
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 7 — Feb 12, 2009

Lecturer: Nando de Freitas Scribe: Matt Hoffman

Notation

• If S is a set, S denotes its complement.

• Xn
a.s.−→ X means the sequence Xn converges almost surely to X.

7.1 Refresher (from last lecture)

Given a sequence of sets {Xn}, we’ll define the set {Xn i.o.} as the set of values
which occur infinitely often, i.e.

{Xn i.o.} = {w : w ∈ Xm for an infinite number of indices m}.

More precisely we can write this using the limit superior,

{Xn i.o.} = lim sup
n→∞

Xn =
∞⋂

n=1

∞⋃
m=n

Xm = lim
n→∞

∞⋃
m=n

Xm where

∞⋃
m=n

Xm = sup {Xm : n ≤ m <∞}.

7.2 Borel-Cantelli and
the Strong Law of Large Numbers

With the definitions from the last lecture, we can state the following lemma.

Lemma 7.1 (Borel-Cantelli). Given a sequence of events An, if the sum over
the probabilities of these events is finite, then the probability that infinitely
many of these events occur is 0. In other words,

∞∑
n=1

P (An) <∞ =⇒ P (An i.o.) = 0.

7-1



CPSC 550 Lecture 7 — Feb 12, 2009 2008/9 Term 2

Proof: The probability of events occurring infinitely often is given by

P (An i.o.) = P (
∞⋂

n=1

∞⋃
m=n

Am) = lim
n→∞

P (
∞⋃

m=n

Am)

≤ lim
n→∞

∞∑
m=n

P (Am) (via the union bound)

=
∞∑

m=1

P (Am)− lim
n→∞

n∑
m=1

P (Am) = 0,

where both of these sums are finite by assumption. �

Example. Let Xn ∈ {0, 1} be a sequence of independent random variables

such that the sum over probabilities
∞∑

n=1

P (Xn = 1) < ∞ is finite. By the

Borel-Cantelli lemma P (Xn = 1 i.o.) = 0, and moreover

{Xn = 1 i.o.} = {w : lim
n→∞

Xn(w) = 0},

therefore Xn
a.s.−→ 0, i.e. it converges to 0 almost surely.

We can now show that the Borel-Cantelli lemma with respect to the errors
of some estimate can be used to show almost sure convergence.

Theorem 7.2. A sequence {Zn} of random variables converges almost surely
to Z iff for all ε > 0 the probability of an error greater than ε occurring infinitely
often is zero, i.e.

Zn
a.s.−→ Z ⇐⇒ ∀ε > 0, P (|Zn − Z| ≥ ε i.o.) = 0.

Proof: We will first assume that Zn
a.s.−→ Z and prove that the probability of

an infinite number of errors is zero. For any ε, we can construct the set

{|Zn − Z| ≥ ε i.o.} ⊂ {w : lim
n→∞

Zn(w) = Z(w)},

where the right-most set contains all the ways in which Zn doesn’t converge to
Z. We can then write the probability of this set as

P (|Zn − Z| ≥ ε i.o.) ≤ 1− P ( lim
n→∞

Zn(w) = Z(w)) = 0,

where this equality holds as a result of our assumption.
We will now show that the implication holds in the other direction, namely

by assuming that P (|ZN − Z| ≥ ε i.o.) = 0 for all ε and showing that almost
sure convergence holds. Let Nk for k ≥ 1 be the last n such that |Zn −Z| ≥ 1

k ,
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and in particular we’ll define Nk =∞ if no such n exists. Since our assumption
holds for all ε, we can let ε = 1

k and for any k write

P (|Zn − Z| ≥ 1
k i.o.) = 0 =⇒ P (Nk =∞) = 0.

Hence, P ( lim
n→∞

Zn(w) = Z(w)) = 1, and Zn
a.s.−→ Z. �

We can now get around to our main reason for introducing the Borel-Cantelli
lemma, namely the strong law of large numbers. We will use Borel’s version of
the SLLN.

Theorem 7.3 (Strong law of large numbers). If {Xn} is a sequence of i.i.d.
random variables with finite expected value E[X1] < ∞, then in the limit the
average of these variables converges almost surely to E[X1], i.e.

1
n

n∑
i=1

Xi
a.s.−→ E[X1].

Proof: Let m = E[X1] and Sn =
n∑

i=1

Xi. We can write the probability of

deviations as

P
(
| 1nSn −m| ≥ ε

)
= P

(
( 1

nSn −m)4 ≥ ε4
)

≤ ε−4 E
[
( 1

nSn −m)4
]

(by Markov’s inequality)

≤ (nε)−4 E
[
(
∑n

i=1Xi −m)4
]
.

As a result, the following implication holds,

E
[
( 1

nSn −m)4
]
≤ Kn2 =⇒ P

(
| 1nSn −m| ≥ ε

)
≤ K

n2ε4

=⇒
∑

n

P
(
| 1nSn −m| ≥ ε

)
≤
∑

n

K

n2ε4
<∞.

If this final statement holds, then via Borel-Cantelli it must hold that our sample
mean converges almost surely to the true expected value, 1

nSn
a.s.−→ m. It remains

to show that this hypothesis holds, i.e. that for E
[
(
∑n

i=1 Yi)4
]
≤ Kn2, where

we have defined Yi = Xi −m. Because m is the expectation of Xi for all i, we
can easily see that

E[Yi] = 0, E[Y1Y2 · · · ] = 0, E[Y1Y
2
2 · · · ] = 0, . . .

i.e. the expectation is 0 for every term containing a “singleton”. As a result
the only terms remaining are those of the form E[Y 4

i ] and E[Y 2
i Y

2
j ], for which

there are n terms of the first kind and 3n(n − 1) of the second (via a trivial
combinatorial argument). Hence the expectation is given by

E
[
(

n∑
i=1

Yi)4
]

= nE[Y 4
i ] + 3n(n− 1)E[Y 2

1 Y
2
2 ] ≤ Kn2 for some K.

This only relies on the expectations being finite, so our proof must hold. �
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