
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 21 — Apr 9, 2009

Lecturer: Nando de Freitas Scribe: Nimalan Mahendran

21.1 Some Concepts from Previous Lectures

The following inequalities were introduced in previous lectures.

Theorem 21.1 (Doob-Kolmogorov Inequality, [Wil91] and [GS01]).
Let {Sn} be a martingale and ε > 0.

P
(

max
1≤i≤n

|Si| ≥ ε
)
≤ 1

ε2
E(S2

n)

Theorem 21.2 (Chebyshev Inequality, [Was04]). Let X be a random
variable, µ = E(X), σ2 = V(X) and ε > 0.

P
(
|X − µ| ≥ ε

)
≤ σ2

ε2

Example, [Was04] Let Xi ∼ Bernoulli(d), 1 ≤ i ≤ n, be a sequence of
random variables such that each Xi ∈ {0, 1} is independent, X̄n = 1

n

∑n
i=1Xi

be a random variable and d ∈ [0, 1].

µ = E(X̄n) = d

P
(
|X̄n − d| > ε

)
≤ p(1− p)

nε2
≤ 1

4nε2

Theorem 21.3 (Hoeffding Inequality, [Was04]). LetX1:n be a sequence
of independent random variables, with E(Xi) = 0, ai ≤ Yi ≤ bi and ε > 0.
The condition ai ≤ Yi ≤ bi bounds the support of Yi to be [ai, bi]. Then for
any t > 0,

P
( n∑
i=1

Xi ≥ ε) ≤ e−tεe
t2

2

Pn
i=1(bi−ai)2
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A specialization of the Hoeffding inequality to the average of n indepen-
dent Bernoulli trails gives a tighter bound than the Chebyshev inequality.

Theorem 21.4 (Hoeffding Inequality for Ind. Bernoulli Trials, [Was04]).
Let Xi ∼ Bernoulli(d), 1 ≤ i ≤ n, be a sequence of random variables such
that each Xi ∈ {0, 1} is independent, X̄n = 1

n

∑n
i=1Xi be a random variable

and d ∈ [0, 1]. Then for any ε > 0,

P
(
|X̄n − d| > ε

)
≤ 2e−2nε2

Example, [Was04] Let Xi ∼ Bernoulli(d), 1 ≤ i ≤ n, be a sequence of
random variables such that each Xi ∈ {0, 1} is independent, X̄n = 1

n

∑n
i=1Xi

be a random variable and d ∈ [0, 1]. Let n = 100 and ε = 0.2. Then the
bounds given by the Chebyshev inequality and the Hoeffding inequality are
as follows

Bound(Chebyshev) = 0.0625

Bound(Hoeffding) = 0.00067

and it can be seen that the Hoeffding inequality gives a much tighter bound.

21.2 Martingale Convergence Theorem

Theorem 21.5 (Martingale Convergence Theorem). Let {Sm} be a mar-
tingale with respect to the filtration {Xm}. If E(S2

m) < M <∞ for some M
and all m, then ∃s such that Sm −→a.s. s.

21.2.1 The Proof of Theorem 21.5

The proof of Theorem 21.5 is split into four parts.

Part A proves that E(S2
m) is non-decreasing.

Part B finds an expression for the set of events where convergence does not
occur (the non-convergence set) and an expression for its probability.

Part C proves that Ym = Sm+n − Sm is a martingale with respect to itself.

Part D proves that the probability of the non-convergence set is zero.

21-2



CPSC 550 Lecture 21 — Apr 9, 2009 2008/9 Term 2

Part A

E
(
S2
m+n

)
= E

(
S2
m

)
+ 2E

(
Sm(Sm+n − Sm)

)
+ E

(
(Sm+n − Sm)2

)
= E

(
S2
m

)
+ 2E

(
SmE(Sm+n − Sm|x1:m)

)
+ E

(
(Sm+n − Sm)2

)
where the substitution follows from the Tower Property.

= E
(
S2
m

)
+ 2E

(
SmE(Sm+n|x1:m)

)
− 2E

(
SmE(Sm|x1:m)

)
+ E

(
(Sm+n − Sm)2

)
= E

(
S2
m

)
+ 2E

(
Smsm

)
− 2E

(
Smsm

)
+ E

(
(Sm+n − Sm)2

)
where the substitution for the second term follows from the property of mar-
tingales from the last lecture that E

(
Sm+n|x1:m

)
= sm and the substitution

for the third term comes from the certainty of Sm given x1:m.

