CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 7 — Feb 12, 2009

Lecturer: Nando de Freitas Scribe: Matt Hoffman

Notation

e If S is a set, S denotes its complement.

e X, 2% X means the sequence X,, converges almost surely to X.

7.1 Refresher (from last lecture)

Given a sequence of sets {X,, }, we’ll define the set {X,, i.0.} as the set of values
which occur infinitely often, i.e.

{X, 1.0.} = {w: w € X,, for an infinite number of indices m}.

More precisely we can write this using the limit superior,

{X, i.0.} =limsup X,, = ﬁ D X,, = lim [j X,, where
n—oo n=1m=n nee m=n

U X =sup{Xp:n<m < oo}

7.2 Borel-Cantelli and
the Strong Law of Large Numbers

With the definitions from the last lecture, we can state the following lemma.

Lemma 7.1 (Borel-Cantelli). Given a sequence of events A, if the sum over
the probabilities of these events is finite, then the probability that infinitely
many of these events occur is 0. In other words,

> P(4,) <00 = P(A, io)=0.
n=1
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Proof: The probability of events occurring infinitely often is given by

P(A, i.0.) ﬂ U Am fnlgr;oP(U An)

n=1m=n m=n

< lim Z P(A,,) (via the union bound)

m=n
oo
E — lim E P(A
n—oo
m=1

where both of these sums are finite by assumption. O

Example. Let X,, € {0,1} be a sequence of independent random variables
such that the sum over probabilities ZP(Xn = 1) < oo is finite. By the

n=1
Borel-Cantelli lemma P(X,, = 1i.0.) = 0, and moreover

{X, =11io0.} ={w: lim X, (w) =0},
therefore X,, =2 0, i.e. it converges to 0 almost surely.

We can now show that the Borel-Cantelli lemma with respect to the errors
of some estimate can be used to show almost sure convergence.

Theorem 7.2. A sequence {Z,} of random variables converges almost surely
to Z iff for all e > 0 the probability of an error greater than e occurring infinitely
often is zero, i.e.

Zy X% 7 = Ve >0, P(|Z, — Z| > €i0.) =0.

Proof: We will first assume that Z, =% Z and prove that the probability of
an infinite number of errors is zero. For any €, we can construct the set

{|1Z, — Z] > €i.0.} C{w: nlil&Z"(w) = Z(w)},

where the right-most set contains all the ways in which Z,, doesn’t converge to
Z. We can then write the probability of this set as

P(|Z,—Z| > €io0.)<1—P(lim Z,(w)=Z(w)) =0,
where this equality holds as a result of our assumption.
We will now show that the implication holds in the other direction, namely
by assuming that P(|Zy — Z| > e i.0.) = 0 for all € and showing that almost
sure convergence holds. Let N for k > 1 be the last n such that |Z, — Z| > %
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and in particular we’ll define N = oo if no such n exists. Since our assumption

holds for all €, we can let € = % and for any k write
P(|Z, - Z| > 1 i0) =0 = P(N; = 00) = 0.
Hence, P( lim Z,(w) = Z(w)) =1, and Z, =% Z. O

We can now get around to our main reason for introducing the Borel-Cantelli
lemma, namely the strong law of large numbers. We will use Borel’s version of
the SLLN.

Theorem 7.3 (Strong law of large numbers). If{X,} is a sequence of i.i.d.
random variables with finite expected value E[X;] < oo, then in the limit the
average of these variables converges almost surely to E[X1], i.e.

I~ o as
72)(%»;)112[)(1].
ni—l

Proof: Let m = E[X;] and S,, = ZXi' We can write the probability of
i=1
deviations as

P(|18, —m|>€) =P((L5, - m)t > ')
<e'E[(L5, —m)!] (by Markov’s inequality)
< () E[(X0, X — m)1].
As a result, the following implication holds,
K
n2e*

= > P(|2S,—m|>¢) <)

If this final statement holds, then via Borel-Cantelli it must hold that our sample

1 a.s. .
mean converges almost surely to the true expected value, S, — m. It remains
to show that this hypothesis holds, i.e. that for E[(ZLI Ylv)ﬂ < Kn?, where
we have defined Y; = X; — m. Because m is the expectation of X; for all ¢, we
can easily see that

E[Y;] =0, E[ViY;---]=0, E[WVY7 --]=0,

E[(8. —m)'] < Kn® = P(|5Su—m|>¢) <

< o0
n2et

i.e. the expectation is 0 for every term containing a “singleton”. As a result
the only terms remaining are those of the form E[Y*] and IE[YZ.ZYJ?}, for which
there are n terms of the first kind and 3n(n — 1) of the second (via a trivial
combinatorial argument). Hence the expectation is given by
E[() | Yi)*] = nE[Y;*] + 3n(n — DE[Y?YS] < Kn? for some K.
i=1

This only relies on the expectations being finite, so our proof must hold. O



