
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 10 — Feb. 24

Lecturer: Nando de Freitas Scribe: Gustavo Lacerda

Boltzmann Machines (Random / Gibbs Fields)

Notation

h ≡ latent/hidden random variables

v ≡ visible random variables

w ≡ parameters

σ(t) = logit(t) =
1

1 + e−t
(the logistic function)

General random fields

A random field is described by the joint probability equation:

pw(v,h) =
1

Z(w)
e−Ew(h,v)

Here, E is called the energy function, and Z is the partition function. For continuous-
valued nodes, we have:

Z(w) =

∫∫
e−Ew(h,v)dpw(v,h)

In general, inference and learning in Boltzmann machines is difficult due to the necessity
of computing Z.

The Restricted Boltzmann Machine (RBM)

An RBM is a type of pairwise random field with missing edges. In particular, the field
can be represented as a bipartite graph, where nodes in different partitions (layers) are
fully connected but there are no edges between nodes in the same layer; an example is
illustrated in Figure 10.1. The joint probability distribution of an RBM is given by:

pw(h,v) =
1

Z(w)
exp

(
nv∑
i=1

bivi +

nh∑
j=1

bjhj +
nv∑
i=1

nh∑
j=1

viwijhj

)
(10.1)
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Figure 10.1. An RBM with 3 visible and 2 hidden nodes.

Figure 10.2. The RBM of Figure 10.1 with bias nodes shown.

Bias nodes

As illustrated in Figure 10.2, it is common to include a permanently activated bias node
in each layer, whose value is always 1. This allows the first two terms of Equation 10.1
to be assimilated into the third:1

pw(h,v) =
1

Z(w)
exp

(
nv∑
i=1

nh∑
j=1

viwijhj

)
(10.2)

=
1

Z(w)

nv∏
i=1

nh∏
j=1

exp (viwijhj) (10.3)

=
1

Z(w)

nv∏
i=1

nh∏
j=1

φ(vi,hj,wij) (10.4)

where φ(·) in Equation 10.4 is known as a potential function.

Aside: connection between potentials and factor graphs

As illustrated in Figure 10.3, any distribution represented by a directed acyclic graph
can be “moralized” to form an undirected graphical model, and then further factored to

1An analogous technique is used in linear regression, where it is common to add a column of 1s to
the design matrix in order to avoid explicitly dealing with offset terms.

10-2



CPSC 550 Lecture 10 — Feb. 24 2008/9 Term 2

Figure 10.3. A probabilistic model respresented as a directed acyclic graph, an undirected
graphical model, and a factor graph. One can see that this is not a pairwise field by the fact
that f1 connects to 3 variables.

create a factor graph. Potential functions correspond to these factors; for this example:

p(w, s, r, e) = p(w|s, r)p(s|e)p(r)p(e)

= φ(s, e)φ(r, s, w)

= f1f2

Pairwise fields and the exponential family

We can show that pairwise fields are in the exponential family by first rewriting Equa-
tion 10.3 as:

pw(h,v) =
1

Z(w)

∏
i

∏
j

exp (〈w, f(h,v)〉) =
1

Z(w)
exp

(
f ′(v)Twf ′(h)

)
where f ′(·) are sufficient statistics (features), and w are the natural parameters. It is
left as an exercise for the reader to complete showing that RBMs are in the exponential
family.
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Figure 10.4. Binary-valued RBM for pattern completion.

Application: Pattern completion

Reference: (Hopfield; Duda & Hart)
Consider the RBM of Figure 10.4, which is binary-valued; i.e.:

hi ∈ {0, 1},vi ∈ {0, 1}

By first computing values for the hidden nodes h from the data v = x and initial
parameters w, simulated points ṽ can be generated. By minimizing the difference
between these “hallucinations” and the true data, the model can be trained:

v → h

h → ṽ

min
w,h

||v − ṽ||

At training time, some subset of the input is given, and the model is used to simulate
the missing input bits.

10-4



CPSC 550 Lecture 10 — Feb. 24 2008/9 Term 2

Update equations

From Equation 10.2 we can express the conditional probabilities for this simple network:

pw(hj = 1|v) ∝ exp

(
nv∑
i=1

viwij(1)

)
= exp

(
vTwj

)
(10.5)

pw(hj = 0|v) ∝ exp

(
nv∑
i=1

viwij(0)

)
= 1 (10.6)

Normalizing:

pw(hj = 1|v) =
exp

(
vTwj

)
1 + exp (vTwj)

=
1

1 + exp (−vTwj)

= σ
(
vTwj

)
(10.7)

pw(hj = 0|v) = 1− σ
(
vTwj

)
(10.8)

So we can write the probability of h given v as:

pw(h|v) =

nh∏
j=1

pw(hj|v)

=

nh∏
j=1

σ(vTwj)
hj(1− σ(vTwj))

1−hj (10.9)

Similarly, for v given h:

pw(v|h) =
nv∏
i=1

σ(wih)vi(1− σ(wih))1−vi (10.10)

This second derivation is left as an exercise for the reader.

Graphical interpretation of weights

If the weight vector wj corresponding to a single hidden unit hj is plotted as an image,
the response of that unit to input features can be visualized. This is especially revealing
when the input bits correspond to image pixels, where such plots show that hidden units
often act as “edge detectors” – highly sensitive to specific regions of the input image. An
example of this is taken from “Classification using Discriminative Restricted Boltzmann
Machines” (Larochelle and Bengio, ICML 2008):
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