= E
(
S2
m

)
+ E

(
(Sm+n − Sm)2

)
≥ E

(
S2
m

)
Therefore, E(S2

m) is non-decreasing.

Part B

Definition 1 (Cauchy convergence of sequences). {Xn} is a Cauchy con-
vergent sequence if ∀ε > 0, there exists an N such that |Xm − Xn| <
ε,∀m,n ≥ N .

[Tre03] gives the definition and some examples for the Cauchy convergence
of seqeunces.

Definition 2 (Cauchy convergence of sequences of random variables).
{Xn} is a Cauchy convergent sequence of random variables if ∀ε > 0 there
exists an N such that

P
({
ω ∈ Ω : |Xm(ω)−Xn(ω)| < ε,∀m,n ≥ N

})
= 1

Definition 2 is similar to the pointwise convergence of functions, where {Xn(ω)}
is the sequence of functions. Pointwise convergence of functions is defined in
[Tre03].

Definition 3 (Convergence set). The convergence set C is the set of events
ω ∈ Ω where the sequence with respect to n, Sn(ω), is Cauchy convergent.

C =
{
ω ∈ Ω : {sn(ω)} is Cauchy convergent

}
=
{
ω ∈ Ω : ∀ε > 0,∃m s.t. |sm+i(ω)− sm+j(ω)| < ε,∀i, j ≥ 0

}
=
{
ω ∈ Ω : ∀ε > 0,∃m s.t. |sm+i(ω)− sm(ω)| < ε,∀i ≥ 1

}
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The convergence set C can be rewritten as

C =
⋂
ε>0

⋃
m

{
ω ∈ Ω : |sm+i(ω)− sm(ω)| < ε,∀i ≥ 1

}
The non-convergence set is C

C =
⋂
ε>0

⋃
m

{
ω ∈ Ω : |sm+i(ω)− sm(ω)| < ε,∀i ≥ 1

}
=
⋃
ε>0

⋂
m

{
ω ∈ Ω : ∃i ≥ 1 s.t. |sm+i(ω)− sm(ω)| ≥ ε

}
The probability of the non-convergence set C is

P (C) = lim
ε→0

lim
m→∞

P
({
ω ∈ Ω : ∃i ≥ 1 s.t. |sm+i(ω)− sm(ω)| ≥ ε

})
Part C

Let Yn = Sm+n − Sm.

E(Yn+1|Y1:n) = E(E(Yn+1|s1:m+n)|Y1:n)

= E(E(Sm+n+1 − Sm|s1:m+n)|Y1:n)

= E(E(Sm+n+1|s1:m+n)− E(Sm|s1:m+n)|Y1:n)

= E(sm+n − sm|Y1:n)

= sm+n − sm = yn

Therefore, Yn is a martingale with respect to itself.

Part D

The Doob-Kolmogorov inequality can be applied to the martingale Yn to give

P ( max
1≤i≤n

|Sm+i − Sm| ≥ ε) ≤ E(Sm+i − Sm)2

ε2
, as n→∞

This expression is equivalent to

P (∃1 ≤ i ≤ n s.t. |Sm+i − Sm| ≥ ε)

≤ 1

ε2
E
(
(Sm+n − Sm)2

)
≤ 1

ε2

[
M2 − E(S2

m)
]
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This inequality holds for all n, including n = ∞. It can then be substi-
tuted into the expression for the probability of non-convergence, P (C)

P (C) = lim
ε→0

lim
m→∞

P
({
ω ∈ Ω : ∃i ≥ 1 s.t. |sm+i(ω)− sm(ω)| ≥ ε

})
≤ lim

ε→0
lim
m→∞

M2 − E(S2
m)

ε2

= lim
ε→0

0

ε2

∵ M is an upper bound on E(S2
m) for all m and E(S2

m) is non-decreasing.

= 0

P (C) ≤ 0 =⇒ P (C) = 0 =⇒ P (C) = 1

Therefore, Sm −→a.s. s. �

21.3 Hoeffding Inequality for Martingales

Theorem 21.6 (Hoeffding Inequality for Martingales). Let {Sn} be a
martingale and ε > 0. Then for all n,

P (|Sn − Sn−1| ≤ Bn) = 1 =⇒ P (|Sn − S0| ≥ ε) ≤ 2e
− 1

2
ε2P
i B

2
i
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