
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 12 — Feb. 26, 2009

Lecturer: Nando de Freitas Scribe: Chris Nell

This lecture discusses the problem of maximum likelihood parameter estimation
in restricted Boltzmann machines, given observed data. Much of the theory pre-
sented here was originally developed by Laurent Younes in the context of general
Boltzmann machines (or Gibbsian fields); particularly relevant are sections 3.1
and 3.2 of his paper. [1]

12.1 Review of Boltzmann Machines
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Figure 12.1. Graphical model of a two-layer restricted Boltzmann machine with 3 hidden and
3 visible units. Data corresponds to visible units X; class labels to visible units C.

Recall from the previous lecture the graphical structure of a restricted Boltz-
mann machine (RBM), as illustrated in Figure 12.1. Note that there are no
intra-layer connections, but all inter-layer connections are present; this is unlike a
general Boltzmann machine (BM) which can be fully connected. Where there are
nv visible and nh hidden units, and where visible unit vi is connected to hidden
unit hj with weight parameter ωij, the joint probability distribution of the RBM
is given by:

Pω(h, v) =
1

Z(ω)
e+
Pnv

i=1

Pnh
j=1 viωijhj (12.1)

where Z(ω) is a normalization constant (partition function).
The parameter estimation problem in RBMs is the problem of learning values

for the weight matrix ω, given observed (visible) data examples d. By learning
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these parameters, we also learn features of the data corresponding to each hidden
node – the parameters ωT

j characterize the data components relevant to node hj.
This insight implies an intuitive connection to self-taught learning. [2] Relevant
general features can be learned through initial training on a large corpus of unla-
beled data; subsequent training using labeled data will refine these features and
learn their relationship to the labels.

Note that it can be useful to define an energy function, for RBMs this is:

Eω(v, h) = −
nv∑
i=1

nh∑
j=1

viωijhj (12.2)

Using this, we rewrite Equation 12.1 as:

Pω(v, h) =
1

Z(ω)
e−Eω(v,h) (12.3)

Z(ω) =
∑

v

∑
h

e−Eω(v,h) (12.4)

where the summation in Equation 12.4 is over all possible values for the visible
units v = v1:nv and hidden units h = h1:vh

.
Finally, recall the specific case of binary-valued units:

vi ∈ {0, 1} =⇒ v ∈ {0, 1}nv

hj ∈ {0, 1} =⇒ h ∈ {0, 1}nh

In this case, we have seen that the conditional distributions are given by:

Pω(v|h) =
nv∏
i=1

σ(ωih)vi [1− σ(ωih)]1−vi (12.5)

Pω(h|v) =

nh∏
j=1

σ(ωT
j v)hj [1− σ(ωT

j v)]1−hj (12.6)

where we denote by σ(·) the sigmoid function:

σ(x) =
1

1 + exp(−x)
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12.2 Parameter Estimation for (R)BMs

12.2.1 MLE for Boltzmann Machines

In order to derive a maximum likelihood parameter estimation algorithm for Boltz-
mann machines, we first determine the gradient of the log likelihood of the ob-
served data d:

∇ω log Pω(v = d) = ∇ω log
∑

h

Pω(v = d, h) (12.7)

Here, we marginalize h out of the joint to obtain the likelihood. Substituting
Equation 12.3, we have:

= ∇ω log
1

Z(ω)

∑
h

e−Eω(v=d,h) (12.8)

= −∇ω log Z(ω) +∇ω log
∑

h

e−Eω(v=d,h) (12.9)

Note that the first term in Equation 12.9 would disappear if we were working with
a directed model, in which Z is not a function of the parameters ω. Unfortunately
this is not the the case for BMs; rather, computing the partition function will entail
significant computational effort.

Subsitituting Equation 12.4 and taking derivatives:

=
1

Z(ω)

∑
v

∑
h

∇ωEω(v, h)e−Eω(v,h)

− 1∑
h e−Eω(v=d,h)

∑
h

∇ωEω(v = d, h)e−Eω(v=d,h) (12.10)

Note that v is free in the first term of Equation 12.10, but clamped to the data
in the second term. Finally, again recalling Equations 12.3 and 12.4:

=
∑

v

∑
h

∇ωEω(v, h)Pω(v, h)

−
∑

h

∇ωEω(v = d, h)Pω(v = d, h) (12.11)

Clearly the gradient is minimized when the two terms in this expression can-
cel. Intuitively, this occurs when the model generates samples (first term) which
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“look like” the data (second term). This leads to an algorithm for ML parameter
estimation, but before we present it, we consider the special case of RBMs.

