x)dx

is defined as the limit of taking smaller and smaller vertical slices of f(x),
and summing their area. It exists only if

I ,
n∑
i=1

max(f(ti : ti+1))∆ti =
n∑
i=1

min(f(ti : ti+1))∆ti , I

That is, if the upper integral converges to the lower integral in the limit
as we take smaller and smaller slices.

There exist functions for which this integral is not defined. For instance,
let

f(x) = IQ(x) =

{
1 if x is rational
0 if x is irrational

}
In this case, each slice of f(x) will contain both a rational and an irrational

number, so over any interval max(f(x)) = 1 and min(f(x)) = 0. Thus the
I 6= I and the integral does not exist.

Figure 5.1. A Riemann Integral, obtained by summing the area of many vertical slices.
Source: Wikipedia
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The Lebesgue Integral

Instead of defining the integral as a sum over vertical slices along the x axis,
we can do the following: First, construct intervals covering the range of f
the y axis. Then for each interval, find the measure of all the points in x
such that f(x) is in that interval. Then, add to our sum that measure times
the height of that interval. This procedure will exhaust all the area under a
curve.

If we are in a σ-field F, we can define the Lebesgue integral as follows:

I =

∫
f(x)dν =

∑
n

fnν(An)

Where fn is the height of f at vertical slice n, An is the set of all points
in x such that f(x) u fn, and ν(An) is the measure of the set An. These
concepts will be outlined more formally in the next class.

Figure 5.2. The Lebesgue integral is obtained by summing the mea-
sure of many horizontal slices. Source: Britannica Online Encyclopedia
http://www.britannica.com/EBchecked/topic/22486/analysis
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