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Lecture 9 - Experimental Design

with Gaussian Processes

OBJECTIVE: In this lecture we introduce gaussian processes

(GPs) for regression. These nonparametric models allow us

to generate nonlinear predictions. Yet, the models are very

tractable and permit the application of experimental design

ideas introduced on the previous lecture. We will also study

the problem of classification and construct ingenious kernels

using graphs. By relaxing the classification problem with

relational inputs, we will end up with a simple GP classifier

that is amenable to active learning.

� GAUSSIAN PROCESSES

A Gaussian process, denoted z(·) ∼ GP (m(·), K(·, ·)), is an

infinite random process indexed by a variable x such that any

realization z(xi) is Gaussian with mean m(xi) and covari-
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ance (symmetric positive definite kernel) Kij = k(xi,xj).

Since the mean function is typically unknown, one can con-

struct a GP for prediction in two stages:

ŷ(x) =

d∑
j=1

fj(x)θj + z(x)

z(·) ∼ GP (0, σ2K)

On observing data {x1:n,y1:n} and a test point xn+1 (or

more test points), the vector of predictions on the test and

training data is jointly Gaussian:
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where k = k(xn+1,xn+1),

k̂T =
[
k(xn+1,x1) · · · k(xn+1,xn)

]

K =




k(x1,x1) · · · k(x1,xn)

... ... ...

k(xn,x1) · · · k(xn,xn)




f̂ =
[
f1(xn+1) · · · fd(xn+1)

]

F =




f1(x1) · · · fd(x1)

... ... ...

f1(xn) · · · fd(xn)




� GP WITH KNOWN MEAN FUNCTION

If θ is known, then one can use simple conditioning argu-

ments for multivariate Gaussian distributions to obtain the

conditional distribution of ŷn+1 given ŷ1:n. This distribution
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is Gaussian with mean and covariance:

E(ŷn+1|ŷ1:n) = f̂θ + kTK−1(ŷ1:n − Fθ)

cov(ŷn+1|ŷ1:n) = k − kTK−1k

� GP WITH UNKNOWN MEAN FUNCTION

As in the linear model, we can assign a Gaussian prior θ ∼
N (θ0, σ

2R−1). This prior results in a Gaussian posterior

with mean and covariance:

µ = E(θ|F,y) = (FTK−1F + R)−1(FTK−1y + Rθ0)

cov(θ|F,y) = (FTK−1F + R)−1σ2 = Σσ2

Under this posterior distribution, the predictive distribution

of the Gaussian process becomes:

E(ŷn+1|ŷ1:n) = f̂µ + kTK−1(ŷ1:n − Fµ)

cov(ŷn+1|ŷ1:n)= σ2
{

k − kTK−1k + (̂f−FTK−1k)TΣ(̂f−FTK−1k)
}
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� EXPERIMENTAL DESIGN WITH GAUSSIAN PROCESSES

As in the linear case, we should choose an experiment (point

x) so as to minimize the variance of the prediction. That is,

u�(e) = min
e

cov(ŷn+1|ŷ1:n)

That is, we should choose to experiment in parts of the space

where there is high uncertainty.

In this case the covariance is really a univariate variance

as we only have a single test point. In general we can try

to minimize either the determinant or trace (better) of the

predictive covariance for a block of test points.

Note that the design with unknown mean function depends

on the prediction f̂ .
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� KERNELS ON GRAPHS AND SEMI-SUPERVISED LEARN-

ING

We are given N feature vectors x ∈ R
d as shown for d = 2

in Fig. 2. Some of the points have labels. In the figure, two

points have the labels yl = 1 and yl = 0. The rest of the

points have unknown labels yu. The goal is to compute the

unknown labels.

x

w
i

ij

j

x

Input data: Two points (×) and (o) have labels yl = 1 and

yl = 0 respectively. The remaining points are unlabelled

yu =?, but their topology is essential to the construction

of a good classifier.
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A human would classify all the points in the outer ring as 1

and the points in the inner circle as 0. We want an algorithm

that reproduces this perceptual grouping.

We do this by considering each point xi as a node in a fully

connected undirected graph. The edges of the graph have

weights corresponding to a similarity kernel. In our case,

the weight between points xi and xj is

wij = exp

(
−1

σ
‖xi − xj‖2

)
,

where ‖·‖ denotes the L2 norm. Hence, points that are close

together will have high similarity (high w), whereas points

that are far apart will have low similarity.

It is sensible to minimize the following error function to com-
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pute the unknown labels yu:

E(yu) =
1

2


 ∑

i∈L,j∈L

wij(y
l
i − yl

j)
2 + 2

∑
i∈U,j∈L

wij(y
u
i − yl

j)
2

+
∑

i∈U,j∈U

wij(y
u
i − yu

j )2


 ,

where L is the set of labelled points and U is the set of

unlabelled points. If two points are close then w will be

large. Hence, the only way to minimize the error function is

to make these two nearby points have the same label y.

Let us introduce the adjacency matrix W with entries wij

and the following block structure:

W =


Wll Wlu

Wul Wuu


 .

where Wuu denotes the entries wij with i, j ∈ U .

Let D = diag(di) where di =
∑

j wij. That is,
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D =




∑
j w1j 0 0 · · · 0

0
∑

j w2j 0 · · · 0

...

0 · · · 0 0
∑

j wNj




D is a diagonal matrix whose i-th diagonal entry is the sum

of the entries of row i of W. Let the vector yu contain all

the unknown labels yu and similarly let yl contain all the

labels yl. Then, the error function can be written in matrix

notation as follows:

E(yu)= yT
u (Duu−Wuu)yu− 2yT

l Wulyu+yT
l (Dll −Wll)yl,

E(yu) =
(
yl yu

) 
Dll − Wll −Wlu

−Wul Duu − Wuu





yl

yu
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Differentiating this error function and equating to zero, gives

us our solution in terms of a linear system of equations:

�

where 0 ≤ yu ≤ 1 (this is a relaxation of the orig-

inal problem where the predictions are binary) .

A naive solution would cost O(M 3), where M = |U | is the

number of unlabelled points, since |L| is significantly smaller

than |U |. However, using fast n-body methods in conjunc-

tion with conjugate gradients, it is possible to reduce the

computation to O(M log M).
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The solution that we have just obtained is actually not very

different from a zero-mean function GP prediction (kernel

ridge regression):

E(ŷn+1|ŷ1:n) = kTK−1ŷ1:n

or in our current language:

yu = KulK
−1
ll yl

We have simply made the choice K = L−1 = (D − W)−1

� Proof sketch:

The matrix L is known as the Graph Laplacian.
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If we have many classes, we can use the same equation with

voting

� Proof sketch:

Once we have labels for all N points in the training data,

a new point xk in the test set data can be classified using

the following classical kernel discriminant (Nadaraya-Watson

estimate):

yk =

∑N
i=1 wikyi∑N
i=1 wik

.
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� ACTIVE LEARNING WITH GRAPH LAPLACIANS
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The top-left plot shows the initial data x, where only two

points have been labelled. By running the active learning

algorithm, the computer asks the user to enter the label

for a point that could minimize the Bayes risk the most

(the square in the top-right plot). The process is then

repeated in the bottom-left plot. The final classification

using only these four labels is perfect.