12.2.2 MLE for RBMs

While the preceding analysis applies to general BMs, for RBMs we can employ
the energy expression of Equation 12.2. First, note:

∇ωij
Eω(v, h) = −∇ωij

nv∑
i′=1

nh∑
j′=1

vi′ωi′j′hj′ = −vihj (12.12)

Substituting into Equation 12.11, we have: 1

∇ωij
log Pω(v = d) =−

∑
v

∑
h

vihjPω(v, h)

+
∑

h

dihjPω(v = d, h) (12.13)

If we expand the second term of Equation 12.13 exploiting the independence of
hidden units in an RBM, we have:∑

h

dihjPω(v = d, h) =
∑
h1

. . .
∑
hj

. . .
∑
hnh

dihj

∏
j′

Pω(v = d, hj′) (12.14)

where we recall each hj′ is summed over the values in its domain; for the binary
case, this is {0, 1}. Noting that the summations over hj′ 6= hj contribute a factor
of 1, this expression simplifies to:

=
∑
hj

dihjPω(v = d, hj) = diE(hj) (12.15)

In the binary unit case, we can write this explicitly as:

= diPω(hj = 1|v = d) = diσ(ωT
j d) (12.16)

Importantly, we have shown an analytic solution to the second term of Equa-
tion 12.11 in the case of RBMs. Since the first term has no such analytic solution,
we will have to rely on a sampling procedure (such as Gibbs sampling) to estimate
its value.2

1Equation 12.13 is often written using expected value notation as 〈dihj〉p̃ − 〈vihj〉∞.
2Unfortunately, Gibbs sampling can become “stuck” for millions of iterations – the implica-

tions of this are discussed in Section 12.2.4.
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Finally, for an independent set of T data observations, we generalize Equa-
tion 12.13, yielding:

1

T
∇ωij

log P (v = d) =
1

T

T∑
t=1

∑
h

dithjPω(vt = dt, hj)

−
∑

v

∑
h

vihjPω(v, h) (12.17)

12.2.3 Younes’ Algorithm

The analysis of Section 12.2.1 motivates Younes’ algorithm (Algorithm 1) for
maximum likelihood parameter estimation for general Boltzmann machines. This
algorithm can be proved to converge. [1]

Algorithm 1 Younes’ Algorithm

1. Sample h̃(k) ∼
∏

j Pω(v = d, hj), for example using MCMC/SMC/. . .

2. Sample
(
˜̃v(k), ˜̃h(k)

)
, for example using Gibbs:

Pω(v, h) →

{
˜̃v(k) ∼ Pω(v, ˜̃h(k−1))
˜̃h(k) ∼ Pω(˜̃v(k), h)

3. Update weights, where ηk specifies the learning rate:

ω
(k)
ij = ω

(k−1)
ij +

ηk

T

T∑
t=1

(
dith̃

(k)
jt − ˜̃v

(k)
it

˜̃h
(k)
jt

)
4. Repeat from step 1, with k → k + 1.

For the special case of RBMs, note that the analytic term derived in Equa-
tion 12.15 means sampling in step 1 of Younes’ Algorithm is no longer necessary;
we can instead calculate h̃(k) exactly.

12.2.4 Contrastive Divergence

As a result of the need to run Gibbs sampling to convergence in step 2, Younes’
algorithm can be prohibitively slow. Contrastive Divergence (CD) is a biased
approximation to the ML algorithm in which, rather than running the sampler’s

12-5



CPSC 550 Lecture 12 — Feb. 26, 2009 2008/9 Term 2

Markov chain to convergence, takes a constant number of steps. The simplest
variant (called CD1 because only one step is taken) is represented graphically in
Figure 12.2 and described as Algorithm 2.

Algorithm 2 Constrastive Divergence (CD1)

1. Sample:

h̃(k) ∼ Pω(v = d, h)

˜̃v(k) ∼ Pω(v, h̃(k))

˜̃h(k) ∼ Pω(˜̃v(k), h)

2. Update weights, where ηk specifies the learning rate:

ω
(k)
ij = ω

(k−1)
ij +

ηk

T

T∑
t=1

(
dith̃

(k)
jt − ˜̃v

(k)
it

˜̃h
(k)
jt

)
3. Repeat from step 1, with k → k + 1.

In addition to being much faster than Younes’ algorithm, CD can actually
provide better discriminative performance. Intuitively, this is because CD only
simulates in the neighborhood of the data, whereas running the full chain entails
simulating over the full space. This is illustrated in Figure 12.3, for the task of
distinguishing 7s and 8s.

Contrastive Divergence will be discussed further in the next lecture. For fur-
ther information, the tutorial of Lecun is recommended. [3]
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Figure 12.2. Graphical depiction of single-step contrastive divergence (CD1).

Figure 12.3. Intuitive distinction between Younes’ ML algorithm and CD1. Training figures
in black. ML simulates data for many steps as indicated by the green figures; these eventually
become dissimilar to the data. CD1 simulates a single, similar datum for each training example,
as illustrated in red.
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