CPSC 550: Machine Learning 11 2008/9 Term 2
Lecture 21 — Apr 9, 2009

Lecturer: Nando de Freitas Scribe: Nimalan Mahendran

21.1 Some Concepts from Previous Lectures

The following inequalities were introduced in previous lectures.

Theorem 21.1 (Doob-Kolmogorov Inequality, [Wil91] and [GS01]).
Let {S,,} be a martingale and € > 0.

Lo
P( max |8 > €) < SE(S})
Theorem 21.2 (Chebyshev Inequality, [Was04]). Let X be a random
variable, i = E(X), 0 = V(X) and € > 0.
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Example, [Was04] Let X; ~ Bernoulli(d),1 < i < n, be a sequence of
random variables such that each X; € {0,1} is independent, X,, = £ 3" | X;
be a random variable and d € [0, 1].
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P(|X,—dl>¢) <

Theorem 21.3 (Hoeffding Inequality, [Was04]). Let X;., be a sequence
of independent random variables, with E(X;) = 0, a; <Y; < b; and € > 0.
The condition a; <Y; < b; bounds the support of Y; to be [a;,b;]. Then for
any t > 0,

n ) .
P(ZXi > €) < e te'T Dimi(bimai)’®
=1
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A specialization of the Hoeffding inequality to the average of n indepen-
dent Bernoulli trails gives a tighter bound than the Chebyshev inequality.

Theorem 21.4 (Hoeffding Inequality for Ind. Bernoulli Trials, [Was04]).
Let X; ~ Bernoulli(d),1 < i < n, be a sequence of random variables such

that each X; € {0,1} is independent, X,, = = > | X; be a random variable

and d € [0,1]. Then for any € > 0,

P(|X, —d| > ¢) < 2e72

Example, [Was04] Let X; ~ Bernoulli(d),1 < ¢ < n, be a sequence of
random variables such that each X; € {0,1} is independent, X,, = 1 3" X
be a random variable and d € [0,1]. Let n = 100 and € = 0.2. Then the
bounds given by the Chebyshev inequality and the Hoeffding inequality are
as follows

Bound(Chebyshev) = 0.0625
Bound(Hoeffding) = 0.00067

and it can be seen that the Hoeffding inequality gives a much tighter bound.

21.2 Martingale Convergence Theorem

Theorem 21.5 (Martingale Convergence Theorem). Let {S,,} be a mar-
tingale with respect to the filtration {X,,}. If E(S2) < M < oo for some M
and all m, then ds such that S,, —%* s.

21.2.1 The Proof of Theorem 21.5

The proof of Theorem 21.5 is split into four parts.
Part A proves that E(S2) is non-decreasing.

Part B finds an expression for the set of events where convergence does not
occur (the non-convergence set) and an expression for its probability.

Part C proves that Y, = S+, — S, is @ martingale with respect to itself.

Part D proves that the probability of the non-convergence set is zero.
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Part A

E(SZ) + 2E(Sim(Sman — Sm)) + E((Smtn — Sm)?)
=E(S52,) 4 2E(SmE(Smsn — Smlz1:m)) + E((Smtn — Sm)?)

where the substitution follows from the Tower Property.
=E(S2) + 2E(SmE(Smin|z1m)) — 2E(SnE(Sm|z1.m)) + E((Spman —
=E(S2) + 2E(Smsm) — 2E(Smsm) + E((Smin — Sm)?)

where the substitution for the second term follows from the property of mar-

tingales from the last lecture that E(Sm+n|x1:m) = 3,, and the substitution
for the third term comes from the certainty of S,, given xy.,,.

— E(52) +E((Spin — Sm)?)
> E(S,)

Therefore, E(S2,) is non-decreasing.

Part B

Definition 1 (Cauchy convergence of sequences). {X,} isa Cauchy con-
vergent sequence if Ye > 0, there exists an N such that |X,, — X,| <
€,Ym,n > N.

[Tre03] gives the definition and some examples for the Cauchy convergence
of seqeunces.

Definition 2 (Cauchy convergence of sequences of random variables).

{X,} is a Cauchy convergent sequence of random variables if Ve > 0 there
exists an N such that

P{weQ:|Xn(w) - X,(w)] <e,Vm,n>N}) =1

Definition 2 is similar to the pointwise convergence of functions, where { X, (w)}
is the sequence of functions. Pointwise convergence of functions is defined in
[Tre03].

Definition 3 (Convergence set). The convergence set C' is the set of events
w €  where the sequence with respect to n, S,(w), is Cauchy convergent.

C ={weQ: {s,(w)} is Cauchy convergent}
={weQ:Ve>0,Im s.t. |spii(w) — smyj(W)] <€ Vi,j >0}
={we:Ve>0,Im s.t. |Spii(w) — sp(w)] <€ Vi>1}
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The convergence set C' can be rewritten as
C= ﬂU {we Q:]spi(w) — spw)] <eVi>1}
e0 m
The non-convergence set is C'

C= ﬂU{w €Q: [smpi(w) — sm(w)| <€ Vi>1}

e0 m

— U ﬂ {w cQ:di>1s.t. |8m+z’<w) - Sm(w)‘ = 6}

e>0 m

The probability of the non-convergence set C is

P(C) = lim lim P({w €N:3Fi>1st. |sppi(w) — sm(w)| > 6})

e—0 m—oo

Part C
Let Y, = Sppin — Sy
]E(Yn+1|}/1:n>

E(E(Yn+1]81:m+0)[Y1:n)
(E(Sm+n+1 - Sm|51:m+n) ‘Yltn)
(

(

E(Sm+n+1 ’31:m+n) - E(Sm ’81:m+n) |Yv1n)

Sm+n - SmD/l:n)

E
E
E

Sm4+n — Sm = Yn

Therefore, Y,, is a martingale with respect to itself.

Part D

The Doob-Kolmogorov inequality can be applied to the martingale Y,, to give

IE:Sm Z_Sm 2
P(max |Sy4i — S| > €) < (S )

1<i<n €2

,as n — 00

This expression is equivalent to

P(A1 <i<nst. [Sppi— Sm| >¢€)
1
< G_QE((SmHz - Sm>2)
S B

€2

IA
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This inequality holds for all n, including n = oco. It can then be substi-

tuted into the expression for the probability of non-convergence, P(C')

P(C) = lli%ﬂ}liréo P({w €N >1st |spri(w) — sp(w)] > e})
M? —E(S?)

"~ M is an upper bound on E(S?) for all m and E(S?) is non-decreasing.
=0
P(C)<0 = P(C)=0 = P(C)=1

Therefore, S,, —** s.

21.3 Hoeftding Inequality for Martingales

Theorem 21.6 (Hoeffding Inequality for Martingales). Let{S,} bea
martingale and € > 0. Then for all n,

1 62

P(|Sn - Sn—1| S Bn) =1 = P(|Sn - S()’ Z E) S 2675?31'2
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